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Abstract

The supersymmetric quantum mechanics of a two-dimensional non-relativistic particle subject to external magnetic and
electric fields is studied in a superfield formulation and with the typical non-minimal coupli(@Hefl) dimensions. Both the
N =1 andN = 2 cases are contemplated and the introduction of the electric interaction is suitably analysed.
0 2005 Elsevier B.V. All rights reserved.

PACS 11.30.Pb; 12.60.Jv; 03.65.-w

1. Introduction charged or neutral particles in interaction with mag-
netic fields, in various space dimensionalities. Not re-
Since the pioneering papers on supersymmetric lated to SQM, however, it is a well-known fact that
guantum mechanics (SQND-3], a great deal of work  in (2 + 1) dimensions a non-minimal coupling nat-
on the subject has been done, including various re- urally arises[19—22] and allows for a magnetic mo-
views[4,5,10-13]and bookq14-18] the researchin  ment interaction even in the case of spin-zero parti-
the field being still active. In particular, a very usual cles (scalar matter fields). These two aspects, SQM
guestion in this field is the realization of supersymme- and non-minimal coupling, have not yet been con-
try (SUSY) in guantum-mechanical systems involving templated simultaneously in the literature, and so the
present work is intended to address this problem.
mponding author The i_nve_s_tigation_ of non_-minimal couplings can
E-mail addresses: paschoal@cbpf.t(nR.c. paschoal), be well-justified by interesting _phenomena, like the
helayel@cbpf.b(J.A. Helayél-Neto)lpgassis@chbpf.br Aharonov—Casher effe¢d, 7], which accounts for the
(L.P.G. de Assis). interaction between neutral sp%particles and an ex-
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ternal electric field. There are already experimental N =2-SQM are discussed in Sectio®and 4 respec-

results confirming the Aharonov—Casher eff§&0] tively. Finally, in Sectiorb, the general conclusions are

and it may actually provide a very pertinent scenario drawn.

for the study of non-minimal couplings and for a bet-

ter understanding of the interplay between SQM and

electric fields, an open issue in the literature. 2. Non-minimal couplingin (2+ 1) dimensions
Here, from the very beginning, a superfield for-

mulation is carried out that involves charged particles In (3+ 1) dimensions the duaf*’ = %e‘“””\FM

with magnetic moment subject to external electric and of the electromagnetic fieldy; , is a second-rank ten-

magnetic fields whose potentials are functions of the sor. On the other hand, (2 + 1) dimensions, it is a

particle superfield coordinates. Bath=1 andN =2 vector, F* = %e“‘“\FM, and, as shown in Reffl9—

cases are considered. 22], itis possible to define a non-minimal derivative,
Another interesting question that remains open in -

the literature is whether an electric field interaction Pu =0u +iqAu +igFy, 1)

may be present without explicitly breaking SUSY. whereg is the planar analogue of the magnetic dipole

For N = 1-SQM, the traditional answer is nid5, moment, which couples non-minimally to the mag-

p. 51} but here this question is also reassessed andnetic field.

it is shown that, in a non-minimal coupling scheme, Such a derivative implies that the term

this indeed may occur: aiw = 1 supersymmetric

guantum-mechanical system is proposed, where theq® —g¢B (2)

electric field interaction appears along with the cou- |\ <t be added to the Schrédinger equation for an elec-

pling between the magnetic dipole moment and the o g pject to an electromagnetic field. Also, the mo-
magnetic field. It is shown under which conditions this mentum,j = _iV. must be replaced with

may take place. In the cagé= 2, Witten’s mode[2,
3] is the most celebrated and the one with more ap- 5 _ ;4 + g];*j (3)
plications. The corresponding literature shows that an o . )
electric interaction (via a scalar potential) is possible ~ 1nese substitutions are readily seen as equivalent
within such supersymmetric models, but it occurs only 0 the minimal prescription, except for the following

in each of the two sectors (‘bosonic’ and ‘fermion- Cchanges:

ic’) of the Hamiltonian: the two electric potentials (the bod—o_58 @)
‘bosonic’ and the ‘fermionic’), although deriving from - q

the same superpotential, have different expressions in

terms of it and thus do not refer simultaneously to the

same particle, but rather refer to two almost isospec- (A); — (A"); = (A); — EE,-, (5)

tral systems (the ‘almost’ here refers to the ground q

state), typical of (unbroken) supersymmetric systems. Or:

