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Abstract

The supersymmetric quantum mechanics of a two-dimensional non-relativistic particle subject to external magn
electric fields is studied in a superfield formulation and with the typical non-minimal coupling of(2+ 1) dimensions. Both the
N = 1 andN = 2 cases are contemplated and the introduction of the electric interaction is suitably analysed.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Since the pioneering papers on supersymme
quantum mechanics (SQM)[1–3], a great deal of work
on the subject has been done, including various
views[4,5,10–13]and books[14–18], the research in
the field being still active. In particular, a very usu
question in this field is the realization of supersymm
try (SUSY) in quantum-mechanical systems involv
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charged or neutral particles in interaction with ma
netic fields, in various space dimensionalities. Not
lated to SQM, however, it is a well-known fact th
in (2 + 1) dimensions a non-minimal coupling na
urally arises[19–22] and allows for a magnetic mo
ment interaction even in the case of spin-zero pa
cles (scalar matter fields). These two aspects, S
and non-minimal coupling, have not yet been c
templated simultaneously in the literature, and so
present work is intended to address this problem.

The investigation of non-minimal couplings c
be well-justified by interesting phenomena, like t
Aharonov–Casher effect[6,7], which accounts for the
interaction between neutral spin-1 particles and an ex
2

.
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ternal electric field. There are already experimen
results confirming the Aharonov–Casher effect[8,9]
and it may actually provide a very pertinent scena
for the study of non-minimal couplings and for a b
ter understanding of the interplay between SQM
electric fields, an open issue in the literature.

Here, from the very beginning, a superfield fo
mulation is carried out that involves charged partic
with magnetic moment subject to external electric a
magnetic fields whose potentials are functions of
particle superfield coordinates. BothN = 1 andN = 2
cases are considered.

Another interesting question that remains open
the literature is whether an electric field interact
may be present without explicitly breaking SUS
For N = 1-SQM, the traditional answer is no[15,
p. 51], but here this question is also reassessed
it is shown that, in a non-minimal coupling schem
this indeed may occur: anN = 1 supersymmetric
quantum-mechanical system is proposed, where
electric field interaction appears along with the c
pling between the magnetic dipole moment and
magnetic field. It is shown under which conditions t
may take place. In the caseN = 2, Witten’s model[2,
3] is the most celebrated and the one with more
plications. The corresponding literature shows tha
electric interaction (via a scalar potential) is possi
within such supersymmetric models, but it occurs o
in each of the two sectors (‘bosonic’ and ‘fermio
ic’) of the Hamiltonian: the two electric potentials (th
‘bosonic’ and the ‘fermionic’), although deriving from
the same superpotential, have different expression
terms of it and thus do not refer simultaneously to
same particle, but rather refer to two almost isosp
tral systems (the ‘almost’ here refers to the grou
state), typical of (unbroken) supersymmetric syste
On the other hand, in theN = 2- (N = 1-)SUSY of
Pauli equation in two (three) space dimensions[16,
23], the two sectors of the Hamiltonian (the ‘boso
ic’ and the ‘fermionic’ ones) refer to the two diffe
ent spin states of thesame spin-1/2 system. In the
present work, a proposition is made about the poss
ity of a supersymmetric Pauli Hamiltonian in(2 + 1)

dimensions including electric interactions, with a no
minimal coupling.

The outline of the present Letter is as follows.
Section2, a brief review of the(2 + 1)-dimensional
non-minimal coupling is presented. Next,N = 1- and
N = 2-SQM are discussed in Sections3 and 4, respec-
tively. Finally, in Section5, the general conclusions a
drawn.

2. Non-minimal coupling in (2 + 1) dimensions

In (3 + 1) dimensions the dual̃Fµν ≡ 1
2εµνκλFκλ

of the electromagnetic field,Fκλ, is a second-rank ten
sor. On the other hand, in(2 + 1) dimensions, it is a
vector,F̃ µ ≡ 1

2εµκλFκλ, and, as shown in Refs.[19–
22], it is possible to define a non-minimal derivative

(1)Dµ ≡ ∂µ + iqAµ + igF̃µ,

whereg is the planar analogue of the magnetic dip
moment, which couples non-minimally to the ma
netic field.

