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A powerful computational method for dealing with correlation functions in magnetic systems, based on
damage-spreading simulations, is reviewed and tested, by investigating the q-state Potts ferromagnet, on a
square lattice, at criticality. Exact relations involving special kinds of damage and the spin-spin correlation
function, as well as the magnetization, are used. The efficiency of the method arises with a significant reduction
of the finite-size effects, with respect to conventional Monte Carlo simulations. Correlation functions, which
represent usually a hard task within this latter procedure, appear to be much more easily estimated through the
present damage-spreading simulations. The effectiveness of the technique is illustrated by an accurate estimate
of the exponent �, of the spin-spin correlation function, for q=2, 3, and 4, with rather small lattice sizes. In the
cases q�5, an analysis of the magnetization is consistent with the well-known first-order phase transition.
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I. INTRODUCTION

Statistical mechanics has become one of the most success-
ful physical theories nowadays, with applications in a wide
diversity of problems, which have overcome the frontiers of
theoretical physics. In principle, any system composed of a
large number of interacting subunits may be suitable to be
analyzed through statistical mechanics. An important step
consists in the definition of simple models, which should
take into account the most significant characteristics of the
system under investigation. The big triumph of this theory
stands in the fact that such models have been able to de-
scribe, reasonably well, a wide variety of empirical observa-
tions. Among the most investigated models of statistical me-
chanics are those exhibiting critical phenomena �1,2�. Such
models, although simple to define, usually are not easy to be
solved exactly �3�; most of them are treated through approxi-
mation methods. Due to a significant improvement in com-
puter technology, computer simulations �4� represent, at the
present time, powerful tools for studying physical systems.
Among all types of numerical simulations, the Monte Carlo
�MC� method �5,6� is probably the most used technique, be-
ing applied successfully to many systems. In a standard MC
simulation, one deals with a single copy of the system, where
each dynamical variable �which may be defined on sites of
regular lattices� is visited either at random or in well-defined
sequences, to be afterward updated according to certain dy-
namical rules. Since one is always impelled to simulate finite
systems, dealing with the finite-size effects represents a hard
task when one tries to extrapolate to the desired thermody-
namic limit; therefore, the main drawback of such a proce-
dure turns out to be the large computational effort required
for obtaining reliable results.

Another type of MC simulation that has proven to be very
effective in the study of the dynamics of statistical models is
the so-called “damage-spreading” �DS� technique �7,8�. Es-
sentially, it consists in following the time evolution of the
Hamming distance between two �originally identical� copies
of a given system, subjected to the same thermal noise, given
that a perturbation �or damage� is introduced in one of them
at the initial time. The DS method was applied successfully
to many magnetic models like the Ising �7–14�, Potts
�15–19�, Ashkin-Teller �15�, and discrete N-vector �20� mod-
els, among others. Usually, more than one regime is found,
depending on the external parameters �e.g., the temperature�
or on the initial conditions �e.g., initial damage�. In the case
of the Ising ferromagnet, on lattices of dimension equal to or
greater than 2, one finds a chaotic regime, for which the
initial damage spreads through the system, and a frozen one,
where the initial damage is suppressed. For more compli-
cated systems, like the two-dimensional Potts ferromagnet
�17�, or Ising spin glasses �8�, apart from these two regimes,
one may also find another one characterized by memory ef-
fects �i.e., a dependence on memory effects�. Surprisingly,
the location of such regimes may depend on the kind of
dynamical procedure employed: for the Ising ferromagnet �in
lattices of dimension equal to or greater than 2�, one finds
suppression at low and propagation at high temperatures, in
both Glauber and Metropolis dynamics; in the case of a heat-
bath algorithm, these regions are reversed �12�.

An important question concerns the possible connections
between DS features and equilibrium thermodynamic prop-
erties. Exact relations involving quantities like magnetiza-
tion, magnetic susceptibility, as well as two-spin correlation
functions, with differences of certain types of damage were
found, for translationally invariant Ising models �13�, and
have been extended for more complicated models, like Potts
�15�, Ashkin-Teller �15�, and discrete N-vector �20� models.
These relations hold for any ergodic dynamical procedure,
and their possible use in simulations was illustrated for the
case of the two-dimensional Ising ferromagnet, where ther-
modynamic properties were obtained, through DS simula-
tions, with a significant reduction of finite-size effects �13�.
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To our knowledge, this technique has not been much ex-
plored in the literature.