On the other hand, in th&y = 2- (N = 1-)SUSY of ;L g =

Pauli equation in two (three) space dimensi¢hs, Ap = Ay =Ap+ gF"' ©)
23], the two sectors of the Hamiltonian (the ‘boson-

ic’ and the ‘fermionic’ ones) refer to the two differ- Eq. (5) implies that the magnetic field is redefined

ent spin states of theame spin-1/2 system. In the as:

present work, a proposition is made about the possibil- B — B’ =B + 5(% -E). @)

ity of a supersymmetric Pauli Hamiltonian {@ + 1) 9q

dimensions including electric interactions, with a non- Itis worthwhile to stress here that the field redefini-
minimal coupling. tions above, though formally acceptable, should not be

The outline of the present Letter is as follows. In used to eliminate physical effects inherent to the non-
Section2, a brief review of the(2 4+ 1)-dimensional minimal coupling. Indeed, the latter describes a mag-
non-minimal coupling is presented. Nexf,= 1- and netic dipole moment even for scalar particles and may
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lead to contact interactions between the test particle
and the eventual sources of the electromagnetic field
acting upon the particle. The electromagnetic field,
though non-quantized, is not a fixed background. It is

generated by external sources and they may induce in-

teractions once the test particle is located in the region
of the sources.

The non-minimal coupling studied here may be
considered as resulting from the dimensional reduc-
tion of a Lorentz-breaking Chern—Simons model in
(834 1) dimensiong24—-27] defined by the following
derivative:

14
5 ®)
wherey is a constant (likey, a property of the par-
ticle), €,.u.» is the (Levi-Civita) totally antisymmetric
tensor in(3+ 1) dimensions and is a fixed (Lorentz-
breaking) vector in spacetime. Indeed, performing the

Oy +iqA, +is €’ F,
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interpretation is also possible far it is responsible
for the confinement of the electrons to the plane and,
therefore, it is natural to relaté to the z-component

of the three-dimensional magnetic field, which is very
large in the FQHE 10 T) and forbids the electrons
to move in thez-direction, breaking in this way their
(3 + 1)-dimensional Lorentz symmetry. Indeed, the
construction of a CF is possible only in two space di-
mensions.

Now, if one wishes to supersymmetrize this model,
it is important to notice that this is not possible (in
N = 1-SQM) for a scalar potential interaction such as
the one given by expressiqR). Therefore, in order
to keep invariance unde&¥ = 1-SUSY, it is necessary
that:

gB(x,y)=q®(x,y). (11)

corresponding steps in order to obtain the Schrodinger 3. N = 1-SQM

equation for a charged particle, one obtains that it is
equivalent to add the term

q® —yi-B 9)

to the Hamiltonian and substitute the momentum with

7—qgA+yv°B—yixE. (10)

Thus, choosing’ = (0,7) andyv = (0,0, yv°),
one immediately verifies that the redefinitions stated
in Egs. (2)-(3) are exactly recovered, with th@® +
1)-dimensional quantityv® playing the role of its
(2+ 1)-dimensional counterpagt, and with only the
third (z) component of th&3 + 1)-dimensional mag-
netic field B and the in-planex(, y) components of the
(3+ 1)-dimensional electric fiel& contributing to the
Hamiltonian, just as it should be {2+ 1) dimensions.

