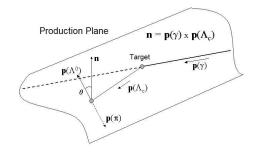
Preliminary results of the spin parameters study in the $\Lambda_c \to \Lambda \pi$ decay channel

J.C. Anjos¹, C. castromonte¹, <u>H. da Motta¹</u>, F.R. Simão¹, E. Polycarpo²

⁽¹⁾Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil ⁽²⁾Unifersidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

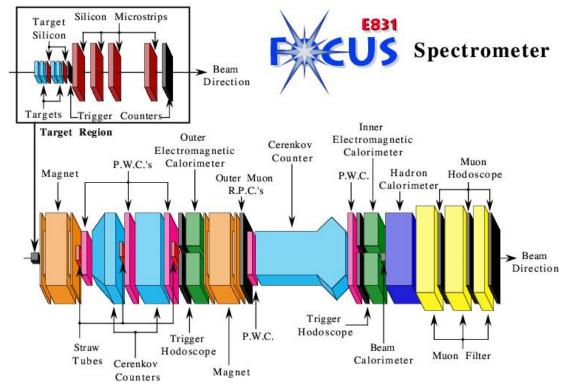
(By the E831 (FOCUS) Experiment)

Abstract


Using data from FERMILAB E831 (FOCUS) experiment we have done the first measurement of the polarization of Λ_c 's produced in high-energy ($\langle E \rangle = 180 \text{ GeV}$) photon-nucleon interactions. For this we have analyzed the decay mode $\Lambda_c \to \Lambda \pi$. We have measured the product αP , where α is the weak decay asymmetry parameter, and, using the CP conservation hypothesis, we have gotten the polarization P. We have found that in photoproduction the Λ_c is produced with a small polarization, between 8% and 30%. As we have low statistics and the errors are large, the polarization is compatible with zero within 1σ . The results are preliminary.

For the decay of a spin- $\frac{1}{2}$ particle into a spin- $\frac{1}{2}$ + spin-0 particles, like the case of:

$$\Lambda_{c(1/2)} \to \Lambda_{(1/2)} \ \pi_{(0)} \tag{1}$$


we can write the angular distribution of the daughter fermion in the parent fermion center of mass as:

$$\frac{\mathrm{dN}}{\mathrm{dcos}\,\theta} = \frac{\mathrm{N}_0}{2} \,\left(1 + \alpha_{\Lambda_c^+} \mathrm{P}\cos\theta\right) \tag{2}$$

FOCUS EXPERIMENT

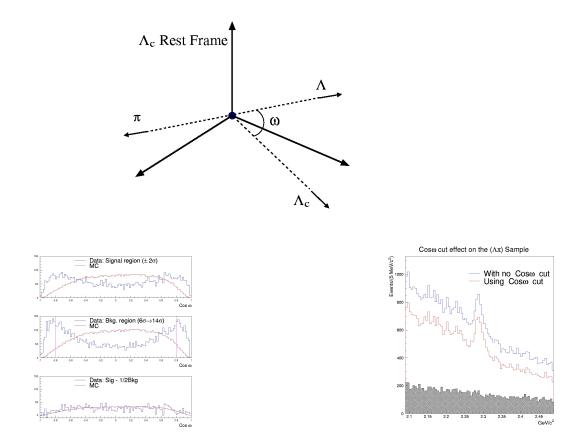
\triangleright The spectrometer:

- $\diamond\,$ Located in Fermilab's Wide Band Laboratory, upgrade of experiment E687
- ♦ Large aperture fixed target multiparticle spectrometer
- $\diamond < 175 > {\rm GeV}$ photon beam from bremmstrahlung of 300 GeV electrons and positrons
- ♦ Segmented berylium oxide targets
- \diamond Two systems of silicon microvertex detectors: 2 target stations + 12 planes
- ♦ High resolution separation of primary and secondary vertices
- \diamond 2 analysing magnets of opposite polarity.
- \diamond 5 stations of multiwire proportional chambers
- \diamond 3 multicell threshold Cerenkov counters identify e, $\pi,\,{\rm K}$, p
- \diamond 2 electromagnetic calorimeters
- \diamond 1 hadron calorimeter consisting of iron and scintillating tile
- \diamond 2 muon systems: resistive plate chambers and scintillator hodoscope.
- \triangleright The E831/FOCUS data sample:
 - ♦ Collected during 1996-1997 fixed target run.
 - ♦ Multiplicity trigger and loose transverse energy requirement in trigger.
 - ♦ Fully reconstructed more than one million charm mesons.

