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We derive an approximate Gaussian solution of the Lindblad equation in the semiclassical limit, given a
general Hamiltonian and linear coupling with the environment. The theory is carried out in the chord
representation and describes the evolved quantum characteristic function, which gives direct access to
the Wigner function and the position representation of the density operator by Fourier transforms. The
propagation is based on a system of non-linear equations taking place in a double phase space, which
coincides with Heller’s theory of unitary evolution of Gaussian wave packets when the Lindbladian part
is zero. The example of a double well is worked out.
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1. Introduction

Open quantum systems deal with physical systems which interact with their environment. From this interaction the system may loose
or gain energy; this is the dissipation phenomenon. Coupling of a system with its environment entails loss of information in the sense
that, if one starts with a pure state ρ̂(0), such that its purity, Tr ρ̂(0)2 = 1, then it will undergo a non-unitary evolution which will not
preserve its purity, that is, Tr ρ̂(t)2 < 1. One important aspect of this loss is decoherence, that is the vanishing of the off-diagonal terms of
the density operator.

The Markovian process offers a powerful mathematical tool in the study of this class of systems. It relies on the assumption that the
environmental degrees of freedom are very fast as compared to the proper dynamics of the system, so that the future evolution of the
density operator is a function of its value in the present only, regardless of its past. It was shown by a series of works, concluded by
Lindblad in [1], see also [2] for a review, that the corresponding evolution equation can always be written in the form

∂ρ̂

∂t
= − i

h̄
[Ĥ, ρ̂ ] + 1

2h̄

∑
k

(
2̂Lkρ̂ L̂ †

k − L†
k L̂kρ̂ − ρ̂L†

k L̂k
)
. (1)

The Hamiltonian Ĥ describes the unitary evolution of the system without environment, and Lindblad’s theory proves the a priori existence
of the operators L̂k , which are commonly dubbed Lindblad operator, and which model the effect of the environment. The master equation
of quantum optics is a particular, well understood case, where the Lindblad operators are L̂1 = â, i.e. the annihilation operator, describing
the emission process, and L̂2 = â † the absorption. One can see that these Lindblad operators are not Hermitian, which can be generalized
to every case where the coupling to the environment is dissipative.

In this Letter, we derive the consistent dynamics of a Gaussian solution of the Lindblad equation. As compared to former papers where
we deal with the analysis of the evolution of extended states, that goes back to Van Vleck [3] (see also [4–6]), this work is rather a
generalization of the evolution of “wave packets”, developed by Heller [7] and Littlejohn [8], among others. The approximation holds as
long as the size of the Gaussian is small enough to justify an identification of the Hamiltonian with its second order expansion, that is,
its quadratic kernel. Since the effect of decoherence is to quickly decrease the extension of the solution, the regime of validity should be
larger than in the unitary case.

We chose to represent the Gaussian solution in the chord representation, that is, the Fourier transform of the Weyl–Wigner repre-
sentation. After giving the form of the Lindblad equation in the chord frame, we assume a Gaussian expression of the solution, with
time dependent parameters, and its insertion in the Lindblad equation leads to a system of equations of motion for these parameters.
Comparison with Heller’s theory is then derived in a slightly simplified case.
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This Letter presents a simpler, albeit less exact theory than [14], which generalizes complex WKB approximations for the solutions of
the Lindblad equation. In that treatment it is necessary to further complexify the doubled phase space. Thus, it is likely that the simpler
approximations developed here may be of more practical use.

The theory can be useful for any initial state, which can be conceived as a finite decomposition into Gaussian ones.
All the following formulae are written for a system with a single degree of freedom, in order to clarify the notation. Nonetheless, it is

quite simple to generalize them for a finite number of degrees of freedom.

