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Superconformal mechanics in SU(2|1) superspace
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Using the worldline SU(2|1) superfield approach, we construct N = 4 superconformally invariant
actions for the d = 1 multiplets (1,4,3) and (2,4,2). The SU(2|1) superfield framework automatically
implies the trigonometric realization of the superconformal symmetry and the harmonic oscillator term in
the corresponding component actions. We deal with the general A = 4 superconformal algebra D(2, 1; )
and its central-extended a =0 and a = —1 psu(1,1|2) @ su(2) descendants. We capitalize on the
observation that D(2, 1; @) at & # 0 can be treated as a closure of its two su(2|1) subalgebras, one of which
defines the superisometry of the SU(2|1) superspace, while the other is related to the first one through the
reflection of y, the parameter of contraction to the flat N' = 4, d = 1 superspace. This closure property and
its @ = 0 analog suggest a simple criterion for the SU(2|1) invariant actions to be superconformal: they
should be even functions of x. We find that the superconformal actions of the multiplet (2, 4, 2) exist only at
a = —1,0 and are reduced to a sum of the free sigma-model-type action and the conformal superpotential
yielding, respectively, the oscillator potential ~u? and the standard conformal inverse-square potential in
the bosonic sector. The sigma-model action in this case can be constructed only on account of nonzero

central charge in the superalgebra su(1,1]2).
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I. INTRODUCTION

Recently, essential progress has been achieved in
constructing and understanding the rigid supersymmetric
theories in curved superspace which attract attention in
connection with the general “gauge/gravity” correspon-
dence (see, e.g., Refs. [1-3] and references therein). In
Refs. [4,5], two of us elaborated on the simplest d = 1
analogs of such theories, the SU(2|1) supersymmetric
quantum mechanics (SQM) models, proceeding from the
SU(2|1) covariant worldline superfield approach. Two
types of the worldline SU(2|1) superspace as the proper
supercosets of the supergroup SU(2|1) were constructed.
Both superspaces are deformations of the standard
N =4, d =1 superspace (see Ref. [6] and references
therein) by a mass parameter m. The off- and on-shell
deformed versions of the N =4,d=1 multiplets
(1,4,3) and (2,4,2) were studied and proved to possess
a number of interesting peculiarities as compared with
their “flat” m = 0 cousins. One such new feature is the
necessary presence of the harmonic oscillator terms ~m?
in the bosonic sectors of the corresponding invariant
Lagrangians. The “weak supersymmetry” model of
Ref. [7] and the “super Kihler oscillator” models of
Refs. [8,9] were recovered as the particular cases
of generic SU(2|1) SQM associated, respectively, with
the single multiplet (1,4, 3) and a few multiplets (2, 4, 2).
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It is interesting to inspect the superconformal subclass of
the SU(2|1) SQM models. This is the main subject of the
present paper.

As was argued in Ref. [10], conformal mechanics [11]
can be divided into three classes characterized by the
parabolic, trigonometric and hyperbolic realizations of the
d =1 conformal group SO(2,1)~SL(2,R). Earlier,
supersymmetric extensions of conformal mechanics corre-
sponding only to the parabolic transformations were mostly
addressed [6,12,13]. Motivated by Ref. [10], the classi-
fication of superconformal A =4 SQM models was
recently extended by the trigonometric/hyperbolic type
[14]. The basic difference of the trigonometric/hyperbolic
superconformal actions from the parabolic ones is the
presence of oscillator potentials. The standard d =1
Poincaré supercharges present in the superconformal
algebras are not squared to the canonical Hamiltonian in
such models. The actions of trigonometric/hyperbolic
superconformal mechanics cannot be obtained from the
standard ' =4,d =1 superfield approach, while the
parabolic actions are well described just within the latter.’
It turns out that it is the SU(2|1) superfield approach that is
ideally suited for the comprehensive description of the
trigonometric N' = 4 superconformal actions. The hyper-
bolic actions can be obtained from the trigonometric ones
by a simple substitution.

'The possibility of adding an oscillator term to the de Alfaro-
Fubini-Furlan action [11] without breaking conformal symmetry
was first noticed in Ref. [15]. The N =2 superconformal
extensions of such actions were considered in Refs. [16,17].
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Our construction is based on the appropriate two-
parameter embedding of the superspace supergroup
SU(2|1) into the most general N' = 4, d = 1 superconfor-
mal group D(2,1;a), with the contraction parameter m
being redefined as m — —au and p also appearing in the
basic anticommutator on its own. At any a # 0 the whole
conformal superalgebra D(2, 1;a) can be obtained as a
closure of the original superalgebra su(2|1) and its —u
counterpart, which suggests a simple selection rule for the
superconformal SU(2|1) SQM Lagrangians as those
depending only on 4. At a = 0, the basic su(2|1) contracts
into some flat N'=4,d = 1 superalgebra which is still
different from the standard N =4,d =1 “Poincaré”
superalgebra and involves the parameter x in such a way
that D(2,1;a = 0) ~ psu(1,1|2) @ su(2) (and its central
extension) can be obtained as a closure of this flat super-
algebra and its —u counterpart as subalgebras of
D(2, 1;a = 0). This important property makes it possible
to sort out the superconformal actions in the special @ = 0
case too. Exploiting the closure property just mentioned,
we find the universal two-parameter family of the realiza-
tions of the conformal supergroup D(2,1;a) on the
coordinates of the SU(2|1) superspace, as well as on
the superfields representing the off-shell multiplets
(1,4,3) and (2,4,2), at all admissible values of the
parameter a (for the second multiplet, only @ = —1 and
a =0 are allowed). These realizations automatically
prove to be trigonometric, while the corresponding super-
conformal actions necessarily involve the oscillator-type
terms ~u”. The parabolic realizations of D(2,1;a) and
the corresponding actions are recovered in the limit
u =0, in which both su(2|1) and its @ =0 analog go
over into the standard p-independent N =4,d =1
Poincaré superalgebra.

The paper is organized as follows: The salient features of
the SU(2|1) superspace approach are sketched in Sec. II. In
Sec. III, the embedding of su(2|1) in D(2, 1; a) is discussed
along the lines outlined above, and the relevant SU(2|1)
superspace realizations of D(2,1;a) are explicitly pre-
sented. The study of the trigonometric models of super-
conformal mechanics associated with the multiplets
(1,4,3) and (2,4,2) is the subject of Secs. IV-VII. We
construct the superfield and component off- and on-shell
actions for various cases, distinguishing those which admit
additional conformal inverse-square potentials in the
bosonic sector. The alternative (albeit equivalent) construc-
tion of the component superconformally invariant actions,
based on the D-module representation techniques, is briefly
outlined in Sec. VIII on the example of the multiplet
(2,4,2). Section IX is a summary of the basic results of the
paper. In the appendixes, we collect some details concern-
ing the central extensions of the superalgebra D(2, 1;a)
with @ = —1 (or a = 0), the generalized chiral SU(2|1)
multiplets (2,4,2), as well as the hyperbolic superconfor-
mal mechanics.
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First of all, we need to define the superalgebra su(2|1).
Its standard form is given by the following nonvanishing
(anti)commutators:

{0, 0;} =2ml} +26'H, [I',I}] = &1} = 8}1%,
A 1
1}, 0] = 860" =5 5,0,

Mmook
50" (2.1)

R 1 . o
[, Q) = 55}Q1 - 6,0,
[H, 0" =

The generators satisfy the following rules of the Hermitian
conjugation:

(N =0, (Q)F=0" (Ihi=I, H'=H. (22)

The generators Ij- are the SU(2) symmetry generators,

while the mass-dimension generator H corresponds to U(1)
symmetry. The superalgebra (2.1) can be regarded as a
deformation of the flat N'=4, d = 1 “Poincaré” super-
algebra by a real mass parameter . In the limit m = 0, H
becomes the Hamiltonian (alias the time-translation
generator), and the generators Ij. define the outer SU(2)
automorphisms.

One can extend (2.1) by an external U(1) automorphism
symmetry (R-symmetry) generator F which has nonzero
commutation relations only with the supercharges [1]:

[F,Qz]:—%Qz, [F,Qk]:%Q", (F)'=F. (23)

After redefining H = H — mF, the extended superalgebra
su(2]1) @ u(1),,, acquires the form of a centrally extended
superalgebra su(2[1):

{00} =2ml} +28\(H—-2mF), [I\.I}]=08:}-5I%,
1

o . 2 . .
1. 01=38/0-8,0;. [I},0'1=8j0'~75,0"

A1 1= AR
[F,Q)]= 2Ql’ [F,Q]*ZQ- (2.4)

All other (anti)commutators are vanishing. The generator H
is the relevant central charge. This extended superalgebra is
also a deformation of the N’ =4, d = 1 Poincaré super-
algebra. In the limit m = 0, H becomes the Hamiltonian
and [, F tun into the outer U(2) automorphism
generators.

In the present paper, we start from the framework of the
SU(2|1) superspace constructed in Ref. [4]. The SU(2|1),
d = 1 superspace is identified with the following coset of
the extended superalgebra (2.4):
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SUQI) x U(l)y, {20 H.F.I}}
SU(2) x U(1) (. Fy

(2.5)

It is convenient to deal with the superspace coordinates
¢ = {t,0,,0"} as in Refs. [4,5]. They are related to those in
the exponential parametrization of the supercoset (2.5) as

g=exp {(1—?9"@) (6;0'+6/0;) } exp{itH}, (6,)=6".

(2.6)

The extended supergroup SU(2|1) acts as left shifts of
the supercoset element (2.6). The corresponding super-
charges are realized as

9 9
Q' = —2mPf -+ 09, — md'F

00, 00
+ mO* (1 — mo*6,)IL,
- 0 0 . -
+ mO (1 — mo*0,)1%, (2.7)
and the bosonic generators as
: —. 0 0 1 _.(- 0 0
I'=(0——-0,— ) —=6" 91{___9_ s
j ( ool ae,) 2 ,( o " 69k>
1/, 0 0
H=i F= (02 —0,—). 2.
O 2 (9 o~ % aek> (28)

Here, 7;‘ and F are matrix generators of the U(2) repre-
sentation by which the given superfield is rotated with
respect to its external indices. According to (2.7), the

supersymmetric transformations ¢;, & = (¢;) of the super-
space coordinates are given by

59[ = €; + 2m€“k9k9[,
60" = & — 2me, 056",

ot = i(e*0) + €,05). (2.9)

The SU(2|1) invariant integration measure is defined as
¢ = dtd*0d*0(1 + 2md*e,),

sd¢ =0.  (2.10)

The covariant derivatives D', Y_Dj, ’D(,> are defined by the
expressions.2

?For Grassmann coordinates and variables we use the follow-
ing conventions: (y)? = y.x', (¥)* = ¥'7:.
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: - 3m? ~ 0 _. 0
D=1 050, — ——(0)%(0)*| ——m0'0;, —
{-l—m k 8()()]39, m 706,
—i0'0, + mO'F — md’(1 — mo*0,)I;,
i, . 3m? -] 0 _ 0
__ kg _ 2(9)2 kg Y
D, = [1 + md 6, — = (0)%(0) } g T M0,
+ 0,0, — mO;F + m0y(1 — mo*o,)1},

Dy = 9, (2.11)

and satisfy, together with Zk»,f’ , the superalgebra which

mimics (2.4). Under the left SU(2|1) shifts of the coset
element (2.5), the spinor covariant derivatives undergo the
induced SU(2) transformations in their doublet indices
and an induced F transformation with respect to which D"
and D; possess opposite charges. In the limit m = 0, the
formulas of the standard flat N" = 4, d = 1 superspace are
recovered. The superfields given on the SU(2|1) super-
space (2.5) can have external SU(2) indices and U(1)
charges on which the proper matrix realizations of the
relevant generators act.

There exists an alternative definition of the SU(2|1)
superspace, in which the time coordinate is associated as a
coset parameter with the total internal U(1) generator
H = H —mF, while F is still placed into the stability
subgroup [5]. As was already mentioned, in the basis
(I:I ,F), the generator F is split from other generators,
becoming the purely external U(1) automorphism. The
relevant supercoset is schematically related to (2.5) just by
replacing H — H:

SUQ|) @ U(l)g, {010, H.F.I1} {00, H.I}}
SUR) X U(1)ey {1, F} -
(2.12)

The same replacement H — H should be made in the
coset element (2.5), giving rise to the coset element g. Due
to the relation H = H — mF , these two coset elements are
related as

g = gexp{—imtF}. (2.13)
Under the left shifts by the fermionic generators, the
coordinates ¢ = {1, Gi,ék} are transformed according to
the same formulas (2.9), so they can also be treated as the
parameters of the new supercoset. The difference from the
first type of the SU(2|1) superspace is the absence of
independent constant shift of the time coordinate, which
can still be realized under the choice (2.5). The left H shift
gives rise to a shift of # accompanied by the proper U(1)
rotation of the Grassmann coordinates. The corresponding
covariant spinor derivatives differ from (2.11) by the
absence of the part ~F and by some overall phase factor
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ensuring them to transform only under induced SU(2)
transformations. These modifications can be easily estab-
lished from the precise relation (2.13). The corresponding
superfields can carry only external SU(2) indices.

III. EMBEDDING OF su(2[1) INTO D(2.1; )

The most general d = 1, N' = 4 superconformal algebra

D(2,1;a), with a being a real parameter [6,18]. It is
spanned by eight fermionic and nine bosonic generators
with the following nonvanishing (anti)commutators:

{Quir» Qpjj} = 2leijerjTop + acopesjd;;

— (14 a)eypeiiLyiy], (3.1)
(Taps Qyiv] = —i€y(aQpii'»
(Taps Tys) = i(€ayTps + €psTay )
Vijs Qakir] = —i€k(iQajyirs
Jijs Jia] = i(ed ji + €d i),
Ly Qaiv] = —iew (i Quif)s
[Lij Liy] = i(epwLjy + €prLip). (3.2)

The bosonic subalgebra is su(2) @ su'(2) @ so(2, 1) with
the generators J, Ly and T .4, respectively. Switching a
as a < —(1 + a) amounts to switching SU(2) generators
as J < L. 3 The Hermitian conjugation rules are

(Qarii’)]L = eijei/j/Qajj" (Ta:ﬁ)]L = Taﬂ’
(Jij)T =e*eldy, (Li’j’)-]- = el Lyy. (3.3)
The N' = 4, d = 1 Poincaré superalgebra can be defined

as the following subalgebra of D(2, 1;a):

{QliiU Qljj’} = 2€ij€i’j’1:1’ (3.4)
where H is one of the generators of the conformal algebra
s0(2,1) represented in (3.1) and (3.2) by the generators

T,s. The standard conformal so(2,1) generators are

identified as

*More generally, for a complex form of D(2,1;a) with
the bosonic subalgebra si(2) @ s/'(2) @ si”(2), the equivalent
superalgebras are related through the substitutions o —
-1+ a), a”!, and a can be a complex number. The real form
of D(2, 1; a) we are dealing with here reveals an equivalence only
under the substitution a - —(1 + a), with a € R.
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In the degenerate case @ = —1, one may retain all eight
fermionic generators Q,; and only six bosonic generators
T, J;; forming together the superalgebra psu(1,1|2)
without central charge. The second SU(2) generators
Ly drop out from the basic anticommutation relation
(3.1). Yet, they can be treated as the generators of some
extra SU’(2) automorphisms. Taking a =0, one can
suppress, in the same way, the generators J;; in (3.1),
ending up with SU’(2) as the internal group and the first
SU(2) as the external automorphism group. Thus, in the
cases @ =—1 and a =0 the supergroup D(2,l;a) is
reduced to a semidirect product:

=-1,0, D(2,1;a)

= PSU(L12) % SU2)y,.  (3.7)

ext’

with SU(2).,, being generated, respectively, by Ly ; or J;;.
Note that in these exceptional cases one can extend the
psu(1,1]2) superalgebra by the proper SU(2).,, triplets of
central charges [13]. If these central charges are constant,
the triplet can be reduced to one central charge, which
enlarges psu(1,1[2) to su(1,1]2) and simultaneously
breaks SU(2).,, to U(1),,, (see Appendix A).