Such a derivative implies that the term

(2)qΦ − gB

must be added to the Schrödinger equation for an e
tron subject to an electromagnetic field. Also, the m
mentum,�p = −i �∇, must be replaced with

(3)�p − q �A + g �̃E.

These substitutions are readily seen as equiva
to the minimal prescription, except for the followin
changes:

(4)Φ → Φ ′ = Φ − g

q
B

and

(5)( �A)i → ( �A′)i = ( �A)i − g

q
Ẽi,

or:

(6)Aµ → A′
µ ≡ Aµ + g

q
F̃µ.

Eq. (5) implies that the magnetic field is redefin
as:

(7)B → B ′ = B + g

q
( �∇ · �E).

It is worthwhile to stress here that the field redefi
tions above, though formally acceptable, should no
used to eliminate physical effects inherent to the n
minimal coupling. Indeed, the latter describes a m
netic dipole moment even for scalar particles and m
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lead to contact interactions between the test par
and the eventual sources of the electromagnetic
acting upon the particle. The electromagnetic fie
though non-quantized, is not a fixed background.
generated by external sources and they may induc
teractions once the test particle is located in the reg
of the sources.

The non-minimal coupling studied here may
considered as resulting from the dimensional red
tion of a Lorentz-breaking Chern–Simons model
(3+ 1) dimensions[24–27], defined by the following
derivative:

(8)∂µ + iqAµ + i
γ

2
εµνκλv

νF κλ,

whereγ is a constant (likeq, a property of the par
ticle), εµνκλ is the (Levi-Civita) totally antisymmetri
tensor in(3+1) dimensions andvν is a fixed (Lorentz-
breaking) vector in spacetime. Indeed, performing
corresponding steps in order to obtain the Schrödin
equation for a charged particle, one obtains that
equivalent to add the term

(9)qΦ − γ �v · �B
to the Hamiltonian and substitute the momentum w

(10)�p − q �A + γ v0 �B − γ �v × �E.

Thus, choosingvν = (0, �v) andγ �v = (0,0, γ v3),
one immediately verifies that the redefinitions sta
in Eqs. (2)–(3) are exactly recovered, with the(3 +
1)-dimensional quantityγ v3 playing the role of its
(2 + 1)-dimensional counterpartg, and with only the
third (z) component of the(3 + 1)-dimensional mag
netic field �B and the in-plane (x, y) components of the
(3+1)-dimensional electric field�E contributing to the
Hamiltonian, just as it should be in(2+1) dimensions.

In connection with planar physics, it is natural
invoke the quantum Hall effect (QHE)[28–31] and
its fractional version (FQHE). Indeed, in Ref.[32],
a parallel was made between the particle with cha
q and magnetic momentg, as described here, an
the composite fermion (CF) of Jain’s model for t
FQHE [33–36], in which g is associated to the C
magnetic flux. However, in terms of a 4-dimensio
theory with Lorentz violation[24], the CF flux,g, con-
tains a contribution from the particle itself (by mea
of the parameterγ ) and another one from the bac
ground vector,vν , that breaks Lorentz symmetry. A
interpretation is also possible for�v: it is responsible
for the confinement of the electrons to the plane a
therefore, it is natural to relate�v to thez-component
of the three-dimensional magnetic field, which is v
large in the FQHE (∼ 10 T) and forbids the electron
to move in thez-direction, breaking in this way the
(3 + 1)-dimensional Lorentz symmetry. Indeed, t
construction of a CF is possible only in two space
mensions.

Now, if one wishes to supersymmetrize this mod
it is important to notice that this is not possible
N = 1-SQM) for a scalar potential interaction such
the one given by expression(2). Therefore, in orde
to keep invariance underN = 1-SUSY, it is necessar
that:

(11)gB(x, y) = qΦ(x, y).