In the present work we make use of the exact relations,
valid for translationally invariant Potts models, in order to
compute the magnetization and two-spin correlation function
of the q-state Potts ferromagnet on a square lattice, through
DS simulations. The power and reliability of the method is
confirmed herein. In particular, the two-spin correlation func-
tion, which is usually a hard quantity to estimate through
standard MC simulations, due to large fluctuations, is com-
puted, accurately, within the present DS numerical proce-
dure. In spite of relatively small lattice sizes, the exponent �,
associated with the power-law decay of the two-spin corre-
lation function at the critical point, is estimated in some
cases, up to a four-digit agreement with the well-known ex-
act values. For q�5, our results for the exponent � of the
magnetization are consistent with the expected first-order
phase transition. In the next section, we define the numerical
procedure and in Sec. III we present and discuss our results.

II. THE MODEL AND THE NUMERICAL
PROCEDURE

Let us consider the q-state Potts ferromagnet on a square
lattice of linear dimension L �N=L2 is the total number of
spins�, defined through the Hamiltonian

H = − J�
�ij�

���i,� j� ��i = 1,2, . . . ,q� , �1�

where J�0, the summation ��ij� applies to nearest-neighbor
pairs of spins only, and ���i ,� j� represents a Kronecker delta
function.

The DS technique consists in the investigation of the time
evolution of two configurations of the system, for a given
temperature T ���i

A	 and ��i
B	�, subjected to the same thermal

noise and same set of random numbers. For each configura-
tion, the simulation is performed by visiting all sites of the
lattice in a sequential way, and each spin �i

	�t� �	=A ,B�, at
time t, is updated according to the following rules �16�.

�i� A possible new state �i
	�t+1� is chosen at random,

with �i
	�t+1���i

	�t�, from which one calculates the change
in energy 
H	=H	�t+1�−H	�t�.

�ii� Then one can define the probability

pi
	�t� =

1

1 + exp��
H	�
�� = 1/�kBT�� . �2�

�iii� By introducing a random number zi�t�, uniformly dis-
tributed in the interval �0,1�, one performs the change if
zi�t�� pi

	�t�; otherwise, the spin �i
	�t� is not updated.

A complete sweep of the lattice defines our unit of time
�currently denominated 1 MC step�. First of all, we let one
configuration �e.g., ��i

A	�, evolve for teq MC steps toward
equilibrium; this is checked by verifying small fluctuations
in time on thermodynamic quantities, like magnetization and
energy. Then, one defines time t=0, and a copy of system A
is made, which will correspond to the second configuration
���i

B	�. In the standard DS procedure �7,8�, a fraction of spins
of the copy B is chosen, in order to change their states,

introducing the initial damage, which is defined as the Ham-
ming distance between the two configurations. Then both
copies are submitted to a new thermalization process, where
the damaged copy is taken to equilibrium, and after that, one
starts measuring the Hamming distance between the two
copies.

In the present approach, we follow a slightly different
procedure: we introduce a “source of damage,” only at the
central site of the lattice, by imposing constraints on its as-
sociated spin at all times t�0. Such constraints can be set to
one of the copies �A or B�, or to both of them; all remaining
spins of the lattice, on both copies, are allowed to evolve
freely following the previously defined dynamical procedure.
In this case, at t=0, copies A and B differ only at the central
site; therefore, there is no need for a second thermalization
process. Then, one starts computing averages over time �i.e.,
thermal averages�, for a time interval tav. In order to reduce
the possible effects of correlations in time, we only consider,
in our time averages, data at each time interval of 5 MC
steps. Therefore, each time average consists in an average
over tav/5 measurements. It is important to recall that the two
copies should always evolve under the same dynamics and
random numbers, so as to ensure that any possible difference
between them, for t�0, should be a consequence only of this
source of damage. Each simulation is then repeated for M
samples �i.e., M sets of random numbers�, providing aver-
ages over samples, to reduce the effects on the sequences of
random numbers.

In order to explore the exact relations of Ref. �15�, two
types of evolution should be considered.

�a� We impose �0
B�t��1 �the choice of state 1 is arbi-

trary�, for all t�0, whereas all other spins on both copies are
left free to evolve under the above dynamical procedure.
Within this kind of time evolution, the following exact rela-
tion holds �21�:

�0i =
C0i

1 − 
, �3�

where

�0i = ����i
A,1��t − ����i

B,1��t, �4a�

C0i = ����i,1����0,1��T − ����i,1��T����0,1��T, �4b�

 = ����0,1��T. �4c�

In the equations above, �¯�t represent time averages over
trajectories in phase space, whereas �¯�T stand for thermal
averages.