We will be interested in the most general embedding of
the superalgebra su(2|1) into D(2,1;a). To this end, we
pass to the new basis in D(2, 1;a) through the following
linear relations:

. 1 . . 1 - _
e* Q= —§<S' + 0", Ojy = _E(Sj +0;).
) i . i - _
€le2k1’ = —(Ql Sl)’ szz’ = __(Qj - 51)7
p p
2 1 _
Ty = [ -5(T+ T)]
U 2
T ! H+ ! (T+T)
11 — 2 2 ’
i
T, =Ty =:2—(T—T), u#0,
U
Ly = —iC, Lyy = iC, Lyy = Lyy = —iF,
Ji= il (3.8)

Here u is a real parameter of the mass dimension. In
the new basis, the (anti)commutators (3.1), (3.2) are
rewritten as

{0'. 0} = “2aul’ + 28i[H + (1 + a)uF],
{878} = 2aul’; + 26i[H — (1 + a)uF],
{8, 0;} =26T, {0.5;} =26,
{0, 8"} = =2(1 + a)ue™C,

{0;.8:} =2(1 + a)ueC,
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(15, If] = 841} = &)1%,

- 1 .- L ) .
[Ij-,Ql] = 55}Q1 - 8,0, [I;" 0] = 5§Ql _55;'Qk’

18] = 368~ 5(5,. (1.8 = ats' — 2 5]5"
(3.10)
[C.C]=2F, [F.C]=C. [F.C]=-C,
[C.0;] = —¢;S'. [C.§;] = —¢;0",
[C, 0] =—¢*S,  [C, 8] =—e*0,
SRy AR
F.0)= =501 [F.0Y =50"
F,5] = —%S,, IF, 54 = %sk, (3.11)
[T.T] = =2uH,  [H.T|=uT,  [H,T]=—uT,
1,0 =-uS',  [T,8;] =-u0;,
[T, 0;] = uS;. [T,5] = uQ',
o1 Mg ko Mok
[H,S)] = 251, [H’S}—ZS,
H01=50.  [M.0]=-50" (3.12)

The bosonic sector consisting of the three mutually
commuting algebras is now given by the following sets
of the generators

su(2) @ su'(2) ® so(2,1)
={li}®{F.C.C} ® {H.T.T}.

According to (3.3) and (3.8), the conjugation rules are as
follows:

(3.13)

O =0 (8T =5 F)' =F,
() =, (15" =1, H' =H, () =T.
(3.14)
Note the relation
A ,[,{2 A
H:H+ZK' (3.15)

In the contraction limit y = 0, the algebra (3.9)—(3.12)
becomes a kind of A/ =8,d = 1 Poincaré superalgebra
(with the common Hamiltonian ) extended by the central
charges 7T, T originating from the so(2, 1) generators. The
remaining two su(2) subalgebras become outer automor-
phism algebras which form a semidirect product with this
N =8.d =1 superalgebra.” At any u # 0, the relations

“The full automorphism group SO(8) of the N’ =8,d = 1
superalgebra is broken down to SO(4) ~ SU(2) x SU'(2) due to

the presence of central charges 7, 7.
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(3.8) defining the new basis contain no singularities, and so
Egs. (3.9)—(3.12) yield an equivalent form of the original
superalgebra D(2, 1; a). After coming back to the original
superconformal generators, any dependence of the (anti)
commutation relations on y disappears while it still retains
in the realizations of D(2,1;a) on the coordinates of the
SU(2|1) superspaces (see below). Taking the y = 0 limit in
this basis gives rise to the standard parabolic realizations of
D(2,1;a) in the flat N' =4, d = 1 superspaces.

The su(2|1) basis in D(2, 1;a) makes manifest some
remarkable properties of this superalgebra which are
implicit in the “standard” basis:

(1) It is straightforward to see that the superconformal

algebra (3.9)—(3.12) includes as a subalgebra the
following superalgebra su(2|1):

{0, 0;} = —20ul’ + 26 [H + (1 + a)uF),
R
1%, 01 = 55}Q1 —-6,0;,

. .
1.0 = 850"~ 50"

A1 _1s Lok
[F, Q)] = 2Q17 [FvQ]—zQ,
[H,Ql]:géz, [H,Q"]:—ng. (3.16)

These relations coincide with (2.4) under the follow-
ing identifications:

m(u) = —ap, (3.17)

H(u) = H + uF. (3.18)
We observe that the closure of the SU(2|1) super-
charges depends on the parameter a, because the
SU(2) and SU'(2) generators J;; = —il;; and Ly ~
{F,C,C} appear in the basic anticommutator
(3.1) with the factors a, 1+ a, respectively. The
U(1) generator F in (3.16) comes from su'(2),
while the first su(2) with the generators /;; is just
su(2) C su(2[1).

(ii)) We see from (3.9)—(3.12) that there exists another
su(2|1) € D(2,1;a) generated by the generators
Si, S ; and corresponding to the identification

m(—p) = au, (3.19)

H(—p) =H —puF (3.20)
in (2.4). Hence, its (anti)commutation relations are
obtained from (3.16) via the substitution g — —pu
and passing to the new independent supercharges
(S;,87). As follows from (3.9)—(3.12), all the re-
maining generators of D(2,1;a) (i.e. T,.T,C,C)
appear in the cross-anticommutators of the
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supercharges (Q', ;) with (S;, §). Thus, the super-
algebra D(2, 1; ) can be represented as a closure of
its two su(2|1) supersubalgebras: su(2|1) given by
the relations (3.16) and another independent su(2|1)
with the (anti)commutation relations obtained from
those of the former su(2|1) through the replacement
u — —u. We were not able to find such a statement
about the structure of D(2, 1; @) in the literature. This
property is similar to the property that the A =
1,d = 4 superconformal group SU(2,2|1) can be
viewed as a closure of its two different OSp(1,4)
subgroups related to each other through the analogous
“reflection” of the anti—de Sitter radius as a parameter
of contraction to the flat N'=1,d =4 Poincaré
supersymmetry [19]. In what follows, this observa-
tion will be useful for constructing D(2, 1; ) invari-
ant subclasses of the SU(2|1) invariant actions.

(iii) In the cases a = —1 and a =0, the supergroup
D(2,1;a) is reduced to the semidirect product (3.7),
with SU(2)..,, being generated, respectively, by L ; or
J;j = —il;;. The remaining SU(2) subgroups enter the
relevant PSU(1, 1|2) factors. Each of the correspond-
ing superalgebras psu(1, 1|2) can still be interpreted
as a closure of its two su(2|1) subalgebras, like in the
case of @ € R\{0}, R\{—1}. In particular, the super-
algebra (3.16) at @ = —1 isidentical to (2.1) with m =
u and H as the U(1) generator. The generator F splits
off as an external automorphism.

(iv) One more peculiarity is associated with the presence
of the “composite” deformation parameter m = —au
in (3.16). It vanishes not only in the standard
contraction limit g =0, but also at ¢ =0 with
u # 0. For a = 0, the superalgebra (3.16) is reduced
to the flat N' = 4 superalgebra

{Q".0;} = 28,(H + uF),

) __1_ k _1 k
[F.Ql=-50.  [F.Q"]=50"
[H,Ql]ngz, [H,Qk]:—ng. (3.21)

|
D(2,1;a) bos

bos

SUR2IT) X U(1)ext —

In the case a = —1 corresponding to the second line in
(3.23), one can omit the generator F in (3.22) since it

In the a=0 case, one can still define su(2[1) C
D(2, I;a = 0), which involves su’(2) ~ {F, C, C} as the internal
subalgebra, as well as the proper analog of the U(1) generator H.
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This algebra is still a subalgebra of D(2, 1;a = 0).
However, it does not coincide with the standard
flat N =4,d =1 Poincaré superalgebra corre-
sponding to the limit 4 = 0, because the rhs of
the anticommutator in (3.21) still involves x and
is a sum of H and the internal U(1) charge F. The

SU(2) generators I/ now define automorphisms
of both the superalgebra (3.21) and the a =0
superalgebra psu(1,1|2), while F is an internal
U(1) generator. The whole D(2,1;a = 0) super-
algebra [including the so(2, 1) generators and those
of the su’(2) ~ {F, C,C}] can now be treated as a
closure of the superalgebra (3.21) and its g — —p
counterpart.’

To avoid a confusion, let us point out that both
(3.21) and (3.4) can of course be regarded as the
Poincaré N = 4,d = 1 superalgebras. However, in
contrast to (3.4), the superalgebra (3.21) is em-
bedded in the superconformal algebra in a different
way, with the Hamiltonian H = H + uF defined in
(3.18), instead of the standard A in (3.4) [recall
Eq. (3.15)]. In the limit 4 — 0, any difference
between H, H and H disappears.

(v) It is worth noting that the parameter « characterizes
only the superconformal mechanics models, while
the generic SU(2|1) models lack any dependence on
it. So in the case of superconformal models, we deal
with the pair of parameters, a and p. In the particular
case a = —1, we have m = pu.

(vi) Besides the SU(2|1) superspaces (2.5), (2.12), we
can now consider another type of the SU(2|1)
superspace defined as the supercoset:

SU(2|1) A U(l)ext ~ {Qi’ QJ"H’ F, I;}
SU) X U1 [ F}

(3.22)

According to (3.13), this definition of superspace
matches to the proper embedding of SU(2|1) in
D(2,1;a) for a € R\{0}:

SU(2) x SU(2) x SO(2,1),

llij lF lH (3.23)

SU2) x U(L)exs x  U(1).

|
becomes an external automorphism. So (3.22) is re-
duced to (2.12) in this case. For generic a € R\{-1},
the coset (3.22) “interpolates” between (2.5) and (2.12),
since F appears in the rhs of the anticommutator in
(3.16) along with the generator H, and so cannot be
decoupled.
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(vii) In the limit @ = 0, the relevant coset is In the particular case a@ = 0, the relevant superspace coset

o (3.24) is parametrized by the flat superspace coordinates

N =4,d=1)xU(1)y N {0.0;, H,F} a0y = {1. 6, 6%}. An element of this coset is obtained by
U(1);n {F} ' setting @ = 0 in (3.25).

(3.24) Dropping matrix parts of generators, one can obtain the

SU(2|1) supercharges for generic a just through the

where (N =4,d=1) xU(1),, stands for the substitution m = —au in (2.7):
semidirect product of the supergroup with the
algebra (3.21) and the external U(1) automorphism

generated by F € {F, C,C}. We can deal with the 0 = i + 2aﬂéiékik +i6'9),,
coset superspace (3.24) in the standard manner, 90; 00
just substituting a = 0 into all the relations of the -~ 0 0 )
SU(2|1) superspace formalism pertinent to the Q= o0 2au efgka_gk +10,0,. (3.27)
choice (3.22).
A. Superconformal generators They generate the su(2|1) superalgebra (3.16) with the
Superconformal generators of (3.9)~(3.12) can be nat-  POsonic generators

urally realized on the SU(2|1) superspace (3.22). An
element of this supercoset is defined as

. —. 0 0 1_.(- O 0
2 = (75 -03,) ~29(* 5 o)
g, = exp { <1 + %9"9,() (0;,0" + 9ij)} exp {irH}, 5 ' 5 k
M
H=i0,—= (0" —= —0,— |,
(3.25) T < PYa kaek>
_ 1 (- 0 0
where the superspace coordinates {¢,6;, 0%} coincide with F= B 0 a5 *a0, ) (3.28)
those defined in (2.6). Because of the relation (3.18), the ¢
coset elements (3.25) and (2.6) are related as

) The extra supercharges of the superconformal algebra
g1 = gexp{—iutF}. (3.26) D(2,1;a) are defined as
|

9

Si = e—im{ {1 _ (1 4 ZG)ﬂéka _%(1 4 20:)2/42(9)2(9)2} 91.

_. 0 _. _
+2(1+ a0y o+ 01+ (1+ 2a)/49"9k]8,},
k

)

_ . _ 1 - _ _
§; = elﬂf{ [1 — (14 2a)ub*6, — 1 (1+ 26!)2/42(9)2(9)2] 8‘; —2(1 + a)ub,;6* % +i0;[1 + (1 + 2a)y9k9k]8t}.
(3.29)
The anticommutators of (3.27) with (3.29) give the new bosonic generators
—iut ) - 1 2(0\2(D)\2 Dk 9
T=e"ill _Z(l +2a)u*(0)*(0)* |0, + u[l — (1 + 20)u6~0,)0; 50, [
7 iut J ; 1 2(0\2(D)2 7k 170 9
T=e*qill _4_1(1 +2a)u*(0)*(0)*|0; — u[l — (1 4+ 2a)ud Qk]e‘@ ,
. - =0
C=eMey[l + (1 +2a)ub*0,]0" —.
06,
_ o _ 0
C=e"el[1 +(1+ 205)#0"9,(}9]-@. (3.30)

Under the &, € transformations generated by (3.29),
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_ 1 i} . _ .
591‘ = |:1 - (1 + 2a)ﬂ9k9k —Z(l + 2(1)2ﬂ2(9>2(9)2:| gie_lﬂt + 2(1 + a)ﬂekgkeie_’”’,

- - 1 - . _.
50" = [1 — (1 4+ 2a)ub*o, _Z(l + 205)2/42(6)2(9)2} gt —2(1 + a)uek9,0 e,

5t = i(EG e + e, 0% e )1 + (1 + 2a)ub*0,],

the SU(2|1) invariant measure (2.10) is transformed as

6.d¢ = 2ud¢(1 — /"ékek)(éiﬁieim _ eiéie—im).

(3.31)

(3.32)

Starting from the new coset given by (3.25) and taking advantage of the relation (3.26), one can calculate the relevant

covariant derivatives

; i _ 3 -] .0 - _ N
D = 6_7”’{ [l — a6, — gaz/ﬂ(ﬁ)z(ﬁ)z} 20 +aub'0;, — —i0'0, — (1 + a)ud'F + aubd’ (1 + a,quHk)I}},

00,
_ ; . 3 -] 0 _ 0 - N
D; = eiﬂ’{_ [1 — audko, — §a2ﬂ2(9)2(9)2] P ayﬁkﬁjﬁ + 60,0, + (1 + a)ub;F — apub (1 + ay@kek)lf},

Together with the matrix generators I%, F they mimic the
superalgebra (3.16). In the particular case a = —1, the
matrix generator F drops out from (3.33), which is
consistent with the superalgebra (3.16) at a = —1 [5]. In
this case, the supercoset (3.22), (3.25) is reduced to the
supercoset (2.12) with H=H and m = u. In the case
a = 0, the generators 1% drop out (they become the outer
automorphism ones). The a =0 covariant derivatives
correspond to the degenerate supercoset (3.24).

