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Abstract
The role of dust, expected to be important in future large power wall loadings and
long operation times, is now recognized for new devices such as ITER. In this
context, we study the effect of dust poloidal distributions on plasma dynamics
of the plasma edge. We show that in the considered range of dust densities,
the poloidal distribution of dust affects only the toroidal velocity, while the
poloidal velocity and the radial electric field are defined by the ion-dust friction
and thermal forces.

It is well known that plasma dynamics, namely, poloidal Uiθ and toroidal Uiς velocities
and, consequently, the sheared radial electric field Er , play an important role in tokamak
plasmas, being responsible for improved confinement regimes (Burrell 1997). In conventional
tokamaks, these values mainly depend on the ion viscosity or on the ion and electron friction
with neutrals. Now it is well recognized that dust can be present in tokamak plasmas under
some conditions and that the dust problem is assumed more worrisome for future large power
wall loadings and long operation times expected for new devices such as ITER (Tsytovich and
Winter 1998). Theoretical and experimental results also indicate that dust is mainly located in
the tokamak bottom (divertor region).

Recently it was demonstrated (Tsypin et al 2004) that plasma dynamics in tokamaks with
dust crucially depend on the parameter

α = (R2/λ2
i )ndZ

2
d/(niZ

2
i ) ≈ 1,

where R is the major radius of the plasma column, λi = vTi/νi is the ion mean free path,
vTi = √

2Ti/Mi is the ion thermal velocity, νi is the ion collision frequency, Ti and Mi are the
ion temperature and mass and nd, Zd and ni, Zi are the dust number density and charge and the
ion number density and charge, respectively. Accepting that at the plasma edge the conditions
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R2 � λ2
i and Zd/Zi � 1 are satisfied, we arrive at the conclusion that even a very small

amount of dust changes the viscous dependence of the plasma dynamics to dust dependence.
In this work, we consider the effect of a dust poloidal distribution on the plasma dynamics at
the plasma edge. We conclude that there is a possibility of effectively acting on the plasma
dynamics at the plasma edge by puffing dust into different regions of tokamaks.

We consider the quasineutrality condition of the form (Vladimirov et al 2005)

− ene + eZini − eZdnd � 0, (1)

where −e ≡ ee is the electron charge, ne is the electron number density, eZi ≡ ei and

−eZd ≡ ed

are the ion and dust effective charges, respectively. In addition, we assume that

Zdnd � ne � Zini,

Mi � Md, Md is the dust particle mass and dust particles are motionless (the dust temperature
is zero). From (1), we find that poloidal variations of the dust spatial distribution lead to the
poloidal variations of ion and electron densities. Assuming

nd = nd0 + nd(θ),

ni = ni0 + ni(θ)

and

ne = ne0 + ne(θ),

where

nd(θ) = −nds sin θ − ndc cos θ,

θ is the poloidal angle and nds and ndc are dust densities in the dust poloidal angle corresponding
dependence, nd(θ), we obtain by accepting

n0 = ne0 � Zini0

such that

− ne(θ) + Zini(θ) − Zdnd(θ) � 0. (2)

In the above equations and in the following the subscript ‘0’ stands for equilibrium values not
depending on the poloidal angle θ .

All values nd0, nds and ndc can be functions of the radial coordinate r . For ions and
electrons we accept the Boltzmann distribution,

ni = ni0 exp(−eZiψ/Ti), ne = ne0 exp(eψ/Te),

where ψ is the electric field potential. We assume |eZiψ/Ti| ∼ |eψ/Te| � 1. Consequently,
we get from (2)

ψ(θ) � −Zdnd(θ)
/

[ene0f (Tα)] , ni(θ) � −eZini0

Ti0
ψ(θ) = Zdnd(θ)

Ti0f (Tα)

and

ne(θ) � − Zdnd(θ)

Te0f (Tα)
.

Here

f (Tα) = (1/Te0) + Zi/Ti0



Spatial dust distribution and plasma dynamics in the tokamak edge 805

and Te0 and Ti0 are the equilibrium electron and ion temperatures, respectively. Hence, we have

ni,e(θ) = ni,es sin θ + ni,ec cos θ,

where ni,es and ni,ec have obvious definitions.
For the following calculations we need the summed ion and electron momentum equations

(Tsypin et al 2004, Mikhailovskii and Tsypin 1984):

− ∇p − ∇ · πi
‖ − ∇ · πi

⊥ − eZdnd∇ψ +
1

c

[
j × B

]
+ R � 0. (3)