2. Equation in the Weyl formalism

The Weyl representation maps every quantum operator onto a phase space function, that is, a function of the vector x = (p,q) [11,12].
For an operator Â the Weyl symbol A is defined as

A(x) = 2
∫

exp

(
− i

h̄
p Q

)〈
q + Q

2
| Â|q − Q

2

〉
dQ . (2)

The Weyl symbol of the state operator ρ̂ is the Wigner function

W (x) = N
∫

exp

(
− i

h̄
p Q

)〈
q + Q

2
|ρ̂ |q − Q

2

〉
dQ , (3)

with N = 1/(2π h̄), and its Fourier transform, the chord function χ(ξ ), also called characteristic function, is

χ(ξ) = N
∫

exp

(
− i

h̄
ξ ∧ x

)
W (x)dx, (4)

where the wedge product of two vectors x = (p,q) and x′ = (p′,q′) is defined by x ∧ x′ = pq′ − p′q = Jx · x′ , which also defines the skew

matrix J =
(

0 −1
1 0

)
. One can have the chord symbol directly from the quantum operator through the formula

χ(ξ) = N
∫

exp

(
− i

h̄
ξpq

)〈
q + ξq

2
|ρ̂ |q − ξq

2

〉
dq. (5)

We call the space of all x the center space, and the space of all ξ the chord space.
In the chord space, by using product rules for the product of operators [12], the Lindblad equation is represented by a partial differential

equation. This equation is actually simpler than in the Weyl (center) representation, and this justifies our choice. In the case where the
Lindblad operators are linear functions of p̂ and q̂, that is, L̂ = l′ · x̂ + il′′ · x̂ with l′ and l′′ real vectors, this equation can be written

∂χ

∂t
(ξ , t) = − i

h̄
N

∫ [
H

(
x′ + 1

2
ξ , t

)
− H

(
x′ − 1

2
ξ , t

)]
exp

(
i

h̄

(
ξ ′ − ξ

) ∧ x′
)
χ

(
ξ ′, t

)
dξ ′ dx′

− γ ξ · ∂χ

∂ξ
(ξ , t) − 1

2h̄

[(
l′ · ξ)2 + (

l′′ · ξ)2]
χ(ξ , t). (6)

The dissipation coefficient,

γ = l′′ ∧ l′, (7)

is null for a Hermitian Lindblad operator (l′′ = 0) and we then have a purely diffusive case. H is the Weyl representation of the Hamiltonian
of the isolated system and coincides with the corresponding classical Hamiltonian, up to h̄ corrections coming from non-commutativity of
p̂ and q̂. Its arguments in Eq. (6) are the pair of remarkable points x+ = x+ ξ/2 and x− = x− ξ/2, which can be considered as both tips of
a chord ξ . Although this chord ξ = (ξ p, ξq) can be interpreted as an auxiliary conjugate variable of x, in the current approach it is actually
more convenient to write the solution in terms of y = Jξ = (−ξq, ξ p). The direct sum of these conjugate spaces can indeed be interpreted
as a double phase space, where x formally plays the role of the position, and y the role of its Fourier conjugate, the momentum. Then
the above equation becomes

∂χ

∂t
(y, t) = − i

h̄
N

∫ [
H

(
x′ − 1

2
Jy, t

)
− H

(
x′ + 1

2
Jy, t

)]
exp

(
i

h̄

(
y′ − y

) · x′
)
χ

(
y′, t

)
d y′ dx′

− γ y · ∂χ

∂ y
(y, t) − 1

2h̄
|λ · y|2χ(y, t). (8)

The same name has been kept for the characteristic function χ(y, t), though strictly this should be χ(ξ , t) = χ(−Jy, t), and we have
set λ = λ′ + iλ′′ = J(l′ + il′′). The term y · ∂χ/∂ y can actually be included in the integral term, thanks to an integration by parts of the
exponential, and one has finally

∂χ

∂t
(y, t) = − i

h̄
N

∫
H

(
x′, y, t

)
exp

(
i

h̄

(
y′ − y

) · x′
)
χt

(
y′)d y′ dx′ − 1

2h̄
|λ · y|2χ(y, t), (9)

with

H
(
x′, y, t

) = H

(
x′ − 1

Jy, t

)
− H

(
x′ + 1

Jy, t

)
− γ x′ · y = H+(

x′, y, t
) − H−(

x′, y, t
) − γ x′ · y. (10)
2 2
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This is exactly the double Hamiltonian that generates the classical motion underlying the semiclassical approximations in [10]. Obviously,
the double Hamiltonian will be time-independent if it is obtained from a time-independent single Hamiltonian. Furthermore, in the
absence of dissipation, both H+(x, y) = H(x − Jy/2) and H−(x, y) = H(x + Jy/2) will also be constants which generate independent
motions for both chord tips.