The redefinition (3.17) allows one to avoid singularities
at o = 0. Taking @ = 0 in the superconformal generators
(3.27)-(3.30), one can naturally pass to the generators
corresponding to the coset space (3.24) with the relevant
algebra (3.21). Thus, within the SU(2|1) superspace
defined as the supercoset (3.22) with the elements
(3.25), the superspace realization of superconformal gen-
erators has been written in the universal form consistent
with both choices @ = 0 and « # 0, i.e., with any choice of
a € R. This refers to the covariant derivatives (3.33)
as well.

Any dependence of the superalgebra relations (3.9)—
(3.12) on the dimensionful parameter y naturally disappears
after passing to the original basis (3.1), (3.2). However, in
the realization of the generators (3.8) on the superspace
coordinates, the dependence on y is still retained. Thus, the
parameter y is a deformation parameter of the particular
superspace realization of (3.1), (3.2). This new deformed
realization corresponds to the trigonometric type of N' = 4
superconformal mechanics [14]. Sending x4 — 0 in these
realizations (and in the corresponding realizations on the
d = 1 fields) reduces the deformed superconformal models
to the standard superconformal mechanics models of the
parabolic type [6,12,13].

(3.33)

[

To be more precise, the trigonometric form of the
conformal generators {H, T, T},

H =1i0,, T = ie ™9, T =ie™9,, (3.34)
is obtained as the bosonic truncations of the generators
defined by Egs. (3.28), (3.30) (or an alternative realization
of these generators given in the next subsection). The
standard so(2, 1) generators H,K and D defined in (3.5)
and (3.8) are expressed, respectively, as

H= i(1 + cos ut)0,,

L 20
5 K = /?(1 — cos ut)0,,

D="Lsinud,  u#o0. (3.35)
7
These generators satisfy the conventional relations of the
d =1 conformal algebra:
[D.K)=ik, [H.,K]=2iD. (3.36)
Thus, the definition of conformal superalgebra by
Egs. (3.9)—(3.12) automatically provides the trigonometric
form for the conformal algebra so(2,1) [10].
In the limit u — 0, the generators (3.35) turn into the
standard parabolic generators
H =0, D = itd,, K = ir?0,. (3.37)
The same properties are inherent to the total set of the
D(2, 1;a) generators (3.8) for u # 0. Thus, we treat the
superspace realization of the superconformal symmetry
generators found in this paper as a trigonometric
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deformation of the parabolic N = 4, d = 1 superconformal
generators constructed in Refs. [6,12,13].

The main reason for considering the basis (3.34) is that
the generator H = H + i 42K is directly given by the time
derivative, H = i0, [10]. Another peculiarity of this basis
concerns the Cartan generator (diagonal generator) of
conformal algebra [I1]. In (3.34) we have the
Hamiltonian H as the Cartan generator, while in the
parabolic basis (3.37) the Cartan generator of so(2,1) is
associated with the dilatation generator D. Thus, the
relevant quantum mechanical system must be solved in
terms of eigenvalues and eigenstates of the quantum
Hamiltonian H = H —I—é—{ u*K, which just coincides with
the “improved” Hamiltonian of the d =1 conformal
mechanics [11], ensuring the energy spectrum to be
bounded from below.® In the next subsection, we will
demonstrate that there is a basis in the SU(2|1) superspace
in which the full generator H defined in (3.28) (not only its
bosonic truncation) becomes just i0,.

B. An alternative realization of
superconformal generators

According to (3.9), the supercharges Q form the su(2|1)
superalgebra with the deformation parameter u, while the
supercharges S form the su(2|1) superalgebra with —pu.
|

. i 1 ~k~ 1 ~ ~ a ~j~ a
I — 5’” — —_—— 2 2 2 —
Q' =e {{1—#2(14—20{)/19 Oy 16(1+2a)/4 (0)%(0) ] % (1 + a)ud 9k8~

PHYSICAL REVIEW D 91, 085032 (2015)

Analogously, in the case a =0, the relevant deformed
superalgebras are (3.21) and its —u counterpart. In the limit
1 = 0 both sets of supercharges reproduce the same flat
N =4,d = 1 supercharges.

Here we demonstrate that, after the appropriate redefi-
nition of the SU(2|1) superspace coordinates, the whole set
of the superconformal generators can be constructed in
terms of the pair of deformed supercharges Q(u) and
S(u) = Q(—u). This explains why the SU(2|1) and super-
conformal transformations of the component fields
obtained below for the multiplets (1,4,3), (2,4,2) can
be represented as deformations of the standard N = 4,
d =1 transformations of component fields, with the
deformation parameters y and —p, respectively.

The new coordinates {7, éj,éi} represent the same
supercoset (3.22) and are related to the previously
employed supercoordinates as

. L 1 _
0, = eiﬂfgj [1 + 5(1 + 2a),u9k9k],

u
I
—
\Ql
~—
I

B _
e S [1 +5 1+ 2a)u9"9k] - (338

The supercharges (3.27) are rewritten as

:l': 8 :i 1 ~~
+aub'd —+i0 [1 —(1+ 20{)/191{9,(} a,},
a0 2

— i 1 ~k~ 1 ~ ~ 0 ~ =

- . 1 Zp~
- ayejeki+ 0, {1 ——(1+ 2a)ue"9k] a,}. (3.39)
00, 2
The new form of the supercharges (3.29) is given by
Si = e—%m{ [1 @ - Ly 20()/42(@)2(5)2} 9 (a2
2 16 90 90
zizk 0 3 1 =j~
—aud 0 —; +i6 {1 + = (1 4+ 2a)ub Qk} 8,},
0 2
_ ; 1 =~ 1 Yy 9 2k 0
c= e == (1 4+ 2a)uf 6, —— (1 +2a)u*(0)*(0)? | —= — (1 0 —
5y = ebe{ [ 1= 50+ 2085~ 361+ 2002 0207 | 5= (1 + '
- . 1 Zp~
+ aﬂejeki+ i0; {1 +o(1+ 2a)ﬂ9k9k} at}. (3.40)
00, ' 2

®The orthogonal combination H;, = H — % u*K corresponds to the hyperbolic case discussed in Appendix C. It yields a non-unitary

model.
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We observe that they are obtained from the supercharges (3.39) just through the change of the sign of u, S(1) = O(

s <¢9"i 9 a>
06" 00y

bosonic generators (3.28) of SU(2|1) are written as

/ 06’ 00,

1/z 0 ~ 0
F_E(G "

Gék “ 00, aek

PHYSICAL REVIEW D 91, 085032 (2015)
—u). The

H = id,. (3.41)

In this new realization the Hamiltonian H takes the correct form as the time-translation generator. The rest of the bosonic

generators (3.30) is rewritten as

T:e‘i"’{ [1—(14—2(1 }
_ . 1 u =k 0 ~
— pipt) _ ~
T=e {1{1 4(1+2a) ()()}8 2< aék+¢9k
C:€j19ji~, _:€]l~j%.
00, 00

Note that the supercharges (3.39), (3.40) acquired the
exponential factors ~eT#  which are needed for ensuring
the correct commutation relations with H = id,. Also note
that the su(2) and su/(2) generators now include no y
dependence at all, while the so(2, 1) generators 7 and T are
just related by the reflection yu <> —u, T(—u) = T(u). So
the property that the whole superalgebra D(2,1;a) is
contained in the closure of (Q;(u), Q/(u)) and (S;(u) =
Q;(—u), S (u) = Q/(—p)) becomes manifest in the new
parametrization of the SU(2|1) superspace.

For further use, we give the new basis form of the
SU(2|1) invariant measure (2.10):

+ ﬂékék)

Under the ¢, & transformations generated by (3.40), it is
transformed as

dE = dtd?0d2(1 (3.43)

6.df = 2udZ|1 -2 (3+ 2a)u0'0, | (80,5 — &,0'e=51).

(3.44)

IV. THE MULTIPLET (1,4, 3)

A. Constraints

The multiplet (1,4, 3) was described in Ref. [4] in the
framework of the SU(2|1) superspace (2.5). It is repre-
sented by the real neutral superfield G satisfying the
SU(2|1) covariantization of the standard (1,4, 3) multiplet
constraints

€Ijbl®jG = €[leDjG = O, [,Di, @JG = 4mQG.

(4.1)

< ~k+ék?> +La +20!)ﬂ25iéi<5k8—(9k 0 >}
89k 2 89 89k

~> X014 20205, <§" ?k 0 )}
00y 2 00 aek

(3.42)
[
They are solved by
G = [1 — m0*0, + m*(0)2(8))x + ;—‘ (0)2(9)>
— i0°0, (0" + 07ip;) + (1 = 2m0"0,) Oy — 07 ;)
+ 6/6,B:, Bl =0. (4.2)

For studying superconformal properties of this SU(2|1)
supermultiplet, it will be more convenient to reformulate it
in the superspace (3.22). By rewriting the constraints (4.1)
through the covariant derivatives (3.33) as

e"D/D;G = ¢,;D'D/G = 0, [D!, DG = —4auG,

(4.3)
we obtain
G = x[1 + aub*0;, + a*1*(0)*(6)?]
+3 (020 = 00,0t + Bl e)
+ |1+ % (1 + 4Q)u0*6, | (O e — 67 e
n éjaiB;'" (4.4)
where we have redefined
wi — yledt W — e, (4.5)

This field redefinition makes the U(1) generator F act only
on fermionic fields and ensures that the operator H is
realized on the component fields as the pure time derivative
i0, without additional U(1) rotation terms. We see that the
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irreducible set of the off-shell component fields is x(¢),
w' (1), (1), Bi(1) (B = 0), i.e., G reveals just the (1,4, 3)
content. In the contraction limit # = 0, it is reduced to the
ordinary (1,4, 3) superfield.

As the most important requirement, the constraints
(4.3) [rewritten through the covariant derivatives (3.33)]
must be covariant under the superconformal symmetry
|

St = e‘i”‘{ {1 — (1 + 2a)ub*0, — % (14 2a)%u*(0)(6)? } — 4+ 2(1 + a)ub'

+ i1 +

_ . _ 1 _
5 — e””{ {1 — (1 + 200, ~ (1 + 20742070 2] 9 a0+ a)uajak%

+i60;[1 + (1 4 22)u6*0,]0, — 2aub (1 — uo Bk)}

Respectively, the bosonic generators are modified as

(14 2a)ub%6,]0, + 2aud'(1 — gkgk)}
)

PHYSICAL REVIEW D 91, 085032 (2015)

D(2,1;a). From this requirement, one can actually
restore the supercharges (3.29) and the bosonic gener-
ators (3.30) as the differential operators acting on the
superspace (3.22). Moreover, it implies that these extra
generators for the multiplet (1,4,3) should be extended
by the proper weight terms. The supercharges (3.29) are
extended as

0

0 % B0, 00,

(4.6)

T= e‘i”’{i [1 - % (1+ 205)#2(6’)2(9)2} O +u[1 = (1 + 2a)/¢9k9k]9,-8£9i} + que™ [1 — ub 0, + % (1- 205)/42(6)2(9)2} ,

T = el’m{i {1 — % (1+ 2a)ﬂ2(9)2(é)2} 0, — ull = (1 + 2a)u6*6,]0' %} — aue'! [1 — ub*o; + - A (1 —2a)u?(0)? (9)2] ,

. _ _. 0 _ .
C=e™ey[l +(1+ 2a)u€k0k]916—91 + au(0)?e i,

C = eMel[l + (1 4 2a)ub ;] —au(0)%e.

0
9] 691

These modifications of the additional D(2, 1; @) generators
imply the following “passive” transformation law for the
superfield G under the ¢;, & transformations:
5.G = 2au(1 — ub*6,) (6,6 — e,0 e )G.  (4.8)
All other transformations are produced by commuting (4.8)
with the odd SU(2|1) transformations which are generated
by the pure differential operators (3.27). It is worth pointing
out once more that all additional weight terms in the
D(2,1;a) generators are necessary for the D(2,1;a)
covariance of the (1,4,3) constraints (4.3) and, in fact,
can be deduced from requiring this covariance. Making the
bosonic truncation of the conformal generators with the
weight terms,
H =i0,,

T = e "(i0, + au), T = e (id, — ap),

(4.9)

one observes that a can be identified with the scaling
dimension parameter A, for the multiplet (1,4,3) [14].

(4.7)

Digression.—In Sec. III B, we showed that, after passing

to the new superspace basis {t, i o' }, the differential parts
of the D(2,1;a) supercharges in the u representation
satisfy the relation S(u) = Q(—pu), thus making manifest
the property that D(2, 1; «) is the closure of two its su(2|1)
subalgebras, one defined at u and the other at —u. Due to
the presence of the additional weight terms, the super-
charges (4.6) written in the new basis no longer exhibit this
nice correspondence. To restore it, one needs to make the
appropriate f-dependent rescaling of the superfield G,

G = AG,, (4.10)
and to pick up the factor A in such a way that the extra
weight terms acquired by the supercharges Q'(u) and
Si(u) when acting on G ensure the needed relation. The
factor A is defined up to a freedom associated with a real
parameter f:

A0) =1+ aud' o, — % B2(0)2(0)2,  (4.11)
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Go(.0) = {1 1
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The € and ¢ variations of G are related just through the substitution y — —pu,

1 ~k~ .~ i ~i i
8.Go = —u [“ —5@4p - 30!)/19](94 (€0 — €,0' )Gy,

5£G0 ://l|:a+

1 S~ S~ i i
5 (48~ 3a)u9k9k] ('0;e7" — 6 e™') G,

and imply the following expressions for the total D(2, 1;a) generators in the realization on G:

. ; 1 Sk~ 1
Ql = ef’”{ |:1 +§(1 + 2a)ﬂ9k9k —E(l + 2(1)#2

:i: a :l‘ 1 =L~
+aub'0" =+ if [1 -5 +2a)ﬂe"9k]a —aud + ~ (4ﬂ 3a)u20'0 ek}
90

16

- i 1 ~k~ 1
0, = e‘iﬂ’{ [1 +§<1 + 2a)ﬂ9k9k —— (1 + 2a)p?

e O - 1 — -] O
— aud,6; 5 i0); [1 -5+ 2a)ﬂ9k9k] 0, + aud; - 5 (46 - 3a)/426i9k9k},

S'u) = Q'(—p).  S;(u) = Q;(—n).

(4.12)
(4.13)
S22 0 _ . Kl
@7() } 89{ (1 By
~5 i ~ =p
@) <e>]a§j+< a2
(4.14)

One can directly check that their (anti)commutators form the superalgebra D(2, 1;@). The so(2, 1) generators T, T are

given by

T_e—mr{i[1_i(1+2a)u2(é)2( )]‘9 +2< kaz +6 a)

1
2 00"

+

N =

00

The rest of the bosonic generators contain no weight
terms.