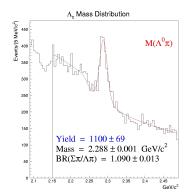
STEPS TO CALCULATE THE Λ_c^+ POLARIZATION

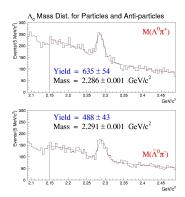
- \triangleright Get the number of Λ_c^+ events by fitting the mass distributions divided into four equal intervals of cosine theta for particles and anti-particles.
- \triangleright Fit the $\cos \theta$ distribution, normalized and efficiency corrected, by using a linear function to get α_{Λ^+} P from each sample of particles and anti-particles.
- ▷ Calculate the polarization P for each sample assuming no CP violation (α_{Λ^+} $= -\alpha_{\Lambda_c^-}$) and using $\alpha_{\Lambda_c^+}$ from PDG 2005 and FOCUS.

SELECTION CRITERIA


 $\triangleright \Lambda$ Selection:

- ♦ Quality of tracks
- $1.09 < M(\Lambda) < 1.14 \ GeV/c^2$
- \diamond Cerenkov particle identification
- $\triangleright \pi \text{ from } \Lambda_c^+$:
- ▷ Primary:


 $\diamond -10 < z_{\rm prim} < -3$

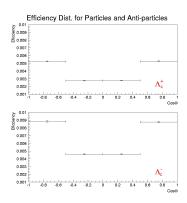

- $\triangleright \Lambda_c^+$ Selection:
 - $2.09 < M(\Lambda_c^+) < 2.49 \text{ GeV/c}^2$
 - ♦ Detachment (L/σ) : $L/\sigma > 4$
 - $\label{eq:life_life} \begin{array}{l} \diamond \ \Lambda_c^+ \ \text{proper time:} \ t_{\text{life}} < 5 \, \tau_{\Lambda_c^+}; \quad \tau_{\Lambda_c^+} \ 0.2 \ \text{ps} \\ \diamond \ \Lambda_c^+ \ \text{momentum:} \ \mathbf{p}(\Lambda_c^+) > 40 \ \text{GeV/c} \ . \end{array}$

 - \diamond C.L. on Secondary: CLS > 0.01
 - \diamond C.L. on Primary: CLP > 0.01
 - \diamond |Cos ω | < 0.8

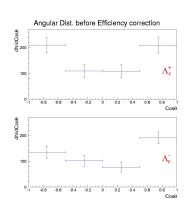
FITTED $\Lambda_c^+ \to \Lambda \pi$ **MASS DISTRIBUTIONS**

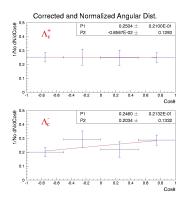
EFFICIENCY

The efficiency is defined as:

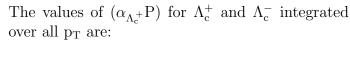

$$\epsilon = \frac{N_{\rm rec}^{\rm MC}}{N_{\rm gen}^{\rm MC}} \tag{3}$$

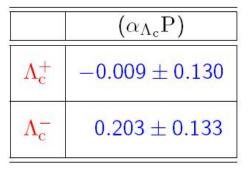
 $\mathbf{N_{rec}^{MC}}:$ Number of MC reconstructed events.

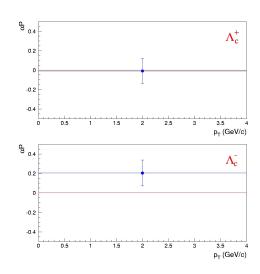

 $\mathbf{N_{gen}^{MC}}$: Number of MC generated events.