3. N = 1-SQM

A charged planar particle non-minimally coupled
a magnetic field is described as anN = 1-SQM system
by means of the superspace action below:

S1 = iM

2

∫
dt dθ (D �X) · �̇X

(12)+ iq

∫
dt dθ D �X · �A′( �X),

where �A′( �X) is the vector (super)potential in a no
minimal coupling scheme, given by Eq.(5), and �X(t)

is the real “superfield” (in fact, the supercoordinate
the particle), given by

(13)Xj(t, θ) = xj (t) + iθλj (t), j = (1,2),

xj (t) being the two real coordinates of the planar p
ticle, λj (t) their Grassmannian supersymmetric pa
ners andθ the real, Grassmannian supersymmetric
ordinate that parametrizes the superspace,(t; θ). The
supersymmetry covariant derivativeD is given by:

(14)D = ∂θ − iθ∂t ,

and the supersymmetry generator reads as

(15)Q = ∂θ + iθ∂t .

The infinitesimal supersymmetry transformation
the superfield�X can be written as:

(16)δX = εQX,
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whereε is the Grassmann-valued parameter. By ad
ing the method of projections in superspace, one
readily show (with the help of(13) and(16)) the su-
persymmetry invariance of the action(12); actually

(17)δS1 = iε

∫
dt

d

dt

[
M

2
�̇x · �λ + q �A(�x) · �λ

]
.

So,S1 is invariant up to a total derivative term, as it
the case for supersymmetric theories.

In terms of components, the action(12), S1 =∫
dt L1, reads as follows:

L1 = M �̇x2

2
− iM

2
�̇λ · �λ + q �̇x · �A − g �̇x · �̃E

(18)− iq

2
(�λ × �λ)B − ig

2
(�λ × �λ)( �∇ · �E),

where one notices that

(19)�λ × �λ ≡ εij λiλj = [λ1, λ2].
A convenient change of variables will be pe

formed:

(20)ψ ≡
√

M

2
(λ1 + iλ2),

(21)ψ̄ ≡
√

M

2
(λ1 − iλ2),

giving rise to the following expression for the L
grangian:

L1 = M �̇x2

2
− i

2
(ψ̇ψ̄ + ˙̄ψψ) + q �̇x · �A − g �̇x · �̃E

(22)+ q

2M
[ψ, ψ̄]B + g

2M
[ψ, ψ̄]( �∇ · �E).

The corresponding Hamiltonian will be obtain
after a canonical quantization procedure follow
Ref. [16, p. 46]. The Grassmannian momenta are
fined as

(23)π ≡ ∂L1

∂ψ̇
= − i

2
ψ̄,

(24)π̄ ≡ ∂L1

∂ ˙̄ψ
= − i

2
ψ,

leading to the following operator algebra (h̄ = 1):

(25)[xi,pj ] = iδij , {ψ,π} = {ψ̄, π̄} = − i

2
,

(26){ψ, ψ̄} = 1, {π, π̄} = −1

4
,

besidesπ2 = π̄2 = ψ2 = ψ̄2 = 0. These relations ma
be represented by

(27)ψ = σ+, ψ̄ = σ−,

(28)π = − i

2
σ−, π̄ = − i

2
σ+,

where theσ ’s are the Pauli matrices (and there is
other inequivalent representation[37]).

The quantized version of the Hamiltonian is:

(29)

H1 = ( �p − q �A + g �̃E)2

2M
− qB

2M
σ3 − g( �∇ · �E)

2M
σ3,

where the relation[σ+, σ−] = σ3 was used. This
Hamiltonian automatically reveals a spin-1/2 parti-
cle with magnetic dipole momentqσ3/2M and gyro-
magnetic ratio 2, as expected, and in agreement
Ref. [23], about SQM (but without the superfield fo
mulation used here), and Refs.[38–42], with general
arguments concerning particles in(2+ 1) dimensions.

It is interesting to compare this Hamiltonian wi
the one obtained in Ref.[32], as the non-relativistic
limit of the non-minimal(2 + 1)-dimensional Dirac
equation:

H = qΦ + ( �p − q �A + g �̃E)2

2M
− qB

2M
− gB

(30)− g

2M
( �∇ · �E).

As already mentioned above, the conditiongB =
qΦ is necessary in order to keep theN = 1-SUSY.
Thus, under such a condition,

(31)H = ( �p − q �A + g �̃E)2

2M
− qB

2M
− g

2M
( �∇ · �E).

Comparing Eqs.(29) and (31), one concludes tha
the spin-up component of the former equals the la
The same occurs with the spin-down component w
a representation different from Eqs.(27)–(28)is used,
in which the matricesσ+ andσ− are interchanged.