The parameter § appears neither in the structure con-
stants of D(2, 1;a) nor in the superconformal component
actions (see following subsections) so it can be chosen at
will. One choice is f = 4a which ensures the simplest
structure of the weight terms in (4.14), (4.15), (4.13).
Another possible choice is = a, under which the super-
field G in (4.12) contains no y dependence at all. In this
case, the SU(2|1) constraints (4.3) are reduced to the linear
combination of the flat constraints:

eikDkaGO = €ikDkaG0 = 0, [Di,Di]GO = 0,

(4.16)

(1 + 2a)20'0, (9 i - Hka—

>—|—a//t[1—|—<
T:eiﬂ’{i{l—i(l+20¢) ()()}a <k : e+ 0 8)
(G-

)-af-

(] + 2a)ﬂ25iéi (ék(zk - Gk?

“00,

o0 |

arr])

pi—2 o, D;=- 9 +i6,0,.

00, ' o0’

(4.15)

[
(4.17)

These constraints are still covariant under the relevant
trigonometric realization of D(2,1;a) [with f=a in
(4.14), (4.15), (4.13)]. The corresponding superconformal
actions of G written as integrals over the SU(2|1) super-
space do not coincide with the standard ones constructed as
integrals over flat ' =4,d = 1 superspace.

As a final remark, we note that the constraints (4.3) can
be generalized as

€lj,Dl’Djé = €lleDjé = 0, [Di, ’DJG = —4aﬂé —4c.

(4.18)
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Their solution is

G(x,y. 7, B) = G(x,y, ., B) + c070,(1 + 2au6*0,),
(4.19)

where G(x,y,r, B) was defined in (4.4). Once again, this
solution can be adapted to the supercoset (3.22). We
observe that the superconformal covariance of the corre-
sponding version of the constraints (4.18) implies the
additional condition
cDD (1 — ub*o,)(g'0;e™ — g;0'e™*") = 0.  (4.20)
Substituting the explicit expressions (3.33) for the covariant
derivatives, one can show that at ¢ # 0 the condition (4.20)
is satisfied only for @ = —1. Then the superfield G trans-
forms as
8,G = =2u(1 — ub*0,) (80, — ¢,0'e™#)G.  (4.21)
Thus, at ¢ #0 the relevant superconformal group is

reduced to the supergroup PSU(1,1[2) x U(1). At
|

: RS R 1 i/ i 1
L= #g(x) +i(pp' —pap')g(x) +5 BjBlg(x) — B] (5 8

27
1

— 7 W @)*d"(x) -

[(1 4+ 2a)g(x) + axg (x)]|pp ' — Pu*x*g(x) — cg (X))@' — 2capxg(x) — c*g(x),
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¢ =0, any a # 0 is admissible, including a = -1 In
what follows, the special case @ = 0 will be considered
separately.

B. SU(2|1) invariant Lagrangians

One can construct the general Lagrangian and action for
the SU(2|1) multiplet (1,4, 3) as

S(G) = / dil = — / dCf(G). (4.22)

We consider the invariant Lagrangians for the superfield G
satisfying the generalized constraints (4.18) with ¢ # 0.
The action for the superfield G subject to the constraints
(4.3) can then be obtained by setting ¢ = 0.

Any action with an arbitrary Lagrangian function
f(G) is SU(2|1) invariant and provides a deformation
of the standard (1,4,3) models. Substituting the
expression (4.19) for G into (4.22) and doing there
the Berezin integration, we obtain the component off-
shell Lagrangian

iyt =y’ ) g (x)

(4.23)

where g := f” and primes mean differentiation in x, f' = 9. f, etc. The parameter ¢ produces new additional potential-type

terms in the Lagrangian.
The €, € transformation law of (4.19),

5G = —[e,0' +€0;,G),

implies the following SU(2|1) transformation laws for the component fields:

_ sk —dut k it
ox = eye M — epte,

. T .
0B = -2i |:€jl/}l€7”t + e — Eé}(eky/keiﬂt + éklpke_i’”)]

. ] . 1 .. ; ;
— (14 2a)u [é’l[/je‘z”’ —eylet — 56}(éky7ke‘§”’ - ekl//kez”’)] .

We can simplify the Lagrangian (4.23) by passing to the
new bosonic field y(x) with the free kinetic term. From the
equality

"At ¢ =0,a = -1, the whole automorphism SU(2),,, is a
symmetry of the superfield constraints. It is reduced to U(1)
only at ¢ # 0.

(4.24)
Syt = e (ie'x + ape'x + cé + e BL),
(4.25)
2 1.,
x*g(x) = 3V (4.26)
we find the equation

YO = VI, V) = (4.27)

0
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and define

) ) ~. 1 .
r=vy'y'(x), B} = EB}y’(x), V(y) = ) (4.28)
Solving the last of the equations in (4.28) as
y dy }
x(y) = ex — 5, 4.29
o =eed [ (429)
we can cast the Lagrangian (4.23) in the form
2 /
_y i 5 ~z“/_V()’)_1~j i= ok _ 95 i
L=7+5 ' —2x') + BjB; V() B; (" = 20x')
V')V() + 2VI(y) =31V () =11 \a/ovn
V0] (0*@)
ydy \. . p_ .
-0, |auV +cV €X {—/ —~}:| 'l——,'l
) { uV(y) (v) exp Vi) S B 2R
1 y dy )12
- = \% + \% X —/ —~}:| . 430
s avor+evmen{- [ (430)

Here, V(y) can be regarded as an arbitrary function due to the arbitrariness of g(x) in (4.27). Thus, we have finally obtained
the SU(2|1) Lagrangian involving an arbitrary function and extended by additional terms which depend on the parameter c.
In the new representation, the supersymmetry transformations acquire the form

_ kg ,—dut k ,iut
oy = e e —epytert,

_ T » » y dy e — - Vi(y) =1
Syt = e {iely + aue'V(y) + ce'V(y) exp {—/ — } + 28 B} + 4 (7, — exyte) ——r|,
V() ‘ V(y)
- - D B .
8B = —i [ej;'(’efﬂ’ + &lyje " — 55}(6,()("65’” + ék)"(ke‘iﬁ”)}
: i S0 1 . i i
- g (1+2a) [é’)‘(je‘i”’ —eyledt — 55}(@")_(1{6_7’” - ek)("ei’”)}
ok o V/0) = 1
+ Bi(e e — ey ykert) ———r
S V(y)
2o . i 1 . i i V’ — 1
+ iy [ej)(’ef’” + ey e — —5}(6,(;(/‘65’“ + ék)?ke_i”’)} ();7) (4.31)
2 V(y)
|
In the particular case ¢ = 0, the models described by these LG} fora#—1.0 i,
transformations and the Lagrangian (4.30) correspond to fg(cl)(G) _ ) 8(atD) HRN g(x) = X«
the off-shell form of “weak supersymmetry” models [7]. %GlnG for a = —1. 8a’
(4.33)

C. Superconformal mechanics with ¢ = 0

The superconformal (1,4, 3) action with ¢ = 0 can be

written in the superfield formulation as Using (4.8) and (3.32), one can check that the action (4.32)

is indeed invariant with respect to the superconformal
group D(2, 1; ).

S&g)(G) _ —/d{fﬁg)(G), (4.32) We can consider a few special cases, e.g., a = —1,
a=—1/2. As we will see in the next subsection, in the
case a = —1 the action (4.32) can be generalized to

where the corresponding superfield function f(G) is  incorporate the nonzero parameter ¢ defined in (4.18).
given by The case a = —1/2 corresponds to the free action. We
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cannot treat the ¢ = 0 case as a particular case of the
SU(2|1) models under consideration, since we defined
the SU(2|1) superspace for a # 0, while passing to a = 0
amounts to contraction of the original SU(2|1) super-
group into the supergroup with the flat algebra
(3.21). Nevertheless, as we will see soon, the a =0

PHYSICAL REVIEW D 91, 085032 (2015)

superconformal action can still be constructed within the
properly modified superfield approach based on the
contracted supergroup.

Taking a @ integral in the superfield action (4.32) and
making the redefinition (3.17), we calculate the super-
conformal Lagrangian as®

27

o o 1 o
LE = 2g(x) + i@ —pw')g(x) + 5 BiBlg(x) - B <5 St — wiw-’)g’(X)

1 2,,2,2

—— (W) (p)*g" (x) = ®p*x*g(x).

4

(4.34)

We observe that it depends only on x2, not on y. Taking advantage of the redefinitions just mentioned, one can conveniently

rewrite the transformations (4.25) as

— gk —iut k iut
ox = eyre M — eptet

Sy’ = e (iE'x + aue'x + e BY),

. - P R .
53; = -2i |:€jl/'lleiﬂt + éll/_/je_iﬂt - E&;(ekll/kefﬂt + E'kl/_/ke_iﬂt):|

. i C 1 . i i
— (14 2a)u {é’y'/je‘zf" —eylet — 55}(5"1}/,{(5’” - eky/kezf”)} .

(4.35)

The Lagrangian (4.34) is invariant under the second SU(2|1) transformations with the parameters ¢, g,

ox = e\ e — epypte ™,

Syt = e (ig'x — aue'x + EBY),

. . e | . Ny
OB = =2i [sjl/'/’e_2”’ + &y et — 55}(8161//1(6_7”[ + E’ky"/kez”’)}

. i . i 1 . i i
+ (14 2a)u [zllpjezﬂt —eyleH — 555(5@7,(6% - skl//ke_il")} ;

which correspond to the supercharges (4.6). We see that
(4.35) and (4.36) are related by the replacement 4 — —u in
accord with the structure of D(2,1;a) as the closure of
these two su(2|1) subalgebras.

The parabolic transformations of the (1, 4, 3) component
fields can be obtained from the trigonometric transforma-
tions (4.35), (4.36) in two steps. First, one passes to the new
pair {¢',é'}, {€,&} of infinitesimal parameters with
opposite dimensions by redefining the old parameters as

€ =~€ +1¢, g =€ ——¢, and c.c. (4.37)
H 1z

This redefinition just corresponds to passing to the original
basis for the D(2, 1;a) supercharges, in which the super
Poincaré supercharges and those of the superconformal

5The term ~py  vanishes because of the

(—(1—1 —2)g(x) = xg'(x) for (4.33).

identity

(4.36)

boosts have the opposite dimensions. Only after that can we
send u — 0 and obtain the parabolic transformations. This
procedure is universal and can be performed for the
transformations of superfields, component fields and super-
space coordinates, regardless of the type of the realization
of D(2, 1;a). In this way one can, e.g., deduce the para-
bolic transformations of the integration measure (2.10),
which becomes the standard flat measure dtd*0d*0 in the
limit 4 = 0.

Using (4.26)—(4.28), we can calculate the function V(y)
corresponding to (4.33):

Vi(y)=1 1+2a
vy oy
(4.38)

Vo) =i V) =5

As aresult, we obtain the superconformal Lagrangian in the
form
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.2 .
@ _Y s i s iV BRI
Acsc —2+2()(1)( )(t)()—i_BjBi

(143a)(1+2a)

e

Zy2
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1420~ . .
B (87t =2x')

2

g (4.39)

It is invariant (modulo a total derivative) under the following SU(2|1) odd transformations:

Sy = e ™ — ek e,

5)(1' = e_%lll l:lél)'] _gély + 2@/(&5{ +)(i(ék)?k _ €k)(k€iﬂl) §

~ P i i : i | . i
6B} = —i {ejj(‘ei’” + &y e — Eéj(ek;(kei/” + ék)'(ke_if”)] -

~ ; 14 2a
+ B.’,-(ék)"(ke_f’” — exrket)

Changing p in these transformations as p — —u, one
obtains the transformations associated with the extra
generators S(u) = Q(—u). Since the Lagrangian (4.39)
depends only on z? like (4.34), it is automatically invariant
under these S transformations and, hence, under the
full D(2, I; ).

Thus, in the present case we deal with the superconfor-
mal mechanics corresponding to the trigonometric trans-
formations [14]. Another type of superconformal
mechanics is that associated with the parabolic trans-
formations, and its superfield description is based on the

|
S9(G) = - / dtdP0d?0(1 + 0 0,) G+

. = 1 2
:—/dtd29d29[1+1(a—1+

and

sle=DG) = - / dtd*0d*0(1 + u0'9,)G1n G

- / dtd2éd25{ {1 - % (14 ﬂ);ﬁ(é)%gﬁ] GolnG, — %2 (1+28) (é)2<9)2co},

where one should take into account that

/ dtd*0d20(ub'0,G,) = 0.

All terms with the manifest 8’s in (4.41), (4.42), equally as
the superfield G, depend only on 2. Also, it is easy to
show that all f-dependent terms in these actions are
canceled among themselves. For any other trigonometric
superconformal action treated below (e.g., in the @ = —1,

1 4+ 2a

J

=

N i i i i 1 .. J ;
+iy [eﬂ e Eg e =5 8 (et et + &g e ‘

. i . 1 i i
(14 2a) [é’)‘(je‘il” —eyer — 55}(@‘]{)_(](6_5/” — eyt

1 4+ 2a

5 (4.40)

standard N' = 4, d = 1 superspace. The only difference is
that the trigonometric-type action (4.39) has an additional
oscillator term. Thus, by sending u — 0, the parabolic type
of superconformal mechanics can be restored.

The property that the component superconformal trigo-
nometric actions are even functions of the parameter u can
be established already at the superfield level. One should

pass to the SU(2|1) superspace basis {z,0 j,él}, in which
the property S'(u) = Q'(—pu) is valid and the integration
measure is defined by (3.43), and express the superfield G
through G, according to Eqgs. (4.10)—(4.12):

2)ue(@r o G (4.41)

a

(4.42)

¢ # 0 case), it is possible to show in a similar way that, in
the appropriate superfield formulation, they depend only on
u? like in the component field formulations.

D. The model with a = —1,¢ #0

Let us consider the case of ¢ #0 for which the
superconformal invariance requires that o« = —1 (m = ).
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The corresponding supergroup is D(2,l;a=—1) =

PSU(1,1|2) x SU(2).,, but the constraints (4.18) are

covariant only with respect to PSU(1,1|2) x U(1).y-
The corresponding superfield action is

SE=V(6) = - / d{GInG. (4.43)
Starting from the general SU(2|1) invariant component
Lagrangian (4.23) with ¢ # 0 and substituting there

f(G) - GlnG, we obtain, up to an additive constant,
the following ¢ # 0, = —1 generalization of the super-
conformal Lagrangian (4.34):

.2 .
a=-1,c X L,_ . S
LY ):;Jr—(wiw - )
BB/ B /1
J J 5] j
+—2x + 2(2 ot = oy
1 2iva o iy ¢
—o WP -+ T (444)

Here, the new term ~yy is responsible for reducing
superconformal symmetry to PSU(1,1|2) x U(1). This
action is invariant under the supersymmetry transforma-
tions, with Sy’ being a generalization of the relevant
transformations in (4.35), (4.36):

Syt = e #(ie'x — pe'x + e B + cé'x)

+ e (ig'x + p&'x + Bl + c&'x). (4.45)
Transformations of the bosonic fields are the same as in
(4.35), (4.36).