Notice that (9) can also be written as

∂χ

∂t
(y, t) = − i

h̄
N

∫
H

(
x′, y, t

)
exp

(
− i

h̄
y · x′

)
Wt

(
x′)dx′ − 1

2h̄
|λ · y|2χ(y, t), (11)

in terms of the evolving Wigner function, or, alternatively, as

∂χ

∂t
(y, t) = − i

h̄
H

(
− h̄

i

∂

∂ y

(1)

, y(2), t

)
χ(y, t) − 1

2h̄
|λ · y|2χ(y, t), (12)

where (1) and (2) mean that the derivatives are taken first and then the y terms are multiplied.
The differential term in the RHS of (12) (or the integral term in the RHS of (11)) represents the unitary part of the evolution. In other

words, in the chord representation, the commutator is

[Ĥ, ρ̂]chord = H
(

− h̄

i

∂

∂ y

(1)

, y(2), t

)
χ(y, t). (13)

3. General dynamics

We here assume that the chord representation χ(y, t) of the localized state has the usual semiclassical form

χ(y, t) = exp
i

h̄
S(y, t), (14)

where S(y, t) is a function with complex values of order O(h̄0). It is important to notice that, if we find the time evolution of such a state
determined by the Lindblad equation, then we can evolve any linear combination of states, which can be coherent states for instance. This
is a consequence of the linearity of the Lindblad equation.

This semiclassical form naturally induces an h̄ expansion of the unitary part of the equation, as it is shown in Appendix A,

H
(

− h̄

i

∂

∂ y

(1)

, y(2), t

)
χ(y, t) =

[
H

(
− ∂ S

∂ y
(y, t), y, t

)
+ O(h̄)

]
χ(y, t). (15)

Hence, by expanding (12) at leading order in h̄, one obtains the Hamilton Jacobi equation

∂ S

∂t
(y, t) = −H

(
− ∂ S

∂ y
(y, t), y, t

)
+ i

2
|λ · y|2 + O(h̄). (16)

This is a double phase space generalization of the complex WKB theory in [13]. In this Letter, we will not develop a complex resolution
of this equation, presented in [14]. We rather separate S(y, t) = A(y, t) + iB(y, t) into its real and imaginary parts, and get

∂ A

∂t
(y, t) + i

∂ B

∂t
(y, t) = −H

(
−∂ A

∂ y
(y, t) − i

∂ B

∂ y
(y, t), y, t

)
+ i

2
|λ · y|2 + O(h̄). (17)

4. Gaussian characteristic function: Consistent evolution

An initial Gaussian state will keep its Gaussian form if it evolves according to a quadratic Hamiltonian dynamics. That means that one
must expand the Hamiltonian of (17) up to order 2 in x and y to obtain a consistent Gaussian evolution. Since these variables correspond
to the coordinates of the trajectories supporting the state, the expansion will be faithful as long as the state is localized in a sufficiently
small region of phase space. A coherent or even a squeezed state will obviously fulfill this condition in the semiclassical limit. This is the
basic idea behind the following treatment, which can be seen as a double phase space generalization of Heller’s theory of Gaussian wave
packet evolution [7].

We assume that the chord function has the form

χ(y, t) = N exp

(
i

h̄
at − i

h̄
(y − Y t) · Xt − 1

h̄
bt − 1

2h̄
(y − Y t) · (Mt − iNt)(y − Y t)

)
, (18)

where Mt and Nt are symmetric matrices. We have therefore, in the notation of the previous section,

A(y, t) = at − (y − Y t) · Xt + 1

2
(y − Y t) · Nt(y − Y t), B(y, t) = bt + 1

2
(y − Y t) · Mt(y − Y t), (19)

where the minimum of B , that is, the maximum of the modulus of the wave packet, is at Y t .
It is instructive to compare the above expressions with the position representation of the familiar wave packets, corresponding to

(linearly) squeezed and rotated coherent states in [7,8]. Considering the analogy between the underlying double phase space coordinates
(y, x) with the ordinary phase space variables, we identify the matrix Mt as describing the overall squeezing, i.e. its eigenvalues describe
the compression in the chord space, y (compensated by stretching in x), or vice versa. On the other hand, the matrix Nt accounts for the
rotation in double phase space that tilts this 4-dimensional Gaussian.
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Since ∂ B/∂ y(Y t , t) = 0, it is natural to expand the complex equations (17) around Y t , which leads to a separation of its real and
imaginary parts. By identifying the terms (y − Y t)

n with n = 0,1,2, one obtains

Ẏ t = −∂H
∂x

− (Mt)
−1DY t, Ẋ t = ∂H

∂ y
+ Nt(Mt)