In connection with planar physics, it is natural to
invoke the quantum Hall effect (QHEPR8-31] and
its fractional version (FQHE). Indeed, in RdB2],

a parallel was made between the particle with charge
g and magnetic momeryg, as described here, and
the composite fermion (CF) of Jain’s model for the
FQHE [33-36] in which g is associated to the CF
magnetic flux. However, in terms of a 4-dimensional
theory with Lorentz violatiofi24], the CF flux,g, con-
tains a contribution from the particle itself (by means
of the parametey) and another one from the back-
ground vectorp”, that breaks Lorentz symmetry. An

A charged planar particle non-minimally coupled to
amagnetic field is described as&n= 1-SQM system
by means of the superspace action below:

iM - 05

—i—iq/dtd@ DX - A'(X), (12)
where A’(X) is the vector (super)potential in a non-
minimal coupling scheme, given by E(), and X (r)

is the real “superfield” (in fact, the supercoordinate of
the particle), given by

X, 0)=x' ) +ior (1), j=(@1,2), (13)

x/(t) being the two real coordinates of the planar par-
ticle, A/ (r) their Grassmannian supersymmetric part-
ners and the real, Grassmannian supersymmetric co-
ordinate that parametrizes the superspéce),). The
supersymmetry covariant derivativeis given by:

D=0y —i60;, (14)
and the supersymmetry generator reads as
Q=09 +i60,. (15)

The infinitesimal supersymmetry transformation of
the superfieldX can be written as:

X =e0X, (16)
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wheree is the Grassmann-valued parameter. By adopt-
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besidesr? = 72 = 2 = 2 = 0. These relations may

ing the method of projections in superspace, one can be represented by

readily show (with the help of13) and (16)) the su-
persymmetry invariance of the acti¢h?), actually
d[M. - - >

8S1=ie | dt—| =X -A+gA(K)-A]|. 17

imie [arg| Giivai@ i) an
So, $1 is invariant up to a total derivative term, as it is
the case for supersymmetric theories.

In terms of components, the actiqi2), S; =
[ dt L1, reads as follows:

1 T—7A )»+q5.c' A—gx~§
—%dbe—%de&ih (18)
where one notices that
X x X =e€ijrirj = A1, A2l (19)

A convenient change of variables will be per-
formed:

M )
V=, 7(A1+1A2),
- M}L "
Iﬁ:\/?( 1—iX2),

giving rise to the following expression for the La-
grangian:

(20)

(21)

M2
Ll—T——(lﬂlﬂerw)Jrqx A-gi-E

+ WW/’ V1B + ﬂwf’ VIV - E).

The corresponding Hamiltonian will be obtained
after a canonical quantization procedure following
Ref.[16, p. 46] The Grassmannian momenta are de-
fined as

_L_ i

(22)

F=tely, (24)
i

leading to the following operator algebria£ 1):
[xi, pj1=1idi;, (25)

(. v} =1, (26)

(27)
(28)

where thes’s are the Pauli matrices (and there is no
other inequivalent representatif8v]).
The quantized version of the Hamiltonian is:

g(V-E)
2M

p—qA+gE?

(p qB
M

Hy = —03 —
1 2M3

03,

(29)
where the relation[o;,0_] = o3 was used. This
Hamiltonian automatically reveals a spin2l parti-
cle with magnetic dipole momento3/2M and gyro-
magnetic ratio 2, as expected, and in agreement with
Ref.[23], about SQM (but without the superfield for-
mulation used here), and Ref88-42] with general
arguments concerning particles(@+ 1) dimensions.

It is interesting to compare this Hamiltonian with
the one obtained in Ref32], as the non-relativistic
limit of the non-minimal(2 + 1)-dimensional Dirac
equation:

L (P-aA+gE? qB
2M 2M
g = =
- 2 (V-E).
2M( )

H=q®

(30)

As already mentioned above, the conditigh =
q® is necessary in order to keep tie= 1-SUSY.
Thus, under such a condition,

(P—qA+gE)? 4B

N 2M 2M (v E).