Passing to the action with free kinetic terms, we find the
relevant function V(y) to be

Viy) -1

VO3 V)= plreoy. (449

In accordance with (4.30), we also should take into account
additional terms involving c. Thus the superconformal
Lagrangian (4.39) is generalized to this special case as

(a=—1.¢) y:oi . o
L =S+ 5 =) + BB

2
EJ
;’(5%{;{ —2;@)()——()() (7)?
2
c _ . Uy c
SV B i 4.47
+2y2 2R TRy (4.47)

The relevant on-shell Lagrangian,
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-2 .
a=—1,c y v, _ ‘i z 1 _
L8 =2 (i —ria) = ()2 (7)?

2 "2 4y2
2.2 2
c _ . WYy c
S B b A 4.48
+2y T Ty (4.48)

as a superconformal Lagrangian, was previously found in
Ref. [17].” The SU(2|1) superspace approach allowed us to
find the off-shell superfield form of (4.48).

E. The o = 0 model

Inspecting the Lagrangian (4.34), we observe that the
limit @ — —0 is divergent and the opposite limit &« — +0

yields Eggzo) = 0. Nevertheless, we can unambiguously
define this limit for the Lagrangian (4.34) by introducing an
inhomogeneity parameter p [14].

The limit @ — 0 can be obtained, if we redefine the
Lagrangian (4.34) by shifting the field x as

x-x+?l (4.49)
a

The homogeneous Lagrangian (4.34) is rewritten as

1
@ D 1
£ = g lax o) [xz il — ') +5 B’B’]

277
+0:5(1—1-205) <15J ,

Pt — ) (ax +p)

8 2!
ai(1 +2a)(1 + 3a _ o
- 23 2 o+ )
32
L |
- % (ax + p)~+. (4.50)

Detaching the divergent factor N(;—’)‘)i and sending @ — 0 in
(a=0.p)

the remainder, we obtain the Lagrangian L as
- . PR 1
G = [xz + iy — ') + 2333{]
B! (1
+— 3 R A
- @ (w)*(p)2e ™ — pPpPe . (4.51)

Following the same procedure as in (4.26)—(4.28), we can
obtain the Lagrangian which coincides with (4.39) ata = 0
[14]. For ensuring the superconformal invariance in this
case, one needs to extend the transformations (4.35), (4.36)
for ¢ = 0 by the inhomogeneous parts

°One needs to perform a redefinition of fields in order to show
the coincidence of these two Lagrangians.
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Bp)x = 8,) By = 0.
(4.52)

S = pu(Ee s — glest),

This modification entails the appearance of inhomogeneous
pieces in the conformal transformations of x,

Tx = e (ix + pu), Tx = e (ix —pu). (4.53)

The standard conformal so(2,1) generators defined in
(3.5), (3.8) act on x as

Hx = %(1 + cos ut)x —%p,u sin ut,

2i .20
Kx = /7(1 — COS ut)x +;p sin pt,

Dx = Lsin ULX + ip cos ut. (4.54)
U

The superconformal superfield action (4.32) is not
defined at a = 0. Nevertheless, the superfield description
of (4.51) can be given in the framework of the supercoset
(3.24) associated with the a =0 superalgebra (3.21).
According to (4.4), the superfield G is written as

G = x+75 (0)2(8) = iB 0,0 e + Do)

H - i L ni- i ni i
—+ <1 + Egkgk) (911// 62’” — lel/je 2’”) + ngiBj
(4.55)

and satisfies the standard “flat” (1,4, 3) constraints

e’jl_)ll_)jG = e,jDID/G =0, [D',D;]G =0, (4.56)
where the covariant derivatives are'’
Di = e~ 9 i0'8, — uo'F
06, ! ’
D — o0 0.0, + uo ,F 4.57
= e _@+l.jt+/‘.j ) (4.57)
Dy = 0, {D'.D;} = 26(i0, + uF).  (4.58)

Then the component Lagrangian (4.51) is reproduced from
the superfield action

"“Though the superfield G has no external U(1) charge and the
generator F yields zero on G, it is nonvanishing when acting on
the covariant derivative itself. Nevertheless, it is direct to check
that in the a =0 constraints (4.56) such contributions are
canceled against terms coming from the phase factors in the
definition (4.57).
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s<(G) = / Ll = —p? / didOd*De 5%
(4.59)

The “passive” superfield infinitesimal transformation of G
involves only the inhomogeneous piece

5)G = —pu(e6, — €05

+ pu(1 + u6*0,) (0 e — e,0% 1), (4.60)
since its standard homogeneous part (4.8) vanishes
at a = 0.

Note that the superfield G at @ = 0, though being defined
in fact on the flat N' =4 superspace, still possesses an
unusual inhomogeneous transformation law (4.60) under
the N'=4,d = 1 Poincaré supersymmetry to which, at
a =0, the ¢,é transformations are reduced. We can
reformulate this model in terms of the superfield u having
the standard homogeneous transformation law under the
N =4,d =1 Poincaré supersymmetry

u =G + pu6*oy,

Sou =0, (4.61)

"D Dju=e;D'Du=0, [D D]Ju=—4pu. (4.62)

The inhomogeneity of the full odd superconformal trans-
formation law of u is retained only in the part ~e;, &
associated with the generators S°, S;:

Spyu = 2pu(1 — pb*0,) (" Oe™ — g0 e™1).  (4.63)

The action (4.59) is rewritten in the form in which it does
not involve explicit 6:

S0 () = —p? / dtd0d*0e™r.  (4.64)

We also note that the u dependence in the solution (4.55)
is fake because it can be removed by the inverse phase
transformation of fermionic fields as y' — yie™#. Then
the whole ¢ dependence in the component actions (4.50),
(4.51) is generated by the & = dependent term in (4.59) or
the #-dependent additional term in u defined in (4.61) (if
one prefers the u representation (4.64) for the super-
conformal action). The definition of the fermionic fields
as in (4.55) is convenient since it ensures the absence of the
fermionic “mass terms” ~uy'y; in (4.50), (4.51). Despite
the fact that at @ = 0 we deal with the standard flat N' = 4
superfield u, the superconformal transformations (4.63)
still correspond to the trigonometric realization of the
conformal subgroup SO(2,1), as well as that of the full
PSU(1,1]2). The parabolic realization is achieved by
redefining the fermionic parameters as in (4.37) and then
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sending g — 0 in the resulting transformations, like in
other cases.

As a final remark, we notice that the @« = 0 analog of the
superconformal action (4.43) with ¢ # 0 and a = —1 can
be obtained [20] by considering the superfield action dual
to (4.43):

G

5E=009(G) = / At OO [—p*e "% +2(8'0, - 8°0,)G]

= / dtd*0d20]—p*e™ + (00, — 020, )ul.
(4.65)

It can be checked that the relevant component Lagrangian
coincides with the off-shell Lagrangian (4.47), modulo the
replacements of all SU(2) indices by the SU’(2) indices (on
which the generators {F,C,C} act) and the substitution
c—cC.

V. THE MULTIPLET (2,4, 2)
A. Chiral SU(2|1) superfields

In this section, we will consider the multiplet (2, 4, 2),
proceeding from the superspace (2.5). Also, in Ref. [5] the
multiplet (2,4, 2) was generalized by exploiting the super-
space coset (2.12). Such a generalization will be addressed
in the next section.

Employing the covariant derivatives (2.11), the standard
form of the chiral and antichiral conditions is as follows:

(a) D;® =0, (b) D'® = 0. (5.1)
This implies the existence of the left and right chiral
subspaces [4]:
(tg. 0"),

(ZL791')7 (52)

where

t, =1+ i6%6, —%m(&)z(@)z, and cc.  (5.3)
These coordinate sets are closed under the SU(2[1)
transformations
80, = ¢, +2me*0,0,, 61, = 2ie“0,, andc.c. (5.4)
One can require that the complex superfield ® with the
minimal field contents (2, 4, 2) possess a fixed overall U(1)
charge:
FO = 2,

1Ld = 0. (5.5)

The general solution of (5.1) for an arbitrary real k reads
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O(1,0.0) = (1 +2m0"0,) 0, (1,.0).

Py (11.0) =2+ V20,8 + (0B, (&) =& (506)
The chiral superfield ® transforms as
5@ = 2Km(éi9,- + €iéi>®, 5q)L = 4Kméi9,»(I>L. (57)

This transformation law implies the following off-shell
SU(2|1) transformations of the component fields in (5.6):

5z = —V 2,8, 88 = V/28(iz — 2kmz) — V2€'B,

5B = —/2¢; {ié’c - <2;< - %) mfk} . (5.8)

As in case of the multiplet (1,4, 3), for analyzing the
superconformal properties of the multiplet (2,4,2) it will
be convenient to pass to the supercoset (3.22), in which the
time-translation generator is H € so(2, 1). Imposing the
constraints (5.1) with the covariant derivatives defined in
(3.33) and choosing x =0, we come to the left chiral
subspace parametrized by the same coordinates (7;,6;) as
before, with the definition (5.3) being valid. It is straight-
forward to check that this set of coordinates is closed under
the superconformal transformations generated by (3.27)
and (3.29) only for o = —1. The relevant coordinate
transformations read

59,’ = €; + 2ﬂék9k9i + Sie_i”’L,

Stp = 2ie 0 + 2ig"G e (5.9)
This agrees with the observation that under the action of the
generators C, C (3.30) belonging to the group SU’(2) the
constraints (5.1) are not covariant. Thus, the chiral sub-
spaces are closed, and, respectively, the chirality constraints
are covariant, only for the conformal supergroup
D(2,l;a=—1)=PSU(1,1]2) x U(1),,,. Note that the
chiral superfields in the flat N' = 4 superspace are also
known to preserve the superconformal D(2, 1;a) covari-
ance only for the values @ = —1,0 [12,13]. ~

Ata = —1, the overall U(1) charge operator F drops out
from the covariant derivatives (3.33), so the only solution of
(5.1) in this case, i.e. the solution consistent with the
superconformal covariance, corresponds to the choice
k=0 in (5.6). As follows from (5.7), the Q', O, trans-
formations of ®, at k = 0 (i.e. those with ¢;,&) do not
involve any weight terms. Since in the appropriate basis
Si(u) = Q'(—u), S;(u) = Q;(—pu), the same should be true
for the ¢, & transformations, i.e.

5., =8,8, = 0. (5.10)

On the other hand, the measure of integration over the
SU(2|1) superspace d¢ is not superconformally invariant at
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any « [recall (3.32)], so it is impossible to construct a
homogeneous superconformally invariant action out of the
superfield ®; transforming as in (5.10).

One way to construct the superconformal action is to
pass to its inhomogeneous version, as was done for the
a = 0 case of the multiplet (1,4, 3) in Sec. IV E. This will
be performed in Sec. V C. Another way which allows one
to construct a more general class of superconformal actions
is to start from the embedding of SU(2|1) into a central-
charge extension of PSU(1,1|2), i.e., the supergroup

|

SUQRI) 3 U(1)exe (0.0, H.2,.F.I}} {00,121}
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SU(1,1|2) with the superalgebra given in Appendix A,
Eqgs. (A4)—(A6). The corresponding su(2|1) subalgebra is
specified by the anticommutator

where the central charge generator Z; commutes with all

other generators. The natural modification of the supercoset
(3.22) for &« = —1 is as follows:

SU(2) X U(l)im X U(l)ext

where SU(2|1) in the numerator is defined through the Z,
extended anticommutation relation (5.11) and we placed Z,;
into the stability subgroup. Recall that the former internal
generator F becomes an outer automorphism generator at
a=—1 and is completely split from the remaining
su(1,1|2) generators.

An element of the coset (5.12) coincides with (3.25).
However, due to the appearance of the new generator Z; in
the stability subgroup and the modification of the basic
SU(2|1) anticommutator as in (5.11), the covariant spinor
derivatives (3.33) at a = —1 should be extended as

D' = D) =D + pe #0'Z,,

Now we can require that the superfield ® have a nonzero
charge with respect to Z;:

Z,® = bd. (5.14)

Then, imposing the chirality condition (5.1) with the
modified covariant derivative (5.13), i.e.,

T)Z'(D = (Z_)] —,ue%’”HjZI)CP = O,

; (5.15)

5z = —\2e ket — \2e Ek e,

. : i 5.12
(1.2, F) 7z (3-12)
[
one obtains the solution
O(1.0.0) = (14 2u6"0,)73, (1,.0).
D, (1,,0) = z 4 V20;E e + (0)2Beik'e, (5.16)

which looks like (5.6), with b =2k and the fields
redefined as
E(t) - E(e,  B(t) - B(t)e™, and cc. (5.17)

To preserve this b # 0 chirality, the holomorphic
chiral superfield ®; should have the following ¢ and &
transformation laws:

56‘@14 :2bﬂ§i9iCI>L, 5£®L == —ZbMEiGiei”tL(I)L, (518)
or, in terms of the superfield ®,

5€® = b/«l(élgl + €iéi)¢,

5,® = —bu(3&'0;e™" — g,0'e™) (1 — ud*9,)®. (5.19)

Under the odd transformations (5.9), (5.18), the component
fields in (5.16) are transformed as

8 = \2&!(iz — buz)e ™' — \2e! Be¥ + 28 (iz + buz)e — \/2e' Be H,

6B = —\/2¢, [ié" - <b - %) yé‘k] e~ — /28, {iék + <b - %) ﬂgk] e,

To avoid a possible confusion, let us point out that,
leaving aside the issues of superconformal covariance, the
SU(2|1) chirality based on the coset (2.5) and the covariant
derivatives defined in (2.11) [Egs. (5.1)—(5.8)] is equivalent
to that based on the coset (5.12) and the covariant

(5.20)

derivatives (5.13). Indeed, using the relation H=H —uF,
one can rewrite (5.11) as

{0 0;} = 2ul; + 26}[H — u(F + Z,)),
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which has the same form as the anticommutator in (2.4),
with m = p and the substitution F — F 4 Z,. The gen-
erator F + Z; cannot be distinguished from F, since Z;
commutes with anything and does not act on the superspace
coordinates. Then one can start from the supercoset (2.5),
make the shift F — F 4 Z;, and impose, instead of (5.5),
the condition (F 4 Z;)® = 2x®, which can be realized
either with F® = 2k®,Z,® =0 or with Fd = 0,
Z,P =2kP,b =2k. The relevant covariant derivatives
(2.11) and (5.13), equally as the solutions (5.6) and
(5.16), have the same form for both options. The difference
between F and Z; is displayed at the full superconformal
level: In the basis (H, F), the generator F entirely splits
from all other superconformal generators, while there is no
way to make Z; not appear on the right-hand sides of the
relevant anticommutators [see Egs. (A4)-(A6) for the
case Z, = Z3 = 0].