−1DY t,

Ṅt = −Nt
∂2 H
∂x2

Nt + Mt
∂2 H
∂x2

Mt + ∂2 H
∂ y∂x

Nt + Nt
∂2 H
∂x∂ y

− ∂2 H
∂ y2

,

Ṁt = −Mt
∂2 H
∂x2

Nt − Nt
∂2 H
∂x2

Mt + ∂2 H
∂ y∂x

Mt + Mt
∂2 H
∂x∂ y

+ D,

ȧt = −Ẏ t · X t − H, ḃt = 1

2
Y t · DY t, (20)

where H and all its derivatives are implicitly taken at the point (X t , Y t , t), and we used the notations D = λ′(λ′)� + λ′′(λ′′)� and

∂2 H
∂x∂ y

=
⎛⎝ ∂2 H

∂ p∂ yp

∂2 H
∂ p∂ yq

∂2 H
∂q∂ yp

∂2 H
∂q∂ yq

⎞⎠ , (21)

and

∂2 H
∂ y∂x

=
⎛⎝ ∂2 H

∂ p∂ yp

∂2 H
∂q∂ yp

∂2 H
∂ p∂ yq

∂2 H
∂q∂ yq

⎞⎠ =
(

∂2 H
∂x∂ y

)�
, (22)

where � means the transpose of a matrix or a vector.
We end up with a consistent system of ordinary differential equations. The first four equations are coupled, but the last two are actually

trivial once the other are solved. Notice that these equations preserve the symmetry of Mt and Nt so we have omitted the transposition
symbols that otherwise would appear in the expansion.

In the absence of environment, that is when D = 0, the first two equations coincide with the double phase space trajectories of a
classical dynamics, corresponding to a Liouville propagation of the chord function. The environment, expressed as an exponential damping
centered on y = 0, then induces a shift of the maximum of the unitary evolved Gaussian which, otherwise, follows those trajectories. One
should note that in the latter case, the semiclassical theory for Gaussian evolution becomes identical to the familiar unitary theory, albeit
in an enlarged phase space. Thus, the pair of matrices that determine the squeezing and its direction interact because of the underlying
classical motion. One can verify that Eqs. (20) are then consistent with the Linearized Green’s function and wavepacket propagation of [7], as
it is partially shown in Appendix B.

The qualitatively new feature of the present theory is that, unless D = 0, the overall amplitude of the Gaussian is damped by decoher-
ence, if the Gaussian is not centered on the origin. It is visible from the formal expression of Mt solution of (20):

Mt = Q�
t

t∫
0

Q�−τ DQ−τ dτ Qt, (23)

where Qt would be a time dependent 2 × 2 matrix solution of

Q̇t = Qt

(
∂2 H
∂ y∂x

− ∂2 H
∂x2

Nt

)
. (24)

This leads to

y · Mt y =
t∫

0

(λ · Qt−τ y)2 dτ , (25)

which is strictly growing. A Gaussian centered at the origin is merely squeezed by the Lindbladian term, leading to diffusive broadening
of its Fourier transform, the Wigner function, as described in [9,10].

It is also interesting to go back to see how these equations read in terms of the classical Hamiltonian H :

Ẋ
+
t = J

∂ H

∂x

(
X+

t , t
) − γ X−

t +
(

Nt + 1

2
J

)
M−1

t DJ
(

X+
t − X−

t

)
,

Ẋ
−
t = J

∂ H

∂x

(
X−

t , t
) − γ X+

t +
(

Nt − 1

2
J

)
M−1

t DJ
(

X+
t − X−

t

)
, (26)

where X±
t = X t ∓ JY t/2. Once again, when there is no environment, i.e. D = 0 and γ = 0, the chord tips X+

t and X−
t are just indepen-

dently following the time reverse classical motion

Ẋ = J
∂ H

∂x
(X, t). (27)
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A general state can always be decomposed in a pseudo-basis of Gaussian states:

χ0(ξ) =
∫

D(η)exp

[
− (ξ − η) · Mη(ξ − η)

4h̄
+ i

h̄
φη

]
dη. (28)

Because of the linearity of the evolution equation of χt , one can evolve each of these Gaussian states independently by using the consistent
evolution presented in this section, and the superposition of these evolved Gaussians will be an approximate solution of (12) with the
correct initial condition (28). Although the expression of the latter is written as a continuous integral, one will obviously have to use in
practice a finite, approximate decomposition. About the issue of optimizing the number of Gaussian states of a decomposition, one may
read with interest [15].