Here p = pe + pi is the plasma pressure, πi
‖ and πi

⊥ are the parallel and perpendicular
tensor components of the ion viscosity tensor πi , j is the plasma current density, B is the
magnetic field vector, R is the friction force between ions and dust including the thermal force
RT , where (Tsypin et al 2004)

R � −Miniνid
(
0.51Vi‖ + Vi⊥

)
+ RT ,

RT � −2.69
ndZ

2
d

Z2
i

b∇‖Ti +
3

2

νidni

ωci

[
b × ∇Ti

]
, b= B

B
,

and

νid = 4
√

2πλe4Z2
i Z

2
dnd

/(
3
√

MiT
3/2

i

)
is the ion-dust collision frequency satisfying the inequalities νid � ωci and νid � vTi/qR,
where q = rBζ /RBθ is the safety factor, ωci is the ion cyclotron frequency, Bζ and Bθ are the
toroidal and poloidal components of the magnetic field B, respectively, and Vi‖ and Vi⊥ are
the parallel and perpendicular vector components of the ion velocity Vi.

The required relations can be found from the parallel and ζ -covariant projections of (3).
In the first case, we have

∂p

∂θ
+

b
Bθ

·
(
∇ · πi

‖
) − eZdnd

∂ψ

∂θ
+ 0.51

Mini

Bθ
νidVi‖ + 2.69

ndZ
2
d

Z2
i

∂Ti

∂θ
� 0, (4)

where the approximate expression bθ � 1/qR has been used for the θ -contravariant projection
of vector b. Averaging (4) over θ we obtain〈

b
Bθ

·
(
∇ · πi

‖
)〉

+ 0.51Mi
νid0

nd0

〈
nind

Vi?

Bθ

〉
+

2.69Z2
d

Z2
i

〈
nd (θ)

∂Ti

∂θ

〉
� 0, (5)

where

〈· · ·〉 =
∫ 2π

0
(· · ·) dθ/2π

and (Tsypin et al , 2004)〈
b

Bθ
·
(
∇ · πi

‖
)〉 = 1.44

R

piε

νi

[
Uiθ + 1.83UTi − nic

εni0
(0.19Uiθ + 1.52UTi)

]
.

Here

UTi = (1/Miωci) ∂Ti/∂r

and ε = r/R.
We also get (Braginskii 1965, Tsypin et al 2004)

∂Ti

∂θ
= 1.28

bTi

νid(b)

[
2
UTi

r

∂2 ln B

∂θ2
+

(
2

5

〈
V θ

i

〉 − UTi

r

)
∂2 ln ni

∂θ2

]
,
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where

d(b) = 1 + 2.2b
√

Me/Mi,

b = q2R2/λ2
i

and λi is the ion mean free path.
Now we turn to the ζ -covariant projection of (3). For an axially symmetric tokamak,

∂/∂ζ = 0, we obtain from this equation

− (
∇ · πi

‖
)
ζ
− (

∇ · πi
⊥
)
ζ

+
√

g

c
j rBθ + Rζ � 0, (6)

where

Rζ � −0.51MiniνidViζ − 2.69
ndZ

2
d

Z2
i q

∂Ti

∂θ
− 3

2
νidniMi

√
gbθUTi,

g is the determinant of the metric tensor and j r is the r -contravariant projection of j. It was
shown (Tsypin et al 2004) that, using the ambipolarity condition,∫ 2π

o

j r√g dθ = 0,

we obtain 〈√
g

(
∇ · πi

‖
)
ζ

〉
= 0.

Multiplying (6) by
√

g and using the Maxwell equation

∂
(√

gBθ
)
/∂θ = 0,

we arrive at〈√
g

{(
∇ · πi

⊥
)
ζ

+
νid0

nd0
ndniMi

(
0.51Viζ +

1.91

νiqMi

∂Ti

∂θ
+

3

2
√

gbθUTi

)}〉
� 0. (7)

In addition, we should use the frozen-in condition,

∇ × [V × B] = 0.

From this equation we find oscillating values

Ṽ
ζ

i = qṼ θ
i .

We take the metric tensor components and their determinant as follows:

grr = 1, gθθ = ε2gζζ , gζζ = R2(1 − 2ε cos θ),
√

g = εgζζ .

Hence, 〈
V

ζ

i

〉
� Uiζ /R

and 〈
V θ

i

〉 � Uiθ /r.

Then, from the ion continuity equation we obtain

∂
(√

gniV
θ

i

)
/∂θ ≈ 0.