B. Superconformal Lagrangian

The general SU(2|1) invariant action of the chiral
superfields is defined as

S(®) :/dtL :%/dCf(cb, 3),  (5.21)

where f(®,®) is a Kihler potential. The corresponding
component Lagrangian reads

) [ o - . 1
L=gtit 3 g(Ed - &) - JB& (e — 2.) - 5 (9°By,

>
~ 3 (87By. + gBB + (€2 + ibu(z— 22)g
—éﬂ(%fz —2f) = pE U — iV, (5.22)
where
V=20, 42005 =2 (200 + 0.
Uzg(zaz+zaz)g+(b—1)g+§. (5.23)

Here, the lowercase indices denote the differentiation in
2,Z, [z = 0.0:f, and g := f_- is the metric on a Kéhler
manifold. Performing the redefinition (5.17) in (5.22) and
choosing b = 2k, one can see that this Lagrangian coin-
cides with the chiral SU(2|1) Lagrangian given in Ref. [4]
on the basis of the supercoset (2.5), in accord with the
equivalency of two definitions of chirality, as was discussed
in the end of the previous subsection.

According to (5.19), in order to render the action (5.21)
superconformal, one needs to define the Kihler potential as

f (@, 0) = (2D)h, (5.24)
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Then the Lagrangian

B0~ ) (b2 (er @+ o (e
L v TS Iy W
X [Efkf (ZZ—ZZ)‘FE(f) BZ+§(§> Bz:| —Z(Zz)yz
(5.25)

is invariant under the superconformal transformations (5.20).
The simplest case of (5.25) corresponding to the choice
b = 1/2 and yielding the free action,

; . 2
L —tres @ -&E) +BB-E (526)
was previously worked out in Ref. [41."

Thus we observe that the superconformal sigma-model-
type action for the multiplet (2,4,2) exists only for the
nonzero central charge Zi; i.e., the relevant invariance
supergroup is SU(1, 1|2), not its quotient PSU(1, 1|2). It is
worth noting that the action (5.21) with the superfield
Lagrangian (5.24), at any b # (), is in fact related to the free
bilinear action through the field redefinition

A

(QL)ﬁ = (bL’
_ ~ 1 _ A =
S (@) =58 (@) = ¢ / dc(1+ 2u0*0,) 3, &y
(5.27)

In other words, without loss of generality, we can always
choose b = 1/2 and deal with the Lagrangian (5.26). The
same equivalence to the free actions is valid also for other
types of the superconformal sigma-model term of the
multiplet (2,4, 2).

C. Conformal superpotential

One can define the chiral superspace measure d; which
is invariant under the superconformal transformations (5.9):

d¢, = dt;d*@e e, S:(d¢r) = 6,(d¢.) = 0.

(5.28)
Taking into account the explicit form of the superconformal
transformations with b # 0, Eq. (5.18), the only super-
potential term respecting superconformal invariance is

""These actions become identical after choosing « = 1/4 and
making the redefinition (5.17) in the action of Ref. [4], which
eliminates there the term ~&E. Note that the su(2|2) symmetry
found in this problem in Ref. [4] appears only at the quantum
level and is not related to the superconformal symmetry
SU(1,1]2) x U(1) which is present already at the classical level.
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SX(D) = v / d¢, In®, +c.c. (5.29)

The corresponding superconformal Lagrangian reads
2B &¢E
LY = 1/(— + 5’5 ) +c.c.
z Z

After summing it with (5.26) and eliminating the
auxiliary fields, the on-shell superconformal trigonometric
Lagrangian acquires the standard conformal potential

(5.30)

2
—4@, (5.31)

2Z
in addition to the oscillator term — "72 zz. Thus, the nontrivial
dynamics in the Lagrangian of the multiplet (2,4,2)
invariant under the trigonometric realization of the super-
conformal group arises solely due to the superpotential
term (5.29). For the parabolic realization, the same state-
ment can be traced back to Ref. [21].

D. Inhomogeneous superconformal action at b = 0

As was already mentioned, at b = 0 (or, equivalently, at
k = 0) we encounter difficulties when trying to construct
the superconformal action. It is still possible to define the
inhomogeneous superconformal action with b =0 by
resorting to the same procedure as in Sec. IV E. Indeed,
the parameter b can be identified with a central charge of
su(1,1/|2), and therefore one can identify —b with the
scaling dimension Ap of the chiral multiplet [14,22,23].
Making the redefinition

z—>z+g,

i (5.32)

- =, P
z—>z+b,

detaching the singular factors, and finally sending b — 0,
we obtain the Lagrangian

ng:o,p) — 7 %i‘F% (Ezfl - gifi) + BB
N | =z 2
- #gkgk(z —2)ev — 4p [(§)*B + (¢)*Ble™
1 +z - +z
162 ew (§2(8)* —wpPer. (5.33)

It can be derived from the following SU(2|1) superfield
action:

S0 (@) = [ ann

=p? / dC(1+ 2B 0)He 5. (5.34)
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The relevant supersymmetric transformations (5.20) with
b = 0 should be extended by the inhomogeneous pieces

B = —V2pu(le ™ — &),
5(p)Z = 5(p)B =0. (535)
This is equivalent to saying that, at b = 0, the “passive”
variation of the holomorphic chiral superfield ®; under
both supersymmetries involves only the inhomogeneous
parts

OpPL = 2pu(ek0), — 50 e'n). (5.36)

It can be obtained from the transformation (5.18), where ®;
is shifted as

o, -, +§ (5.37)
in conjunction with the shift (5.32). Then we can write the
invariant superpotential term as

ST P) =v / dé; ®; + c.c.

= L' =2uB +20B. (5.38)
The action (5.34), like its b # 0 counterpart, can be reduced
to the bilinear action by means of the redefinition
(7 ~ A
ez_/’N(bL, (I)LNIII(DL.
Then the full b =0 superconformal superfield action
amounts to a sum of the free kinetic action and the

logarithmic superconformal potential.
Note that the action (5.34) can be rewritten as

SEO@) = [ acet, (5.39)
where
(1,0,0) = O, (t,.0) — pub 0, (1 — ub'6;),  (5.40)
and
6 = pu(e'o; + €,0")
— pu(1 — 6 6,) (380" — e,05e).  (5.41)

The superfield (5.40) can be regarded as a solution of the
chirality condition (5.1a) with the covariant derivative
(5.13), in which the central charge Z; acts on ® as the
pure shift
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In this way, the parameter p # 0 activates a nonvanishing
central charge in su(1,1]|2). Thus, the superconformal
sigma-model-type action at b = 0 exists only on account
of a nonzero central charge in su(1,1[2), like in the
b # 0 case.

E. The limit 4 = 0

As an instructive example, we consider the parabolic
chiral model obtained in the limit g = 0.

In this limit, the superconformally invariant action of the
chiral multiplet becomes

1 _
s¥=0 (@) =2 / dtdP0d*0(dD)%.  (5.43)
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The chiral superfield ® transforms under the superconfor-
mal charges as

5® = —4ib¥'0,D, (5.44)

while transforming as a scalar under the d = 1 Poincaré
supersymmetry with the parameters ¢’’,€.. The whole
amount of superconformal transformations is derived from
the trigonometric ones according to the procedure (4.37).
The parameter b is still interpreted as the central charge of
su(1,1]2). Then the superconformal component off-shell
Lagrangian

w0y @F e iz i s 2b-1) 2
L = 52 [ZZ+2(§N§ - &¢&') +BB] +W(Zz)”’ 26282
-1, o ofis e 1o 1
i ! - ~(&)2Bz+~ (8B 4
+ T (zz)» [2?5/(5 (zz—12%2) +2(<§) z+2(cf) z (5.45)
[
is invariant under both the Poincaré and the superconformal 8, @ = —4ipe’*0;. (5.49)

N =4,d =1 transformations

87 = —V2€/ &k + V21l &,
S =2z — V2€''B — V2i#'i (12 — 2b7) + V21 B,
8B = —V2ie\ & + V2ig [l — (2b - 1)&H]. (5.46)

The inhomogeneous superconformal Lagrangian at
b = 0 reads

(#=0,6=0.p)
LSC

=7 254‘%(55? - Ei‘fi) + BB
- R aE -0 - (B + (@B

+—— e (&2

6 (5.47)

and it can be deduced from the superfield action

Sg;ct=0,b=0.p)(¢)) _ / e 1=0b=02)

= / dtd0d20e 5. (5.48)

In the inhomogeneous case, the superconformal trans-
formation of the superfield ® involves only the inhomo-
geneous piece

Since the superpotential terms (5.30) and (5.38) do not
depend on g, their form is preserved in the parabolic limit
u =0. The only peculiarity is that the invariant chiral
integration measure (5.28) turns into the flat measure
dt; d*0. Obviously, the kinetic superfield term (5.48) is
reduced to the free one after the appropriate holomorphic
redefinition of ®.

VI. GENERALIZED CHIRAL MULTIPLET

A. Another type of chiral SU(2|1) superspace

In Ref. [5], there was defined a different kind of SU(2|1)
chiral superfield. Let us consider the general coset (5.12).
The chiral condition (5.1) can be generalized as

(a) Dyp=0, (b)Dp=0, (6.1)

where the spinor derivatives D, f),- are the following linear
combinations of the covariant derivatives defined in (3.33):

Iz)i = cos AD; — sinAD;,

D' = cos AD' + sin AD'. (6.2)
One can treat such combinations as the result of particular
rotation by an extra SU'(2) group with the generators
{C, C, F}.In general, the SU'(2) transformations break the
covariance of the constraints (6.1). The latter remain
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covariant only under the special combination of the SU’(2)
generators,

F' = Fcos21+ % (C + C)sin24. (6.3)
Thus, the constraints (6.1) are covariant under the
superconformal group D(2,1;a) only for « = —1, when
it is reduced to the supergroup PSU(1, 1]2), and under the
external automorphism U(1) group with the generator F’
(6.3). The Hamiltonian H is identified with the whole
internal U(1) generator of the nonextended subalgebra
su(2[1) C psu(1,1)2) for a = —1, m = p.
The conditions (6.1) amount to the existence of the left
and right chiral subspaces:
(1. 0").

(1L.0)), (6.4)

where
N ko
tL =1+ i0 0](,
0, = (cos M0, + sin 19,1 (1 - gékek). (6.5)

As expected, the coordinate set (7, ,6;) is closed under the
SU(2|1) transformations

80; = cos Ae; e + uek0,0;e )
+ sin A(g;e 1 + pe*0,0;e11),

81, = 2icos AekOye L — 2isin Ak O e, (6.6)
The second SU(2|1) transformations
5@1' = COS /1(81'6_%”?’“ - ﬂékékéieéﬂ&)
+ sin A(g;e? — pe*0,0;e 1),
81, = 2icos Aek0 et — 2isin AekOe 1 (6.7)
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are generated by (3.29) for « = —1 and also leave the
left chiral subspace invariant. The chiral subspace (6.5) is
not closed under the SU’(2) transformations generated
by {C,C,F}, except those generated by the U(1)
generator (6.3).

Since at @ = —1 the superconformal group admits the
central extension, in what follows we will assume that the
a = —1 spinor covariant derivatives in the definition (6.2)
are replaced by the central-extended ones Diz, @Z,» (5.13),
i.e. in the chirality constraints (6.1), we will use

éi = COS /IIDZZ‘ - Sin /1DZ,’,

D' = cos AD,, + sin AD,.

(6.8)

Assuming that the central charge acts on the superfield as'?

Z1p = bcos 2, (6.9)
the solution of (6.1) is given by
9(1,0.0) = etre20 0, (i, 0),
o (ir.0) = 2 + V20,8 + (0)*B. (6.10)

As we will see, the parameter |b| is associated with the
norm of the triplet of central charges like in the previous
section, since in the case under consideration the super-
algebra psu(1,1|2) turns out to be extended by three
constant central charges. This is consistent with the limit
cos24 =1 in the generalized conditions (6.1).

The transformations of the superfield ¢ are given by

(6.11)

The eigenvalue of the central charge Z; in this case is not obliged to be the same b as in Sec. V. We hope that denoting it also by b

will not give rise to any confusion.

085032-24



SUPERCONFORMAL MECHANICS IN SU(2|1) SUPERSPACE

The relevant “passive” transformations of the holomorphic
superfield ¢; are

Sepr, = 2bp cos 2A(cos e e il — sin Ae' e )0,q,
Sopr = 2bp cos 2A(cos Ag e — sin Aele 1),
— 4bu(cos AE et 4 sinAele #1L) 0,0, . (6.12)

Then the full set of the off-shell transformations of the
component fields is generated by (6.12) and by the
coordinate transformations (6.6), (6.7):

8z = —V/2cos A&k e —\/2sin g Ere
8 = /2€! (i cos Az — by cos 24cos Az — sin AB)e !
—V/2€!(isinAz — bucos 2Asin Az 4 cos AB) e,

8B = —\/2cos Ag; {iék +%(1 —2bcos 2,1)5k] et

+V/2sin ey [iék —g(l +2bcos 2/1)5"] e, (6.13)

5z2=—V/2cosde Er e —/2sin g ER e,

. 4 1 i
5E =28 [icosii +2bucosi (1 —Ecos 2&) z— sinlB] e

. 1 i
—V2é [i sinAz—2busini (1 —I—Ecos 2/1) 7+ cosiB] e M,

. 1 ,-
SB=—v/2cos A&, [ifk —gé’k +2bu (1 —50052/1> fk} e
. 1 i
+/2sindey [if" +g§k — by (1 +5cos21) gk} p—s
(6.14)

The new set of the transformations (6.13), (6.14) closes
on the centrally extended superalgebra (A4)—(A6) with the
central charges

Z, = bcos24,
Z3 = —bsin21,

Z, = bsin 24,

(21)2 - Z2Z3 = bz. (615)

The precise realization of the central charges on the
superfields ¢, ¢ is given by the following transformations:

S¢ = 2ibu(a; cos24 + a, sin2), (6.16)

where a;, a, are infinitesimal parameters associated with
Zl and ZZ = —Z3.

B. The superconformal Lagrangian

The most general sigma-model part of the SU(2|1)
invariant action of the generalized chiral superfields

@(1,0,0) is specified by an arbitrary Kihler potential
fo.9):
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sto) = [k = [ desto.0). (617)

where the SU(2|1) invariant measure is

~

A& = dtd0d*d [1 +pc0s248'8, —gsinz/l(é’)z —gsinm(@)z .

(6.18)

This measure is not invariant under the second-type
SU(2|1) transformations (with u — —u).

The transformations of d¢ can be canceled, using the
inhomogeneity of the chiral superfield ¢ transformation
(6.11) for b # 0. One can check that the superconformal
action is uniquely specified by the following Kihler
potential:

Sl

2 @.0) = (0p) (6.19)

The corresponding full superconformally invariant off-shell
component Lagrangian reads

~ a1 T, .
gg)_%{ZZ—}—%(E,{’—S,{’)—FBB]

2-1)2, i

+(644b4)(zz)ﬂ_2(5)2(§)2

el Tie .1 1.

+ 2 G et om0+ 56 BT 5 @B

e () usin2d P+ 2@

(Zz)ﬁ_l K. 5 . by? 2h .=

-, [Est/I(Bz—i—Bz)—I—Tcos 2/1zz]. (6.20)

In the particular case cos4 = 1, one comes back to the
Lagrangian (5.25).