5. Quadratic Hamiltonian

Here we discuss the consistent Gaussian evolution in the case of a quadratic Hamiltonian, namely

H(x) = x · Hx, (29)

with some symmetric matrix H. The double phase space Hamiltonian is then

H(x, y) = −2x · HJy − γ x · y. (30)

It is obvious that the consistent evolution will give an exact result here, since the Hamiltonian coincides with its quadratic expansion.
However it is instructive to explicit the calculus to have an insight on the role of the different terms.

As a reminder, the general solution derived in [9] was written in the following form

χt(ξ) = χ0
(
e−γ tR−tξ

)
exp

(
− 1

2h̄

t∫
0

e2γ (t′−t)|l · Rt′−tξ |2 dt′
)

, (31)

where χ0(ξ) is any general (not necessarily localized) initial function, and

Rt = exp(2JHt). (32)

With the notation adopted in this Letter, it reads

A(y, t) = A0( ỹ0) = A0
(
e−γ tR�

t y
)
, B(y, t) = B0

(
e−γ tR�

t y
) + 1

2

t∫
0

e2γ (t′−t)
∣∣λ · R�

t−t′ y
∣∣2

dt′. (33)

Here we used the correspondence

R−tξ = −R−tJy = −J
(
R�

t y
)
. (34)

If the initial state is a Gaussian wave packet, it imposes the form of A0(y, t) and B0(y, t), and one has

A(y, t) = a − (
e−γ tR�

t y − Y
) · X + 1

2

(
e−γ tR�

t y − Y
) · N

(
e−γ tR�

t y − Y
)
,

B(y, t) = b + 1

2

(
e−γ tR�

t y − Y
) · M

(
e−γ tR�

t y − Y
) + 1

2

t∫
0

e2γ (t′−t)
∣∣λ · R�

t−t′ y
∣∣2

dt′. (35)

This solution can be matched with (19) by setting the different parameters in the following way,

Nt = e−2γ tRtNR�
t , Mt = e−2γ tRtMR�

t +
t∫

0

e2γ (t′−t)Rt−t′DR�
t−t′ dt′,

X t = e−γ tRt(X + NY ) − Nt Y t, Y t = (Mt)
−1e−γ tRtMY ,

at = a + X · Y + 1

2
Y · NY − X t · Y t − 1

2
Y t · Nt Y t, bt = b + 1

2
Y · M · Y − 1

2
Y t · Mt Y t, (36)

where Y t as in the previous paragraph, is following the maximum of the Gaussian, ∂ B/∂ y(Y t, t) = 0, which is not the Hamiltonian
evolution of the initial maximum Y of the Gaussian; and X t is defined as X t = −∂ A/∂ y(Y t , t), that is, the argument of the order 0 of the
expansion of H in (17).
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On the other hand we can explicit the consistent Gaussian evolution given by Eqs. (20):

Ẋ t = (2JH − γ )X t + Nt(Mt)
−1DY t, Ẏ t = (2HJ + γ )Y t − (Mt)

−1DY t,

Ṅt = 2JHNt − 2NtHJ − 2γ Nt, Ṁt = 2JHMt − 2MtHJ − 2γ Mt + D,

ȧt = X t · (Mt)
−1DY t, ḃt = 1

2
Y t · DY t . (37)

One can then check that (36) is indeed solution of (37).
The equations for the evolution of the coefficients of the Gaussian are far less intuitive than the simple interpretation of the solu-

tion (31). The latter is a product of two Gaussians, each of which is fairly simple. The product of two Gaussians is itself a Gaussian,
but its maximum does not obey any simple differential equation. Instead of (18), one could consider using an a priori solution struc-
tured as a product of two Gaussians, and perform the expansion of the Hamiltonian H of (17), not around Y = Y t , but around both
Y = 0 and Y = exp (−γ t)R�

t Y . However, none of these points correspond to a zero of ∂ B/∂ y(Y , t) to justify the expansion around
H(−∂ A/∂ y(Y , t), t), which permits to separate the real from the imaginary part of (17) in the Gaussian approach. This is not a problem
in the quadratic case where the expansion is exact about any point:

∂ A

∂t
(y, t) + i

∂ B

∂t
(y, t) = −∂ A

∂ y
(y, t) · (2HJ + γ )y − i

∂ B

∂ y
(y, t) · (2HJ + γ )y + i

2
|λ · y|2. (38)

In the non-quadratic case, this exact separation does not occur any more, and one must then relie on an awkward dynamics for Y t and X t .
However a classical dynamics can still be obtained by performing a complex WKB analysis, which is addressed in [14].

6. Double well

In this section we apply the theory to the case of a double well potential, which is simple enough to derive the calculation, and
sophisticated enough to offer a configuration with entanglement: namely entanglement between the two wells.

To simplify calculation, we suppose that the two wells are quadratic, with frequency ω = 1, that is, locally,

V (q0 + δq) = δq2

2
, V (−q0 + δq) = δq2

2
. (39)

On the other hand, we imagine a dephasing interaction with environment (no dissipation), coupled to the position of the particle, that is,

L̂ = εq̂, (40)

and we stick to a weak coupling regime ε � 1.
Naturally, the initial state is an entangled cat state, that is, a linear superposition of a coherent state a in the ground of the left well

and an identical coherent state b in the ground of the right well. The corresponding Wigner function has 4 contributions: Waa centred
at p = 0, q = −q0, Wbb centred at p = 0, q = q0, Wab and Wba centred in p = 0, q = 0. The detail is given in Appendix C. We focus on
the two interfering parts of the Wigner function (and chord function), given by C.3 (and C.4), with Q = P = 0, Y p = ±2q0 and Yq = 0. For
instance,

χab(y) = 1

2π h̄
exp

(
− (yp − Y p)2 + (yq)

2

4h̄

)
. (41)

Then the parameters of the time evolved (18) are

Mt =
(

m v
v m′

)
(42)

with m(0) = m′(0) = 1
2 and v(0) = 0, and

Nt =
(

n w
w n′

)
(43)

with n(0) = n′(0) = w(0) = 0. Moreover X t = (Pt , Q t) with (P0, Q 0) = (0,0) and Y t = (Y p(t), Yq(t)) with (Y p(0), Yq(0)) = (Y p,0) =
(±q0,0). Finally, a0 = b0 = 0.

The double Hamiltonian then reads

H = pyq + q(Y p − yp). (44)

We explicit Eqs. (20) which give

U̇ = −Z − ε
m′

mm′ − v2
U , Ż = U − Y p + ε

v

mm′ − v2
U , Ṗ = −Q + ε

m′n − w v

mm′ − v2
U , Q̇ = P + ε

m′w − vn′

mm′ − v2
U ,

Ṅ = ∂2 H
∂ y∂x

N + N
∂2 H
∂x∂ y

, ṁ = −2v + ε, v̇ = m − m′, ṁ′ = 2v, ȧ = ε
m′ P − v Q

mm′ − v2
U , ḃ = ε

U 2

2
, (45)

where U stands for Y p(t) and Z for Yq(t), and all the implicit t subscripts have been omitted for the sake of clarity.
Since N0 = 0, one can see that Nt = 0 for all time, hence we set n = n′ = w = 0. On the other hand, Mt can be integrated
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Mt = 1

2

(1 + εt + ε sin 2t
2 ε cos 2t−1

2

ε cos 2t−1
2 1 + εt − ε sin 2t

2

)
, (46)

and its determinant is

mm′ − v2 = 1

4

(
(1 + εt)2 + ε2 cos 2t − 1

2

)
. (47)

The rest of evolution equations then reads

U̇ = −Z − 2ε
2(1 + εt) + ε sin 2t

2(1 + εt)2 + ε2(cos 2t − 1)
U , Ż = U − Y p + 2ε2 cos 2t − 1

2(1 + εt)2 + ε2(cos 2t − 1)
U ,

Ṗ = −Q , Q̇ = P , ȧ = 8ε
m′ P − v Q

2(1 + εt)2 + ε2(cos 2t − 1)
U , ḃ = ε

U 2

2
. (48)