The last term in Eq.(29) may be related to th
magnetic field, in the case of Maxwell–Chern–Simo
(MCS) theory[32,43], in which the following field
equations hold:

(32)�∇ · �E − mCSB = ρ,

(33)�∇ × �E = −∂B
,

∂t
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to
(34)�̃∇B − mCS �̃E = �J + ∂ �E
∂t

,

where, as above,̃�∇ i ≡ εij ∂j , andmCS is the Chern–
Simons (topological) mass parameter, the (gau
symmetry preserving) mass of the gauge field. Inde
in the region outside external charges (ρ = 0), the
Hamiltonian(29) turns into the following expression

(35)H1 = ( �p − q �A + g �̃E)2

2M
− qσ3

2M

(
1+ gmCS

q

)
B.

From this Hamiltonian, it is natural to define anef-
fective gyromagnetic ratio, γeff, whose deviation from
2 is given by

(36)γeff − 2= gmCS

q
− 1,

which reinforces the well-known fact thatg is to be
interpreted as ananomalous magnetic dipole momen
In this context, the condition

(37)
gmCS

q
= 1

is necessary in order to keep the effective gyrom
netic ratio in its standard value 2. Actually, in o
N = 1 formulation of supersymmetry, the gyroma
netic factor of a spin-12 particle is 2. Interestingly
such a condition was also obtained in field-theoret
approaches, with other interpretations: it turns in
acting MCS theory into a free one and relates it
pure-CS theory and anyons[19,44]; it gives rise to no
one-loop radiative corrections to the photon mass[44];
and it reduces the differential equations for the ga
fields from second- to first-order, allowing one to g
vortex solutions[45]. It is worthy to mention here tha
in the work of Ref.[53] the Pauli operator appears
a submatrix component of the super-Hamiltonian a
then, the gyromagnetic ratio may have arbitrary val
in this approach.

4. N = 2-SQM

The superfield formulation of Witten’s (one spa
dimension,N = 2-) SQM may be found in Refs.[18,
46,47], in terms of a scalar superpotential (a fun
tion of the one-dimensional real supercoordina
A generalization tod space dimensions is presented
Refs.[15,47], also in terms of a scalar superpotent
but now as a function ofd real superfield coordinate
A different approach to two space dimensions, us
a vector superpotential instead of a scalar one, is
lined in Ref.[48], but without a superfield formulation

The N = 2-SQM of Pauli equation in two spac
dimensions is formulated in terms of (complex) c
ral and anti-chiral superfield coordinates in Refs.[47,
49,50], by means of a (Kähler) super(pre)poten
(a function of those superfield coordinates). The in
duction of an electric interaction into the planar Pa
equation without the explicit breaking of SUSY w
made in Ref.[51], but there a non-stationary magne
field was considered. In Refs.[52–54], the approach
of matrix supersymmetry transformations to the Pa
equation in(1+ 2)D was used to construct the sup
Hamiltonian and the Pauli operator (including an
ternal scalar potential) in two space dimensions tu
out to be identified with the 2× 2-submatrix of the
total 4× 4 super-Hamiltonian. AnN = 2-superfield
formulation encompassing all these issues, viz., P
equation in(2 + 1) dimensions with electric interac
tions, and also considering the planar non-minim
coupling studied in Section2, is lacking. The presen
section is devoted to fill this gap. Non-stationary s
uations are not considered in this Letter, and so
electric interaction is due only to a scalar potent
Also, the mentioned possibility of the Pauli opera
to be a component of the total super-Hamiltonian w
not be considered here, but rather it will always be
garded as the total super-Hamiltonian itself.

It was shown in Section2 that, in order to obtain th
Schrödinger equation with a non-minimal couplin
it is necessary to add the term(2) to the free Hamil-
tonian, and also to perform the replacement expre
by Eq. (5). If condition (11) is valid, then there is
no scalar potential interaction in the resulting Ham
tonian, which therefore becomes ‘pure-magnetic’,
lowing one to derive it from the chiral superacti
of Ref. [49]. Such a superaction contains, instead
�A(x,y), the (real) Kähler prepotentialK(x,y) (as will
be seen below), which satisfies the following relatio
(from now on,Ai stands for( �A)i ):

(38)Aj = εjk∂kK,

(39)B ≡ �∇ × �A ≡ εij ∂iAj = −∇2K.