C. Remark
Let us make the following redefinition in (6.20):

B = B+ busin2lz, and c.c. (6.21)

The redefined superconformal Lagrangian (6.20) exactly
coincides with the previously constructed superconformal
Lagrangian (5.25) (with B — I~3). However, it is invariant
under the following modified transformations:
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—V/2(cos A€y, + sin Ag; ) Ek e

—V2(sin A&y, + cos Agy ) Eke 2,

8 = \/2(cos A&’ — sin Ae') iz — buz)e
— V/2(sin Ag" + cos Ae')Be
—V2(sin A€’ — cos Ag")(iz 4 buz)e!

—V2(cos A€ + sin Ag") Be

6B = —\/E(cos A€y — sin Agy) [iék — <b - %) Mgk} et

07 =

+ V/2(sin Aey — cos Ag;) {iék + (b - %)ﬂgk] e
(6.22)

which are just (6.13), (6.14) rewritten in terms of B defined
in (6.21). These transformations are induced by (6.6), (6.7)
and the superfield transformations

5, = 2bu[(cos Ag' — sin A )0, e
(6.23)

— (cos A" — sin /Iei)éie%”ﬂq?)b

The newly defined chiral superfield ¢; encompasses the
field set (z, .fk,B) and is related to (6.10) as

A

@1 (10, 0) = [1 + busin24(0)%)¢, (71, 0),
@110, 0) = 2+ V20,8 + (0)’B

(6.24)

Note that the ¢;, & transformations in (6.22), (6.23) are
obtained from the ¢;,& ones just by the replacement
1 — —u in the latter, in agreement with the general state-
ment of Sec. III.

After passing to the new independent linear combina-
tions of the infinitesimal parameters {e, €, €, &} as

€ = cos Ae; + sin A&,

€, = cos g, + sindé;, and c.c., (6.25)
the above transformations take just the form of (5.20).
These new combinations of the parameters correspond
to the following redefinition of the D(2,1;a = -1)

supercharges:

Q' = cos 1Q' — sin AS',

S" = cosAS’ —sinAQ!, and c.c. (6.26)
The redefined supercharges close on the superalgebra
(A4)—-(A6) with the single central charge Z; = b, i.e.,
the superconformal models of the generalized chiral multi-
plet prove to be equivalent to the superconformal models

associated with the standard chiral multiplet. One can
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check that the generator (6.3) is the U(1) automorphism
generator of the su(1,1|2) superalgebra with the super-
charges Q', S'. Thus, as far as the superconformal SU(2|1)
mechanics is concerned, the generalized SU(2|1) chiral
multiplet does not give rise to new models compared to the
“standard” chiral multiplet.

More details on connection between the standard and
generalized SU(2|1) chiralities from the superspace point
of view are given in Appendix B.

VII. THE “MIRROR” MULTIPLET (2,4,2)

The a = 0 version of the chirality conditions (5.1) or
(6.1) is not covariant under the full second SU’(2)
{F,C,C} and, hence, under the superconformal group
D(2,1;a =0) which necessarily contains SU’(2) as a
subgroup.

However, one can define the “mirror” chiral multiplet
(2,4,2) which respects the covariance under the o =0
superconformal group realized in the coset (3.24). Using
the @ = 0 covariant derivatives (4.57), we may impose the
relevant chiral conditions as

D, ® = D*® = 0. (7.1)
It is straightforward to show that at @ = 0 these conditions
are covariant with respect to the superconformal symmetry
PSU(1,1]2) x U(1).,, with the internal SU(2) group
generated by {F,C,C} and H as the Hamiltonian. The
generator /| = —I3 plays the role of an external auto-
morphism U (1)ey generator, while the generators 12, I}
violate the covariance of (7.1) and so should be thrown
away. Since the SU’(2) generators {F,C,C} form a
subalgebra of psu(1,1]2), allowing the chiral superfield
to have an external U(1) charge with respect to F would
entail the necessity to attach the whole SU’(2) index to

®. This would result in extension of the field contents

of ®. In order to deal with the chiral multiplet possessing
the minimal field contents (2,4,2), we are so led to
require that

Fd=0. (7.2)

The conditions (7.1) amount to the existence of the chiral
subspace (1,,0,,6%), where

tL - t"‘ i@lé’l - 1.5292. (73)

It is closed under the superconformal transformations
Stp = 2i(€'0, + €,0> + 10, e + g,0%e7H1L),
00, =€ + gle—iﬂlL + 2,M€2é291€_i’"L,

50% = & + et — ' 0,0% M. (7.4)
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As in the case of the @ = —1 chiral multiplets, we extend
the algebra (3.21) by the central charge generator:

{0'. 0} = 26,(H + puF) + 2u(03);V,

0 __l‘ k _1 k
[F.Q/] = 2Q17 [F7Q]—2Q,
.0 =50.  o)=-Lot  (79)

The superfield ® can have a nonzero charge under V:

Ve = ad. (7.6)

Then the extended algebra (7.5) is embedded in the @ = 0
counterpart of (A4)—(A6). Like in the coset (5.12), we place
the central charge in the stability subgroup

{00, H.F.V}
{F.V}

(7.7)
The modified covariant derivatives are as follows:

D! = e~ (8% —i0'9, — ud'F — ,u@lV>,
1

_ ; 0 ) -
Dz = 67’” <— ﬁ + 16’28, + /-lezF - /192V> . (78)

Keeping in mind the condition (7.2), the solution of (7.1)
can be written as

‘i)(t’ 6. 0) = e~k z(t) + V20,1 (ZL)e%WL

+ V207 (1) e — 20,0°B(1,)).  (7.9)

Thus the number « is an analog of the charge b, and it can
be identified with the central charge of the conformal
superalgebra su(1,1|2) of the @ = 0 case.

The a = 0 chirality-preserving odd transformations of d
read

5.2 = au('0; — €,6°)® — ap(e*0, — €,0')2,
55&) _ —3a,u(5‘191€"’” _ 82928—1'/4[) (1 _ %ék9k> i)
e~ (1 = 3u0k6, ).

— au(e20,e™" — £,0! (7.10)

They generate the off-shell transformations of the compo-
nent fields
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5z = —\2ent e — \/2&%i, e — \/2ent e
— V28,9,
on' = V28 (iz — apz)e " + V22 Be
+ V28! (iz + apz) e + /28’ Be?",
ity = V26, (i% + apz) e — \/2¢, Bet!
+ V26, (iz — auz)e ¥ — \/2¢,Be ",

1 i
—V2e, [iiyl + <a - 5) /ml] et

S
i)
+ /28! [i?]z + (a - —)/“72} e, (7.11)
The superconformally invariant superfield action
SE0(@) = [

- —% / did0L0(d B (7.12)
yields the following component superconformal
Lagrangian:

L&) = (Zizi_l [ZZ"‘% (' — ') + BB]
- Ca= P oy
2a -1

Lo _ - .
(zz)22 {5 (mn' —ion*)(zz — 22)
2

+f‘72nle+r7szz} —%(zz)i. (7.13)

One can cast it into the form of the Lagrangian (5.25)

by passing to the fermions & with the primed doublet
indices as

=& =&, =&, hHh=&, (7.14)

(&) =&, (') = ;- (7.15)
This redefinition makes manifest the property that the
fermionic fields are transformed as doublets of the SU’(2)
group with the generators {F,C, C}.

As in the case of @« = —1, we can add the superconformal
superpotential term
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SPoa=0) () = s / dt; d6,d0* Ind, + c.c.

0t( o= B
= LR O)_2< +'72'7>+cc (7.16)
Z Z

which yields on shell the standard conformal mechanics
potential in addition to the oscillator-type term ~u* coming
from the superconformal superfield kinetic term. The latter
can be reduced to the free one as in the previous cases.

Thus, the superconformal action at @ = 0 can be con-
structed using the superfield approach associated with the
a = 0 supercoset (3.24), while the a = —1 action (5.25)
was based on the SU(2|1) supercoset. In the parabolic limit
u =0, both supercosets are reduced to the standard flat
N =4,d = 1 superspace.

VIII. D-MODULE REPRESENTATION APPROACH

Here we sketch a different approach to the d =1
superconformal actions based solely on the component
field considerations [14,22,23].

A. The N = 4 linear supermultiplets

As a preamble, it is instructive, following Ref. [14], to
give a concise account of the general superconformal
properties of the set of linear N =4 supermultiplets
(k,4,4—Kk) for k =0,1,2,3,4, despite the fact that in
the present paper we deal with the cases k = 1,2 only.

The linear supermultiplets (k,4,4—-k) for k=
0,1,2,3,4 exist in parabolic and hyperbolic/trigonometric
variants [14]. The parabolic variant leads to actions which
both are superconformally invariant and show up the
manifest Poincaré supersymmetry. The hyperbolic/trigono-
metric variants lead to superconformally invariant actions in
which the d = 1 Poincaré supersymmetry is implicit (the
corresponding supercharges are not a “square root” of the
canonical Hamiltonian as the time-translation generator), so
they look nonsupersymmetric or weakly supersymmetric.
The potentials are bounded from below in the trigonometric
version (i.e., they are well behaved). They are unbounded
(badly behaved) in the hyperbolic version. In the parabolic
case, the Hamiltonian is a Cartan generator of the conformal
s0(2, 1) subalgebra. In the hyperbolic/trigonometric case,
the canonical Hamiltonian is a root generator of so(2, 1).

The connection of these A/ = 4 linear supermultiplets
with the A/ = 4 superconformal algebras and the corre-
sponding scaling dimensions A, is as follows [14,22,23]:

(i) (0,4,4): D(2,1;a =22p).

() (1,4,3):D(2,1;a=4p). Ata=—1and a =0, the
extra inhomogeneous constant parameter c¢ is
allowed.

(iii) (2,4,2): su(1,1]2). The scaling dimension 4 is
associated with a central charge of su(1,1|2)
as Ap = —b.

(iv) 3,4.1): D2, l;a=—4p).
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(v) (4,4,0): D(2,1;a = =2p).

For all multiplets except (2,4,2), the superconformal
algebra at @« = —1,0 can be reduced to the superalgebra
psu(1,1]2).

Another type of inhomogeneous linear transformation [ 14]
isonly presentat A, = 0. The inhomogeneous parameter is p.
The supermultiplets (k, 4,4 — k), carry a representation of
psu(1,1[2) fork = 0, 1, 3, 4 and its central-extended version
su(1,1]2) for k = 2. One should note that the superconfor-
mal actions based on (k,4,4 — k) at a given 1p are not
defined at A, = 0. On the other hand, the superconformal
actions based on (k,4,4 — k), are well defined.

B. Superconformally invariant (2,4,2) actions from
the D-module approach

In Ref. [14], all hyperbolic D-module representations for
the A/ = 4 linear multiplets (k,4,4 — k) were obtained,
and the trigonometric D-module representations can be
easily derived from the hyperbolic representations. Then
one can construct the hyperbolic/trigonometric supercon-
formal actions proceeding from the D-module representa-
tions. The method of construction is described in Ref. [22].
Some superconformal actions of the supermultiplet (1, 4, 3)
were found in this way in Ref. [14]. Here we present the
realization of the N =4 superconformal algebras and
perform the construction of the superconformal actions
for the supermultiplet (2,4, 2) in this alternative approach.

We use the same notation and definitions for the
component fields and superconformal generators as in
the previous sections. The action of generators of the
conformal algebra is given below:

Hz =iz,  HE =if, HB=

Tz = e " (iz — buz), TE = et [iéi - (b - %) ,ucf’} ,
TB = e ¥ [iB — (b—1)uB,

Tz = e (iz + buz), TE = e [iéi + <b - %) uf’} ,
TB = e*[iB+ (b — 1)uB. (8.1)
The fermionic generators are specified by
Qiz=—V2&ew,  Qitk=\2e*Ber, QB =0,
0:z=0, ;& =—V268(iz — buz)e ™,

Q B = \/_8lk |:l§ - (b - —> yfk] e_W’

Siz=—\V2&e#,  Sigk=\/2¢kBe~,  SIB =0,
S;z=0, 88 =—v28 iz + buz)er,
S;B = —V2ey | iE + <b—§) M.»:k] e, (8.2)
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Since all (2,4,2) Lagrangians can be reduced to the free
Lagrangian (5.20), it is enough to consider the free case
b =1/2. Then the superconformally invariant action is
generated from the prepotential f(z,Z) by acting with the
supercharges Q; on the propagating bosons z,7 as
b= 1 T _

L& = 2 0,0'04 0uf (2. ). (83)

The prepotential f(z,Zz) can be found from the constraint

that the action of conformal generators on the Lagrangian
produces a total time derivative:

_ d - (b= d -
T = Sm, T =S (84)

dt

where the explicit form of M is of no interest for
our purposes. Solving these constraints, we obtain the
prepotential

(8.5)

The corresponding superconformal action (8.3) generated
from the D-module representations can be shown to
coincide with the superconformal action (5.26) derived
from the SU(2|1) superspace approach.

The superpotential term (5.30) can also be equivalently
constructed using the D-module approach. We define

LB =20.0h() +50050)  (56)
and impose the conformal constraints in the same way as
for (8.4). As their solution we uniquely obtain

h(z) = —ving, h(z) = —vInZz. (8.7)
It is direct to check that (8.6) for such h(z) coincides
with (5.30).

Note that the superfield and D-module approaches
can be regarded as complementary to each other. The
second method directly yields the component off-shell
Lagrangians. On the other hand, the superfield techniques
bring to light some properties which are hidden in the
component formulations. For instance, the reducibility of
the general sigma-model-type action of the multiplet
(2,4,2) to the free one is immediately seen, when using
the chiral SU(2|1) superfield language, as in Secs. V-VIL

IX. SUMMARY AND OUTLOOK

In this paper, we presented the superspace realization of
the trigonometric-type N' = 4, d = 1 superconformal sym-
metry. This realization can be given in terms of the SU(2|1)
superspace at @ # 0 or in terms of the U(1) deformed flat
N = 4,d = 1 superspace at a = 0. In the contraction limit
u = 0, the relevant superconformal models are reduced to
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the standard models of the parabolic superconformal
mechanics, with the superconformal Lagrangians con-
structed out of the standard V' =4, d =1 superfields.
The main advantage of the SU(2|1) superfield approach (or
its degenerate @ = 0 version) is that it automatically yields
the trigonometric-type realization of the superconformal
symmetry, with the correct-sign harmonic oscillator term
~u? in the component actions.

Our construction is based on the new observation that the
most general N =4,d =1 superconformal algebra
D(2,1;a) at a # 0 in the SU(2|1) superspace realizations
can be represented as a closure of its two su(2[1)
subalgebras, one of which defines the superisometry of
the underlying SU(2|1) superspace while the other is
obtained from the first one by the reflection of the
contraction parameter as y — —u. This suggests the simple
selection rule for singling out the superconformally invari-
ant actions in the general set of the SU(2|1) invariant
actions constructed in Refs. [4,5]. The superconformal
SU(2|1) actions are those which are even functions of u.
The superalgebra D(2,1;a =0) ~ psu(1,1|2) @ su(2)
(and its central extensions) admit a similar closure struc-
ture, this time in terms of two p-dependent U(1) deformed
flat N' = 4,d = 1 superalgebras.