�b� We impose �0
A�t�=1 and �0

B�t��1 �again, the choice
of state 1 is arbitrary�, for all t�0; all remaining spins on
both copies should evolve under the above dynamical proce-
dure. For this kind of time evolution, one has the following
exact relation �21�;

�0i� =
C0i

�1 − �
, �5�

where �0i� is given by the same expression as Eq. �4a�, but it
should be computed within a different evolution process.
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Therefore, after the equilibration process of copy A �time
t=0�, this configuration is stored as a new copy A0 that will
remain untouched; then, the time evolution described in �a�
is continued for copies A and B, in such a way that one
obtains, after tav MC steps, �0i. Now, recovering configura-
tion A0, which will become configuration A for the second
time evolution, one performs such an evolution, in order to
get �0i� . From these two quantities, using Eqs. �3� and �5�,
one obtains C0i and .

The quantity C0i in Eq. �4b� represents the two-spin cor-
relation function of the spin at the central site of the lattice,
�0, and a spin at an arbitrary site i, �i, a distance r apart. It is
important to notice that on a square lattice, in most cases,
there are four spins �i with the same distance r from the
central site. In fact, there are a few exceptions to this state-
ment, for which more than four spins present the same dis-
tance from �0; as examples, if one assumes a unit lattice
spacing, one has eight spins whose distance to �0 is 
5, and
12 spins whose distance to �0 is 5. However, it is always
possible to define the correlation function C�r� as an average
value,

C�r� =
1

4�
i�r�

C0i, �6�

where �i�r� corresponds to a summation over four sites with
the same distance r from the central site; in the exceptional
cases where there are more than four sites with the same
distance r from the central site, the remaining spins are not
be taken into account in the average of Eq. �6�.

The parameter  in Eq. �4c� is directly related to the mag-
netization per spin of the system. Notice that =1 at zero
temperature, but for high temperatures, where all states are
equally probable, one gets =1/q. Let us then define the
magnetization per spin as

m =
1

q − 1
�q − 1� =

1

q − 1
�q����0,1��T − 1� . �7�

In the next section we present and discuss the results ob-
tained for the magnetization per spin m and the correlation
function C�r�, for several values of q.

III. RESULTS AND DISCUSSION

We studied the q-state Potts ferromagnet on a square lat-
tice of linear size L=100, through the DS numerical proce-
dure explained above. Periodic boundary conditions were al-
ways used and the correlation function C�r� was measured

with respect to the central site, located at coordinates
�L /2 ,L /2�. We have always started copy A with all spins of
the lattice in the state �i

A=1 �" i�; after that, the system
evolved toward equilibrium, for an equilibration time teq
=104 MC steps. The thermal averages were carried over tav
=2.5�105 MC steps, with measurements taken at each time
interval of 5 MC steps, which yields a total of 5�104 mea-
surements for each time average. Besides that, each simula-
tion was repeated for M =50 different samples, in order to
improve the statistics, as well as to reduce possible depen-
dence on sequences of random numbers. All simulations
were carried out within these figures, otherwise specified. It
is important to recall that the critical temperature of this
model is known exactly, for an arbitrary value of q �3�,
kBTc�q� /J=1/ �ln�1+
q��, whereas the critical exponents as-
sociated with the continuous phase transition �cases q=2, 3,
and 4� are known exactly �see Table I�. For q�4, this model
exhibits a first-order phase transition; one usually defines a
critical number of states qc=4, above which the first-order
phase transition takes place.

In Fig. 1 we exhibit the correlation function C�r� versus r
for three different temperatures near criticality, in the case
q=3; temperatures are rescaled by the exact critical tempera-
ture mentioned above. Our criterion for locating the “critical
temperature” �associated with the finite size of the system
considered� consists in searching for the temperature at
which the function C�r� presents the slowest decay with r.
From Fig. 1, one notices that, in spite of the relatively small
lattice size used, the slower decay occurs for a temperature
that coincides with the exact critical temperature. We consid-

TABLE I. The critical exponents � and � for the two-dimensional ferromagnetic Potts model, obtained
from the present numerical approach, are compared with the corresponding exact values �from Ref. �2��.

q=2 q=3 q=4

� �exact� 1/8=0.125 1/9=0.1111. . . 1 /12=0.0833. . .