Therefore, it would be desirable to find out how
implement the non-minimal prescription of Eq.(5) in
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terms of the prepotentialK(x,y). This is done as fol
lows:

A′
i = Ai − g

q
Ẽi

= εij ∂jK − g

q
εijEj ≡ εij ∂jK − αεijEj

= εij

[
∂jK + α(∂tAj + ∂jΦ)

]
(40)= εij ∂j (K + αΦ) ≡ εij ∂jK

′,

where the stationary condition∂t = 0 was used. Thus
the required prescription may be considered as:

K → K ′ = K + αΦ

(41)= K + α2B = K − α2∇2K.

Turning now to the chiral superaction, and us
a notation similar to that of Ref.[49], the superspac
coordinates are the time,t , and the Grassmannian va
ables,θ and θ̄ (the bar over a quantity stands for
complex or Hermitian conjugate). In a non-minim
coupling scheme, theN = 2 superaction for a plana
particle with massM and electric chargeq in a mag-
netic field satisfying Eq.(39) is given by:

(42)

S2 = M

8

∫
dt dθ dθ̄ Dφ̄D̄φ + q

∫
dt dθ dθ̄ K ′(φ, φ̄),

whereK ′(φ, φ̄) is the superpotential given by the r
defined Kähler prepotential of Eq.(41), now in terms
of the chiral and antichiral superfield coordinates
the particle,φ andφ̄:

(43)φ(t, θ, θ̄ ) = z(t) + θξ(t) − iθ θ̄ ż(t),

(44)φ̄(t, θ, θ̄ ) = z̄(t) − θ̄ ξ̄ (t) + iθ θ̄ ˙̄z(t),
satisfyingD̄φ̄ = Dφ = 0, and withz(t) = x(t)+ iy(t)

being the complex variable representing the real c
dinatesx(t) andy(t) of the particle, andξ(t) its Grass-
mannian supersymmetric partner. The supersymm
derivatives are defined as

(45)D = ∂θ̄ − iθ∂t ,

(46)D̄ = ∂θ − iθ̄∂t .

The superaction(42) reads in components asS2 ≡∫
dt L2, with
L2 = M �̇x2

2
− i

M

8
(ξ̇ ξ̄ + ˙̄ξξ) + q �̇x · �A − g �̇x · �̃E

(47)+ q

8
[ξ, ξ̄ ]B + g

8
[ξ, ξ̄ ]( �∇ · �E),

which, as expected, is the same result that would
obtained if one had started with a minimal superact
i.e., Eq.(42)with K(φ, φ̄) replacingK ′(φ, φ̄), and the
non-minimal prescription had been implemented o
after the corresponding splitting in components,
means of Eqs.(5) and (7). Moreover, this Lagrangia
is identical to theN = 1 case, Eq.(22), provided the

identificationψ =
√

M
2 ξ is made. Thus, all the quan

tization procedure carried out after Eq.(22) may be
repeated, yielding the same results and attesting
a superfield description, the fact that in(2 + 1) di-
mensions the Pauli equation possesses, rather th
N = 1-, anN = 2-SUSY[23] (note that this conclu
sion is valid independently whether the coupling
minimal or non-minimal).

It should be noticed that the extension fromN = 1-
to N = 2-SUSY carried out here is simply due
a well-established result[16,23]: N = 2 is the true
SUSY of (2 + 1)-dimensional Pauli equation, in co
trast to the(3 + 1)-dimensional case, which is ju
N = 1-supersymmetric. Therefore, this part of t
present work should not be confused with the equ
alence betweenN = 1- andN = 2-SQM as shown in
Ref. [55] even for the(3+ 1)-dimensional Pauli equa
tion. In the latter case, the second supercharge is
local (since it involves explicitly the parity operato
Indeed, a sensible question that remains to be inv
gated in detail is the transition from such a non-lo
supercharge of the(3 + 1)-dimensional Pauli equa
tion to a local one, when the dynamics is restric
to be(2 + 1)-dimensional; or, equivalently, when th
(3+1)-dimensional magnetic field is considered to
pend only onx andy and to be parallel to thez-axis
(there is also a third possibility: when the magne
field has a definite space parity,�B(−�r) = ± �B(�r); see
Ref. [16, p. 110]or Ref.[4]).