We gave an off-shell superfield formulation of the
trigonometric superconformal actions of the multiplet
(1,4,3), some of which were constructed earlier at the
component level in Ref. [14], and presented new trigono-
metric superconformal actions for the chiral multiplet
(2,4,2). For the latter multiplet, the superconformal actions
exist only for « = —1 and @ =0, and they are always
reduced to a sum of the free kinetic (sigma-model-type)
SU(2|1) superfield action and the superconformal super-
field potential, yielding, in the bosonic component sector, a

sum of the standard conformal mechanics potential ~¢

and the oscillator term ~yu?|z|>. The SU(2|1) superfield
approach provides a simple proof of this notable property.
Another feature easily revealed in the SU(2|1) superfield
approach is that the superconformal @ = —1 models cor-
responding to the generalized (2,4, 2) chirality [5] proved
to be equivalent to the superconformal models associated
with the standard chiral SU(2|1) multiplet. The common
property of all superconformal sigma-model type (2,4,2)
actions (at ¢ = —1 and a = 0) is that they exist only on
account of nonzero central charge in the corresponding
superconformal algebras su(1, 1|2). We also presented an
alternative way of deriving the component superconformal
(2,4,2) actions, based on the D-module representation
approach developed in Refs. [14,22,23], and found a nice
agreement with the superfield considerations.

It would be interesting to use the SU(2|1) superspace
approach to construct analogous models with the trigono-
metric realization of superconformal symmetry for other
off-shell SU(2|1) supermultiplets, with the field contents
(3,4,1) and (4,4,0), as well as the multiparticle
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generalizations of all such models (including those studied
in the present paper). Also, it seems important to better
understand the relationship between the SU(2|1) superfield
approach and the component approach based on the
D-module representations of the superconformal sym-
metries, including D(2, 1;a). Finding out the possible
links with the superconformal structures in the higher-
dimensional theories based on curved analogs of flat rigid
supersymmetries (see, e.g., Ref. [24]) is also an urgent
subject for future study.
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APPENDIX A: CENTRAL EXTENSION
OF SUPERCONFORMAL ALGEBRA

At a=—-1 (or a=0) it is possible to extend the
superalgebra D(2, 1;a) by additional central charges. In
this particular case, the (anti)commutators (3.1), (3.2) can
be cast in the form

{Quii Qpjjr y =2(€ij€1y Top—€qp€i jJ ij—€ap€iiCiyr )
(T ap: Qi | =—i€yaQpyiits [TapsTys)=i(€ayTps+€psTay)s
Jijs Quiir| = —lexiQujyi»  [Vijs Tl =i(eud ji+€5dix),
(A1)

where the central charges Cy; commute with all other
generators. They form a vector with respect to the auto-
morphism SU’(2).,, transformations acting on the indices
i', j'. The norm of the vector C;; of central charges,

] 1
|C‘|2 = EC’kCi/k/, (AZ)
is an invariant of these SU’(2)., transformations. Hence, in
the case of constant central charges, we can choose the
SU'(2).y frame in such a way that only one nonvanishing
central charge remains, e.g., its third component:
Cl'z’ ?é Ov

Cl/lr == C272/ = 0 (AB)

Simultaneously, SU’(2).,, is reduced to the automorphism
U( 1 )ext N
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One can equivalently rewrite the superalgebra (Al) as
the appropriate extension of (3.9)-(3.12) at a = —1:

(0. 0;} = 2ull +26)(H - ),
{878} = =2ul’; + 26,(H + uz),
{87,0;} =26'T, {08} =26'T,

{0/, 8%} = 2ue*Z,, {0,.5:} =2ue;Z5,  (A4)
1. 1}] =851 = 6,15,
R : 1
15,01 =58,0,-6/0;.  [I},0=5/0' 550"
R R : 1
15, 5)] =5051=615, (1, 8%] = &}8' —Eé;S", (AS)
[T,T] = —2uH, [H,T] = uT, [H,T| = —uT,
H.5,] = —%S,, [H, 84 = gsk,
Hm.0) =50, M0 =-50"
7.0 =-us".  [T.5)]=-u0;.
7.0} =uS;. (T8 =p0Q" (A6)

According to (3.8), the central charges appearing here are
related to the central charges defined in (A1) as

C1/2/ = C2/1/ = iZl’ Clll/ == l.Zz,

C2'2/ - iZ3, |C|2 - (Zl)z - 2223. (A7)

APPENDIX B: MORE ON SU(2|1) CHIRALITIES

As was demonstrated, the superconformal SU(2|1)
models of the (2,4,2) superfield defined by the gener-
alized (central-charge-extended) chirality condition (6.1)
are in fact equivalent to those constructed on the basis
of the superfield subjected to the ‘“standard” chirality
condition (5.1) [or its central-charge-extended version
(5.15)]. So in the superconformal case, the parameter A
entering (6.1), (6.2), (6.8) is unessential. This is in
contrast with the pure SU(2|1) invariant models in which
A is a physical parameter specifying a new class of such
models [5].

Let us discuss the interplay between two types of the
SU(2|1) chirality in more detail, based upon the superspace
considerations. It will be useful to pass to the coordinates

{1.6 s 51} defined by the relations (3.38). Being specialized
to a = —1, these relations read

0,=e"0, (1 —’E‘ékek) =e¥0;, 1 =t+ i0'0;.

The SU(2|1) supercharges (3.39) are rewritten as
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. =L~ 2 ~ ~ :l‘: :l' ~~
0 = e%l”{ [1 -gekak_”_(ay(ey} 2 0 €k+i9 (1 +g9k9k>a,},

16

_ 2
N Bain W o
0, = crd [1 =459, -4 ooy

The extra generators S; completing SU(2|1) to
D(2,1;a=—1) are represented in this basis as
S(u) = Q(—p). The covariant derivatives (5.13) take the
form

_ 2 _ _ _

i Mz P o0 20 5‘_.~i =i

DZ_[1+299,< 0 (9)](_aéi 108,+/49Z1>,
_ 2 _

D, — Hoko, —* 202! ( -

Dy; {1—#299,C 16(9) (9)](

0
o0

(B3)

We ignore the matrix SU(2) generators I} in D', D;,
because the generalized chiral superfields defined by
(6.1) cannot carry external SU(2) indices owing to the
compatibility relation

{Z:Dk, 5]} = —2usin2Al;, and c.c.

e

Using the explicit expressions (B3), the generalized
chirality condition (6.1) with f)j defined according to
(6.8) can be rewritten in the basis {z, éj, él} as

_ _ 2 —
Do — Kokn _H v2ipy2
3 {1+29 0 16(9) (0) }

o ~
X [cosﬂ(—ﬁ + 10,0, —/4¢9j21>

—¢€ji ﬂni(% - iéiat +M5izl>}/’ =0. (B4)

i

It is easy to check that the coordinates 91‘ defined in (6.5)
and parametrizing the left chiral superspace (6.4) can be
represented, for generic 4, as a particular SU(2) rotation of

the coordinates 6 s '

0; = cos A0, + sin ig’i, 0 = cos 8 —sin 0. (B5)
In the basis {7, 9]», 51} the condition (B4) becomes
~ Ak A Ak~ A A 2 A ~
Dyp= {1 +gcos2/16k9k —'%sinZ/l(Gka +0,0) —%(9)2(9)2
x< 8+iéa 9z>(p 0 (B6)
oo/ T

|

¢’ 00,

- . 9 . .
+ 100 —+ i9j<1 +ge"ek> a,}. (B2)

Comparing (B6) with the “standard” chirality constraint
(5.15) written through D, ; from (B3), we see that they have
the same form, up to an unessential nonsingular scalar

factor and the change of Grassmann coordinates as 0 < 0.
One can define the new supercharges
0" = cos Q' — sin A5,

and c.c., (B7)

and check that they coincide with the generators (B2) in

which the same substitution (6, g?) — (0,0) has been
performed. The same applies to the S’ supercharges

S' = cosAS' —sinAQ, and c.c., (B8)
and the corresponding conformal subgroup generators. We

also observe that the U(1) generator (6.3) takes the form

1 _
F = Fcos2ﬂ+§(C+C) sin 24

5 (0 -0
2 90" 00,
which, up to the coordinate change just mentioned,
coincides with the definition (3.41) of F.

As was shown in Sec. VI C, the transformations (6.22) of
the component fields under the supercharges (B7), (B8)
with the parameters €;, &; defined in (6.25) have the same
form as the original (Q, S) transformations (5.20) with the
parameters ¢;, ;. Accordingly, the superfield (Q, S) trans-
formations (5.18) of ®; can be given the same form as the
transformations (6.23) of the superfield @L(?L,é) under
the supercharges (B7), (B8) by rewriting (5.18) through the
coordinates (7, 6):

(B9)

5D, (11.0) = 2bu(e'0;e " — §0,e31)®, (1,,6). (B10)

Thus we observe the full similarity between ®; and ¢,
modulo the change (z,.6) <> (1,.0).

This phenomenon can be summarized as follows: In the
basis {1, 9j, '}, the rotated superconformal generators

(B7), (B8) have the same form as the original supercharges
', S' in the basis {,6;,6'}. The superconformal subclass

of the actions of the generalized multiplet (2,4,2) is
invariant under both Q and S supersymmetries, hence it

is invariant under their Q and S realizations as well.
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The generalized chiral SU(2|1) superfield defined for the
Q, S realization of the superconformal group looks just like
the standard chiral SU(2|1) superfield with respect to the
equivalent Q, S realization. So the superconformal (2, 4,2)
actions actually cannot distinguish on which kind of the
chiral SU(2|1) superfield they are built and, respectively,
cannot involve any dependence on the parameter A.

To make the latter property manifest, let us proceed from
the superconformal action of generalized chiral superfield

o(t, 0, 5) as the solution (6.10) of (B6):

1 5 |
sU(g) = [ delom®, (B11)

where the integration measure d¢ in the SU(2|1) super-

space basis {f, 0, 9} is defined in (6.18). Since the compo-
nent action (6.20) has no dependence on 4, the A
dependence of the superfield action (B11) is also expected
to be fake. Using the relations (6.10) and (6.18), we rewrite
(B11) through the (anti)holomorphic superfields ¢;, @z as

_ 2 _
S () =% / dtaﬂ?)cﬂ@[l -%@)2(67)2} {1 —gsmzz(éy}

~

x [1 —gsinm(é’)z} (0L.P8)%. (B12)

One can absorb the (anti)holomorphic factors in this action
into the redefinition of ¢, ¢ asin (6.24) and cast (B12) in
the following final form:

1 A A% kA I
sU(g) = [ dab + i 0)GE (B13
Here, the newly introduced superfield ¢ is a solution of

(B6) with Z1¢L = prL:

Dijp = 0,= ¢(1,0,6) = e=0'0:g, (3, 0),

I

(B14)

and it does not display any A dependence, equally as the
action (B13). Comparing it with the superconformal action

(5.21), (5.24) rewritten in the basis {7, 6;, ék},

1 o i~ _
s (@) = Z/ Atd*0d?0(1 + b 0,)(dd),

u

®(t,0,0) = 00D, (1,,0), (B15)
where the expression (3.43) for the d& integration measure

was used, we observe its identity with (B13), up to the

interchange 0 < 9, as was anticipated above. Note that the
integration measure in (B13),

dtd*dd*0(1 + ud'0y), (B16)
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is invariant with respect to SU(2|1) generated by the
rotated supercharges (B7).

The nonconformal SU(2|1) invariant chiral actions are
invariant under the transformations generated by Q; and Q,

but not under the Q,», Ql transformations, since the defi-
nition of the latter involve the superconformal generators S;
and §'. Hence, they differ for the standard and generalized
chiral (2,4,2) multiplets and depend on A as an essential
parameter. It labels nonequivalent SU(2|1) actions and the
corresponding SQM models [5].

APPENDIX C: HYPERBOLIC
SUPERCONFORMAL MECHANICS

The hyperbolic superconformal mechanics can be
obtained by substituting the deformation parameter in
the trigonometric models as y — iu. One can see that
the superconformal generators defined in Sec. III B go over
to the new generators

Qi — Hi,
T — Tz,

Qk_’(:)ks
T—)Tl,

S — @,
H —>Hh,

Sy — I,
(C1)

which behave under the Hermitian conjugation as

()

= (T)*

l:Ik’ (Gk)T = ék
T,,

(TI)T = Tl’ (,}—(h)Jr = 7_{h-

(€2)

In this basis, the basic anticommutation relations of
D(2, 1;a) can be rewritten as

{I,0;} = =2iaul’; + 26,[Hy, + i(1 + a)uF),

{OL11;} = 2iaul’ + 28i[Hy, — i(1 + a)uF),

{0,0,} =26'T,, {1, 10;} = 26T,

{1, @} = =2i(1 + a)ue™C,

{6, T} = 2i(1 + a)ue;C. (C3)

The bosonic truncation of the corresponding conformal
group generators (3.34) yields their hyperbolic realization:

Hy = i0;. T, =ie #0,, T, =ietd,. (C4)
The corresponding hyperbolic realization of (3.35) now
reads

P - 2i
H= é(l + cosh ut)0,, K= ——;(1 — coshput)0,,
u

D ="lsinhud,,  u+#0. (C5)
u

In contrast to the trigonometric case, the time-translation
generator Hj, is now
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a-"R
Hy = 1

(Co6)
Due to the minus sign before ,uzf( , we face the quantum
mechanical problem in which the potentials accompanying
the kinetic terms are not bounded from below, like in the
parabolic case [11]. This difficulty could, of course, be
cured in a similar way by passing to

[\S}

Hyig = H+ iy g cosh uto,

) (€7)

as the correct time-evolution operator. The discrete energy
spectrum with the canonical Hamiltonian can be obtained
only in the trigonometric models of superconformal
mechanics. Note that D(2, ;&) contains no self-conjugated
subalgebra with four real supercharges, in which H,;, would
appear on the rhs of the basic anticommutator, in contrast to
the parabolic and trigonometric cases.

1. Example

As an instructive example, we consider the simplest free
case b = 1/2 of the multiplet (2,4, 2)

W sl ke Bt (o)
and the relevant superconformal transformations
—V2e 8k et — \2e,Ek e,
= Ve (i -z )b - Vacpe
+ V28 <i2 + ';z) e — /26! Be 3,
—V2ig e — 2ig & et (C9)

SUPERSPACE
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These transformations correspond to the superalgebra
(A4)—(A6) with Z; = 1/2.

After the change y — iy in (C8), (C9), we obtain the
hyperbolic mechanics Lagrangian as

; 2
b=1/2 T _ ueo
Lgc(h)/ )= ZZ+§(€1’§ —¢&¢&') + BB +TE (C10)
and the superconformal transformations as
—V20 ke — \/2g ke,
5 = /2ol (z ; gz> oW1 — /3 Be b
+V2ig (Z - §z> et — /26 Bed,
B = —V2in e — V2ig £, (C11)

The parameters v, v and ¢, ¢ correspond to the supercharges
I1, T and O, ©, respectively. Note that the original SU(2/1)
transformations are embedded in (C11) as

0z = —ekfk(e_%’” + ie%/”) OB = —iék.fk(e_%”’ - ie%’”),

66 = i@l[z(e — ieh) + Z(e W 4 ieh)]
— € B(e ! + ie), (C12)
where €, = 1 (v, — icy).
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