Comparing Eqs(29) and (3L) one concludes that
the spin-up component of the former equals the latter.
The same occurs with the spin-down component when
a representation different from Eq27)—(28)is used,
in which the matrices; ando_ are interchanged.

The last term in Eq(29) may be related to the
magnetic field, in the case of Maxwell-Chern—-Simons
(MCS) theory[32,43] in which the following field
equations hold:

(31)

V-E —mcsB =p,
0B
dt

(32)

xE=——, (33)

<
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3 s - JE
VB—mcsE=J+¥, (34)
where, as above%i =¢;j0;, andmcs is the Chern—
Simons (topological) mass parameter, the (gauge-
symmetry preserving) mass of the gauge field. Indeed,
in the region outside external charges £ 0), the
Hamiltonian(29) turns into the following expression:
_(P—qA+gEy qo3

gncs
1 B. (35
oM 2M< Ty ) (35)

From this Hamiltonian, it is natural to define aia
fective gyromagnetic ratio, yest, whose deviation from
2 is given by

Hy

m
8 CS_l’

Yeff — 2= (36)

which reinforces the well-known fact thgtis to be
interpreted as aanomalous magnetic dipole moment.
In this context, the condition
gmcs
q
is necessary in order to keep the effective gyromag-
netic ratio in its standard value 2. Actually, in our
N =1 formulation of supersymmetry, the gyromag-
netic factor of a spir% particle is 2. Interestingly,
such a condition was also obtained in field-theoretical
approaches, with other interpretations: it turns inter-
acting MCS theory into a free one and relates it to
pure-CS theory and anyofis9,44] it gives rise to no
one-loop radiative corrections to the photon nid4$;
and it reduces the differential equations for the gauge
fields from second- to first-order, allowing one to get
vortex solutiong45]. It is worthy to mention here that,
in the work of Ref.[53] the Pauli operator appears as
a submatrix component of the super-Hamiltonian and,
then, the gyromagnetic ratio may have arbitrary values
in this approach.

1

(37)

4. N =2-SQM

The superfield formulation of Witten’s (one space
dimension,N = 2-) SQM may be found in Ref$18,
46,47] in terms of a scalar superpotential (a func-
tion of the one-dimensional real supercoordinate).
A generalization t@/ space dimensions is presented in
Refs.[15,47] also in terms of a scalar superpotential,
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but now as a function of real superfield coordinates.
A different approach to two space dimensions, using
a vector superpotential instead of a scalar one, is out-
lined in Ref.[48], but without a superfield formulation.

The N = 2-SQM of Pauli equation in two space
dimensions is formulated in terms of (complex) chi-
ral and anti-chiral superfield coordinates in R¢#<,
49,50] by means of a (Kahler) super(pre)potential
(a function of those superfield coordinates). The intro-
duction of an electric interaction into the planar Pauli
equation without the explicit breaking of SUSY was
made in Ref[51], but there a non-stationary magnetic
field was considered. In Reffs2-54] the approach
of matrix supersymmetry transformations to the Pauli
equation in(1+ 2) D was used to construct the super-
Hamiltonian and the Pauli operator (including an ex-
ternal scalar potential) in two space dimensions turns
out to be identified with the % 2-submatrix of the
total 4 x 4 super-Hamiltonian. AriV = 2-superfield
formulation encompassing all these issues, viz., Pauli
equation in(2 + 1) dimensions with electric interac-
tions, and also considering the planar non-minimal
coupling studied in Sectio®, is lacking. The present
section is devoted to fill this gap. Non-stationary sit-
uations are not considered in this Letter, and so the
electric interaction is due only to a scalar potential.
Also, the mentioned possibility of the Pauli operator
to be a component of the total super-Hamiltonian will
not be considered here, but rather it will always be re-
garded as the total super-Hamiltonian itself.