5. Discussion and conclusions

Here, it has been shown the possibility, expres
by Eq. (11), for SUSY to be kept even with an ele
tric field applied, provided a non-minimal couplin
scheme holds. Moreover, since this work deals w



R.C. Paschoal et al. / Physics Letters A 349 (2006) 67–74 73

n to

rge

c-
f
to

t is
ti-
re
its
in

c-
s

ac-
ded

-

ted
e-
ions
o-

ch
ibil-
ss-
g

o-
al

ical
ag-

l ex-
nt

is
han
om-
re

ful
.P.

ns.
for
planar physics, it may suggest a possible applicatio
the quantum Hall effect (QHE)[28–31]. Indeed, such a
possibility was already pointed out in Ref.[32], where
a parallel was made between the particle with cha
and magnetic moment as described in Section2 and
the composite fermion of Jain’s model for the fra
tional QHE [33–36]. Now, assuming the validity o
such a parallel, the present work brings a SUSY
the system of composite fermions. Another resul
Eq. (37), a condition also obtained in field theore
cal works (with other interpretations) and which he
guarantees the gyromagnetic ratio to be equal to
standard value, two. All the calculations are made
superfield formulation.

Finally, a more general possibility for the intera
tion will be discussed, in which the following term
are added to the superaction(42):

(48)
∫

dt dθ Γ (φ) +
∫

dt dθ̄ Γ̄ (φ̄),

whereΓ (φ) and its complex conjugatēΓ (φ̄) are nec-
essarily Grassmann external fields, in order to the
tion be bosonic. The corresponding components ad
to the Lagrangian(47)are:

(49)ξΓ ′(z) − ξ̄ Γ̄ ′(z̄),

where the primes in theΓ s now stand for differentia
tion with respect to the argument.

The (pseudo-)classical external fieldΓ ′(z), al-
though not quantized, must anticommute withξ as
well as with itself. Therefore, it may be represen
also by a 2× 2-matrix. These anticommutation r
quirements, however, impose such severe restrict
on the matrixΓ ′(z) that, under the quantization pr
cedure mentioned in Section3, the contribution of the
terms(49) to the Hamiltonian is zero. To bypass su
an obstruction, it is reasonable to open the poss
ity of a different matrix representation for the Gra
mannian coordinates,ξ andξ̄ , and their correspondin
momenta. Indeed, adopting, for example, the 4× 4
representation below:

(50)ξ = σ+ ⊗ 12×2 ≡



0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



and

(51)Γ ′(z) ≡



f (z) g(z) h(z) i(z)

j (z) k(z) l(z) m(z)

n(z) o(z) p(z) q(z)

r(z) s(z) t (z) u(z)


 ,

the same anticommutation requirements forΓ ′(z) lead
to the following total Hamiltonian:

H2 = ( �p − q �A + g �̃E)2

2M
− qB

2M
σ3 ⊗ 12×2

(52)− g( �∇ · �E)

2M
σ3 ⊗ 12×2 + 2√

M
G(z, z̄),

where

(53)G(z, z̄) =




0 −f (z) 0 −h(z)

−f̄ (z̄) 0 f̄ 2(z̄)

h̄(z̄)
0

0 f 2(z)
h(z)

0 f (z)

−h̄(z̄) 0 f̄ (z̄) 0


 .

Notice that this interaction mixes the four comp
nents of the wave function, contrary to the origin
Hamiltonian. The Grassmann fieldsΓ ′(z) and Γ̄ ′(z̄)
may be interpreted as photino-type (pseudo-)class
external fields, in the same way as the electrom
netic prepotentialK ′(z, z̄) (or the potentialsΦ and
�A) is usually considered as a photon-type classica
ternal field. The motivation for adopting 4-compone
wave functions is similar to what happens in(2+ 1)D

field theories with massive fermions, when one
forced to introduce 4-component spinors, rather t
2-component ones, in order that the mass term be c
patible with parity symmetry. This is a peculiar featu
of planar theories.
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