� �present work� 0.1223±0.0032 0.1115±0.0040 0.0840±0.0009

� �exact� 1/4=0.25 4/15=0.2666. . . 1 /4=0.25

� �present work� 0.2501±0.0014 0.2667±0.0023 0.2518±0.0023

FIG. 1. The correlation function C�r� versus r, in the case q
=3, for different temperatures �scaled by the corresponding exact
critical temperature� near criticality.
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ered temperature increments �scaled by the corresponding
exact critical temperature� of 0.001 around criticality, al-
though, for the sake of clearness, in Fig. 1 we exhibited data
from only three typical temperatures. The log-log plots of the
data in Fig. 1 are presented in Fig. 2, where one verifies that
the best power-law behavior,

C�r� � r−� �r → �� , �8�

is obtained for T=Tc �recall that, for a d-dimensional lattice,
one should have C�r��r−�d−2+��, at T=Tc �1,2��. The result-
ing critical exponent �, from Fig. 2, is given in Table I.

The behavior exhibited in Figs. 1 and 2 was verified for
all values of q investigated, namely, q=2, 3, 4, 5, and 6. In
all cases, the critical temperature estimated coincides with
the exact values, up to a relative accuracy of 0.001, i.e., the
slowest decay in the correlation function C�r� was obtained
for a temperature

kBTc
�L��q�
J

=
1

ln�1 + 
q�
± 0.001, �9�

where Tc
�L��q� stands for the “critical temperature” for the

finite size L. It is important to recall that the power-law be-
havior of Fig. 2 is not expected for q=5 and 6, in the ther-
modynamic limit, where a well-known first-order phase tran-
sition takes place. We attribute such conflicting results to
finite-size effects, although up the maximum lattice sizes in-
vestigated �L=200�, we have found no significant changes in
this behavior.

In Fig. 3 we exhibit the magnetization per spin as a func-
tion of the temperature �scaled in units of the corresponding
exact critical temperature�, as obtained by the above-
mentioned numerical procedure, for the case q=3. In spite of
the small lattice size considered, one observes a whole
smooth curve—even near criticality—with weak finite-size
effects; this represents one of the greatest advantages of the
present DS simulations. A simple plot of log10 m versus
log10�1−T /Tc� yields the critical exponent � �cf. Table I�.
Similar plots were found for other values of q, namely, q
=2, 4, 5, and 6. As expected for a first-order phase transition,
one should have �=0, for q�5, signaling a discontinuity in
the order parameter. We have found, in the cases q�5, a

critical exponent � that approaches zero, very slowly, for
increasing lattice sizes. This is exhibited in Fig. 4, where
three different lattice sizes were considered in the analysis of
the exponent �, for q=5; in this case, we obtained �
=0.0725±0.0013 �L=50�, �=0.0679±0.0009 �L=100�, and
�=0.0649±0.0010 �L=200�. Such a slow convergence to the
thermodynamic limit reflects the smooth crossover, in the
thermodynamic properties, that occurs near qc=4, when one
goes from the continuous to the first-order phase transition
�3�. Even though the estimates of the exponent � for the case
q=5 �empty symbols in Fig. 4� are far from the exact value
�full circle�, the other estimates of � in Fig. 4 �q=2, 3, and 4�
appear essentially superposed on the corresponding exact
values.

In Table I we list our quantitative results for the critical
exponents � and �, for q=2, 3, and 4, compared with the
corresponding exact values. The values obtained are remark-
able, considering the lattice size used �L=100�. In all cases
of Table I, one has an agreement �within the error bars� up to
four decimal places with the exact values.

FIG. 2. Log-log plots of the correlation functions exhibited in
Fig. 1.

FIG. 3. The magnetization per spin versus temperature �in units
of the corresponding exact critical temperature�, in the case q=3.
The full line is just a guide to the eye, whereas the dashed line, at
low temperatures, corresponds to an extrapolation to zero
temperature.

FIG. 4. The critical exponents �, obtained from the present ap-
proach �empty symbols�, are compared with the exact values �full
circles� for different values of q. In the case q=5, three different
lattice sizes were used, whereas in the other cases, the results of our
simulations correspond to a lattice size L=100.
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To conclude, we have tested an important computational
method for evaluating correlation functions in magnetic sys-
tems, based on DS simulations, by investigating the q-state
Potts ferromagnet on a square lattice. The two-spin correla-
tion function, which is usually a hard quantity to estimate
through standard MC simulations, due to large fluctuations,
has been computed accurately for this model. We have used
exact thermodynamic relations, involving measurable quan-
tities within DS simulations and the two-spin correlation
function, as well as the magnetization per spin. Although this
method was introduced several years ago for the Ising model
�with a rough check of its validity� �13�, it has not been fully
explored in the literature. We have shown its effectiveness

herein, where, in spite of the small lattice sizes considered,
the results for the Potts model are very impressive. The
present analysis gives reliability to the method, which may
now be applied to more complicated open problems in the
literature, like Ashkin-Teller and discrete N-vector models,
for which the necessary theoretical backgound has been fully
developed.
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