As a result, we have

V θ
i ≈ Uiθ

r

[
1 + 2ε cos θ − ZiZdnd (θ)

n0Ti0f (Tα)

]
. (8)

We represent

Ṽ
θ,ζ

i = V
θ,ζ

ic cos θ + V
θ,ζ

is sin θ,

where definitions are obvious. Equations (5) and (7) with necessary substitutions are the basic
equations for the analysis that follows.
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The conventional neoclassical case Z2
dnd0/

(
Z2

i ni0
) � ρ2

i /r2. We find from (5) and (7) the
well-known equations (Hazeltine 1974, Mikhailovskii and Tsypin 1982, Claassen et al 2000)

Uiθ + 1.83UTi = 0

and

1

niνi

∂

∂r

[
niνiρ

2
i

(
∂Uiζ

∂r
− 0.107q2 ∂ ln Ti

∂r

q

ε
Uiθ

)]
= 0,

where ρi = vTi/ωci is the ion Larmor radius.
Substituting solutions of these equations into the equation for the radial electric field

Er ≈ 1

c

(−BζUiθ + BθUiζ + BUpi
)
, Upi = c

einiB

∂pi

∂r
, (9)

we can obtain the well-known neoclassical result (Hazeltine 1974, Mikhailovskii and Tsypin
1982, Claassen 2000).

The case of the negligible perpendicular viscosity λ2
i /R

2 � Z2
dnd0/

(
Z2

i ni0
) � ρ2

i /r2. From
(5) and (7) we find

Uiθ = −1.83UTi

and

Uiζ = −UTi

[
ε

q

(
2.95 + 7.32q2 + 4.8

q2

d(b)

)
+ q

ndc

nd0

(
1.83 +

2.4

d(b)

)]
.

Then we obtain

Er ≈ B

c
UTi

(
2.83 +

κn

κT

)
,

where κn = d ln n/d ln r and κT = d ln Ti0/d ln r . We see that, in this case, the poloidal
distribution of dust affects only the toroidal velocity. The poloidal velocity and the radial
electric field are practically neoclassical.

The case of the negligible plasma viscosity εZd/Zi � Z2
dnd0/

(
Z2

i ni0
) � λ2

i /R
2. We find

from (5) and (7)

Uiθ = 2.95
(
1 + 2q2

)−1
UTi

[
1 + 1.63q2/d(b)

]
,

Uiζ = − 2.95εUTi

q
(
1 + 2q2

)
{[

1 +
1.63q2

d(b)

] (
1 − 2q2 − q2

ε

ndc

nd0

)
+

0.81q2ndc

(
1 + 2q2

)
εd(b)ni0

}

and

Er ≈ −B

c
UTi

{
2.95

(
1 + 2q2

)−1
[

1 +
1.63q2

d(b)

]
− 1 − κn

κT

}
. (10)

We again conclude that the poloidal distribution of dust affects only the toroidal velocity while
the poloidal velocity and the radial electric field are defined by the ion-dust friction and by
the ion-dust thermal forces. Nevertheless, it is clear that in spherical tokamaks, where the
parameter ε ∼ 1, the poloidal distribution of dust can also affect the plasma poloidal velocity
and the radial electric field.
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The large dust density 1 > Zd
{
ndc,nds

}
/ (Zini0) > ε. It follows from (5) and (7) the same

equation for the poloidal velocity and

Uiζ = qZd
(
n2

ds + n2
dc

)
2εn0nd0f (Tα)

Zi

Ti0

{
Uiθ

[
1 +

0.96

d(b)

]
− 2.4

d(b)
UTi

}
.

Substituting these equations into (9) we obtain (10). It means that the dust poloidal distribution
has practically no effect on the plasma poloidal velocity and the radial electric field, affecting
only the plasma toroidal velocity.

In conclusion, recognizing the potentially important role of dust in future large power wall
loadings and long operation times expected for new devices such as ITER, we have studied
the effect of the dust poloidal distribution on the plasma dynamics at the plasma edge. This
dust spatial distribution can be natural, as evidence exists that dust can mainly be presented in
the divertor region of future tokamaks, or artificial induced by dust puffing aiming to operate
plasma dynamics. We have shown that, in the considered range of dust densities, the poloidal
distribution of dust affects only the toroidal velocity while the poloidal velocity and the radial
electric field are defined by the ion-dust friction and by the ion-dust thermal forces. Note that,
as follows from our calculations, in spherical tokamaks the poloidal distribution of dust can
also affect the plasma poloidal velocity and the radial electric field in addition to affecting the
plasma toroidal velocity.
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