The error in the efficiency is given by:

$$\sigma(\epsilon) = \sqrt{\frac{\epsilon \left(1 - \epsilon\right)}{N_{\text{gen}}^{\text{MC}}}} \tag{4}$$

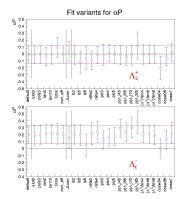

ANGULAR DISTRIBUTION





0.32

VALUES



SYSTEMATIC ERROR STUDIES FOR $(\alpha_{\Lambda_c^+} P)$

We perform many checks in order to determine the systematic error in the measurement of $(\alpha_{\Lambda_c^+} P)$ varying the the cuts and the fitting conditions in a reasonable way.

- \triangleright 1st Category: By changing the fit technique
- $\triangleright\,$ 2nd Category: By changing the way to reconstruct the sample
- \triangleright 3rd Category: By changing the selection cuts

Category	Syst. errors on $(\alpha P)_{\Lambda_c^+}$
1st	0.046
2nd	0.032
3rd	0.066
Total	0.086

Category	Syst. errors on $(\alpha P)_{\Lambda_c^-}$
1st	0.011
2nd	0.031
3rd	0.088
Total	0.094

PRELIMINARY RESULTS

 \triangleright The final values for $(\alpha_{\Lambda_c^+} \mathbf{P})$ integrated over all $\mathbf{p}_{\mathbf{T}}$ are:

Particle	$(\alpha_{\Lambda_c} P)$	
$\Lambda_{\rm c}^+$	$-0.009 \pm 0.130 \pm 0.086$	
$\Lambda_{\rm c}^{-}$	$0.203 \pm 0.133 \pm 0.094$	

▷ To calculate the polarization we assume no CP violation $(\alpha_{\Lambda_c^+} = -\alpha_{\Lambda_c^-})$ and we use the $\alpha_{\Lambda_c^+ \to \Lambda_\pi}$ weak assymetry parameter from PDG 2005 and FOCUS:

$$\begin{split} &\alpha_{\Lambda_{\rm c}^+} = -0.98 \pm 0.19 \ ({\rm PDG}) \\ &\alpha_{\Lambda_{\rm c}^+} = -0.78 \pm 0.16 \pm 0.19 \ ({\rm Boca}) \end{split}$$

 $\triangleright\,$ The polarization values we get are:

$\alpha_{\rm PDG}$	$\mathrm{P}_{\Lambda_{\mathrm{c}}^+}$	0.009 ± 0.133
	$P_{\Lambda_c^-}$	0.207 ± 0.142
afocus	$\mathrm{P}_{\Lambda_{\mathrm{c}}^+}$	$0.012 \pm 0.167 \pm 0.110$
	$P_{\Lambda_c^-}$	$0.260 \pm 0.179 \pm 0.136$

CONCLUSION

- ▷ We found that in photoproduction the Λ_c^+ is produced with a small polarization, between 1% and 26%.
- ▷ As we have low statistics and the errors are large, the polarization integrated over all p_T is compatible with zero within 2σ .

REFERENCES

- 1 . G. Kllen, Elementary Particle Physics, Addison-Wesley (1964).
- 2 J.M. Link et al., FOCUS Collaboration, Nucl. Instrum. Meth. A 484, 174-193(2002).
- 3 J.M. Link et al., FOCUS Collaboration, Nucl. Instrum. Meth. A 484, 270-286 (2002).
- 4 . P.L. Frabetti, Nucl. Instrum. Meth. A 320, 5 (1992)
- 5 . E.W. Vaandering et al., FOCUS Collaboration, Phys. Lett. B 525 (2202) 205-210.
- 6 .D.L. Pegna, Study of the decay channel $\Lambda_c\to\Lambda\pi$, FOCUS Meeting at Fermilab, Dec. 2003
- 7 .G. Boca, Study of the decay asymmetry parameter and CP violation parameter in the $\Lambda_c \to \Lambda \pi$ decay, Preprint (2005).