It was shown in SectioBthat, in order to obtain the
Schrédinger equation with a non-minimal coupling,
it is necessary to add the terf®) to the free Hamil-
tonian, and also to perform the replacement expressed
by Eg. (5). If condition (11) is valid, then there is
no scalar potential interaction in the resulting Hamil-
tonian, which therefore becomes ‘pure-magnetic’, al-
lowing one to derive it from the chiral superaction
of Ref. [49]. Such a superaction contains, instead of
A(x, y), the (real) Kéhler prepotenti& (x, y) (as will
be seen below), which satisfies the following relations
(from now on,A; stands for(A);):

(38)
(39)

Aj =€;10K,
B=V x AEE,‘jaiAjz—VzK.

Therefore, it would be desirable to find out how to
implement the non-minimal prescription of &) in
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- o ] MX2 M .. - -
term§ of the prepotentid (x, y). This is done as fol L= L GEvEe 4 qi - A—gi E
lows: 2 8
q. z 81t 1.
. + S8, 81B + 6. 851(V - E), 47
A; =A; — EE,’ 8 8 4N
q which, as expected, is the same result that would be
=0, K — 56”. E;j=¢;jd;K —aeE; pbtained if one had started With.a minimal superaction,
i.e., Eq.(42)with K (¢, ¢) replacingK’(¢, ¢), and the
=€ [ajK +a@A;+ a].@)] non-minimal prescription had been implemented only
B , after the corresponding splitting in components, by
=¢€ij0j(K +a®P)=¢;0;K, (40) means of Eqs(5) and (7) Moreover, this Lagrangian
where the stationary conditiah = 0 was used. Thus, 'S |de_r?t|ca?l to theNF 1_case, Eq(22), provided the
the required prescription may be considered as: identificationy = ¥22¢ is made. Thus, all the quan-
tization procedure carried out after E@2) may be
K—>K =K+ad repeated, yielding the same results and attesting, in
fiel ipti he f hat & + 1) di-
— K +a?B=K — a?V2K. (41) a superfield description, the fact that {8 + 1) di

mensions the Pauli equation possesses, rather than an

Turning now to the chiral superaction, and using N =1, anN =2-SUSY[23] (note that this conclu-
a notation similar to that of Ref49], the superspace Sion is valid independently whether the coupling is
coordinates are the time,and the Grassmannian vari- Minimal or non-minimal).
ables,# andé (the bar over a quantity stands for its It should be noticed that the extension frafm-=1-
complex or Hermitian conjugate). In a non-minimal 0 N = 2-SUSY carried out here is simply due to
coupling scheme, the/ = 2 superaction for a planar & Well-established resu[l6,23} N = 2 is the true
particle with massV and electric charge in a mag- SUSY of (2 4 1)-dimensional Pauli equation, in con-
netic field satisfying Eq(39)is given by: trast to the(3 + 1)-dimensional case, which is just
N = 1l-supersymmetric. Therefore, this part of the
M S = . = present work should not be confused with the equiv-
S2= 8 / did9df Do D + q/dtde A0 K9, 9), alence betweeW = 1- andN = 2-SQM as shown in
(42) Ref.[55] even for the(3+ 1)-dimensional Pauli equa-
tion. In the latter case, the second supercharge is non-
local (since it involves explicitly the parity operator).
Indeed, a sensible question that remains to be investi-
gated in detail is the transition from such a non-local
supercharge of th€3 + 1)-dimensional Pauli equa-
— o tion to a local one, when the dynamics is restricted
¢(1,0,0) =z(t) +08(t) —i002(1), (43) to be (2 + 1)-dimensional; or, equivalently, when the
H(1,60,0) =7(t) — OE(t) +i007(1), (44) (3+1)-dimensional magnetic field is considered to de-
__ pend only onx andy and to be parallel to the-axis
satisfyingD¢ = D¢ = 0, and withz (1) = x (1) +iy (1) (there is also a third possibility: when the magnetic
being the complex variable representing the real coor- fig|d has a definite space parit§y(—7) = ig(;); see
dinatest () andy(t) of the particle, ang(¢) its Grass- Ref.[16, p. 110]or Ref.[4]).
mannian supersymmetric partner. The supersymmetry
derivatives are defined as

whereK'(¢, ¢) is the superpotential given by the re-
defined Kahler prepotential of E¢41), now in terms

of the chiral and antichiral superfield coordinates of
the particle$ andg:

5. Discussion and conclusions

D=39;—i0d, (45)
D=8, —if0,. (46) Here, it has been shown the possibili;y, expressed
by Eq.(11), for SUSY to be kept even with an elec-
The superactioi42) reads in components &3 = tric field applied, provided a non-minimal coupling

[ dt La, with scheme holds. Moreover, since this work deals with
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planar physics, it may suggest a possible application to and

the quantum Hall effect (QHHE28-31] Indeed, such a ) 2@ h i@
possibility was already pointed out in RE2], where . i@ k) 1z m@)
a parallel was made between the particle with charge "D =| ) ;) 1) 40 | (51)
and magnetic moment as described in Secl@and r@) sz 1) u(@)

the composite fermion of Jain’s model for the frac-
tional QHE [33-36] Now, assuming the validity of

such a parallel, the present work brings a SUSY to
the system of composite fermions. Another result is

the same anticommutation requirementsifofz) lead
to the following total Hamiltonian:

(P—gA+gE)? 4qB

Eqg. (37), a condition also obtained in field theoreti- H,=-—"— > — Z _53® 15,2
cal works (with other interpretations) and which here QZMq 2M )
; . . V-E _
guarantees the gyromagnetic ratio fco be equal to .|ts &l )03® Lowa+ G(z.7). (52)
standard value, two. All the calculations are made in 2M VM
superfield formulation. where
Finally, a more general possibility for the interac- 0 0 N
tion will be discussed, in which the following terms - —f@ o @
are added to the superacti(4R). - f@ 0 % 0
G(z,2) = 2 . (53)
- B0 fe
/ dtdo I'(¢) + [ dtdd I'(§), (48) _ie) 0 FG o

Notice that this interaction mixes the four compo-
nents of the wave function, contrary to the original
Hamiltonian. The Grassmann field¥ (z) and I"/()
may be interpreted as photino-type (pseudo-)classical
external fields, in the same way as the electromag-
, I netic prepotentialk’(z, z) (or the potentialsp and
§1M(2) =617 (2), (49) A) is usually considered as a photon-type classical ex-
ternal field. The motivation for adopting 4-component
wave functions is similar to what happeng &y 1) D
field theories with massive fermions, when one is
forced to introduce 4-component spinors, rather than
2-component ones, in order that the mass term be com-
patible with parity symmetry. This is a peculiar feature
of planar theories.

wherel" (¢) and its complex conjugatg (¢) are nec-
essarily Grassmann external fields, in order to the ac-
tion be bosonic. The corresponding components added
to the Lagrangiaifd7) are:

where the primes in thé&'s now stand for differentia-
tion with respect to the argument.

The (pseudo-)classical external field’(z), al-
though not quantized, must anticommute withas
well as with itself. Therefore, it may be represented
also by a 2x 2-matrix. These anticommutation re-
quirements, however, impose such severe restrictions
on the matrix/™’(z) that, under the quantization pro-
cedure mentioned in Sectid@the contribution of the  Acknowledgements
terms(49) to the Hamiltonian is zero. To bypass such
an obstruction, it is reasonable to open the possibil-  The authors thank Germano Monerat for fruitful
ity of a different matrix representation for the Grass- discussions at an early stage of this work. R.C.P.
mannian coordinate$,andg, and their corresponding  thanks Marcelo Carvalho for helpful discussions.

momenta. Indeed, adopting, for example, the 4 L.P.G.A. expresses his gratitude to CNPg-Brazil for
representation below: his Graduate fellowship.
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