Since P0 = Q 0 = 0, we have Pt = 0 and Q t = 0 for all t , and furtherly at = 0, so only remain

U̇ = −Z − 2ε
2(1 + εt) + ε sin 2t

2(1 + εt)2 + ε2(cos 2t − 1)
U , Ż = U − Y p + 2ε2 cos 2t − 1

2(1 + εt)2 + ε2(cos 2t − 1)
U , ḃ = ε

U 2

2
. (49)

It is also safe to neglect the other second order terms in ε , since they converge to 0 as time grows. We then get

U̇ = −Z − 2ε
1

1 + εt
U + O

(
ε2), Ż = U − Y p + O

(
ε2), ḃ = ε

U 2

2
+ O

(
ε2). (50)

To first order in ε , the solution is therefore

Ut = Y p(1 − 2ε sin t) + O
(
ε2), Zt = 2εY p

(
cos t − 1

1 + εt

)
+ O

(
ε2), bt = ε

t

2
Y 2

p + O
(
ε2), (51)

So now we have the expression of the chord function from (18), and the Wigner function can be retrieved from a Fourier transform,
leading to

Wt(x) = 2

π h̄(1 + εt)
exp

(
−εtY 2

p

2h̄
+ (1 − ε̃t sin 2t)p2 + (1 + ε̃t sin 2t)q2 + 2ε̃t(1 − cos 2t)pq

h̄(1 + εt)

)
× cos

(
Y p(1 − 2ε sin t)p + 2Y p(ε cos t − ε̃t)q

h̄

)
, (52)

with ε̃t = ε
1+εt . Hence, the solution undergoes decoherence with a typical time scale of 1/ε .

An important point of the presented method is that, although the Wigner function spreads out and gets delocalized at a speed
√

1 + εt ,
the chord function has the opposite behavior and gets concentrated. This is the very reason why the expansion leading to (17) is stable
under the evolution.

We can discuss the result for a symmetric double well potential with a global analytical expression, like

V (q) = (q2 − q2
0)

2

8q2
0

. (53)

Then the difference V ′′(Q − U
2 ) − V ′′(Q + U

2 ) which normally appears in ∂2 H
∂x2 and ∂2 H

∂ y2 would not cancel any more, but would be equal
to

− 3

q2
0

Q U . (54)

Even so, Q t = 0 and Nt = 0 are still solutions for the particular cat state initially centred at Q 0 = 0, so that the solution (52) remains
valid. On the other hand, an asymmetric potential would have a more sophisticated evolution.

7. Conclusion

We have derived an approximate Gaussian solution of the Lindblad equation, based on a second order expansion of the Hamilton Jacobi
equation of the phase of the chord function. The trajectory of the maximum of the Gaussian does not follow an intuitive trajectory, as it is
a compromise between the unitary evolution of the Gaussian, and the damping induced by the Lindbladian term. The latter quickly shrinks
the relevant part of the chord function to a region close to y = 0 on the

√
h̄ scale, which can be interpreted as the region containing all

the classical information about the state. Thus the maximum of the Gaussian chord function ends up being at y = 0. This result is in
agreement with established results in the case of a quadratic Hamiltonian and linear Lindblad operators, see for instance [9], as well
as fulfilling our handwaving intuition that “decoherence drives the system back into classical dynamics”. However, with a non-quadratic
Hamiltonian, the rate of this environmentally induced exponential damping acquires a phase space dependence.

Our theory generalizes the standard semiclassical approximations for the unitary evolution of wave packets [7] in a non-trivial way:
in the chord representation adopted here, a single wave packet is always centred on the origin (its position is represented by an overall
phase). Thus, by allowing Gaussians away from the origin, like in the typical case of a “Schrödinger cat” state recalled in Appendix C, the
approximate Gaussian evolution described by the theory includes the interferences between pairs of wave packets, their motion and their
loss of coherence, as it is illustrated in a double well example.
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Appendix A. Asymptotic expansion of the Hamiltonian operator

One can verify easily that(
1

λ

∂

∂ p

)m(
1

λ

∂

∂q

)n

exp λS =
[(

∂ S

∂ p

)m(
∂ S

∂q

)n

+ 1

λ

(
m(m − 1)

2

∂2 S

∂ p2

(
∂ S

∂ p

)m−2(
∂ S

∂q

)n

+ mn
∂2 S

∂ p∂q

(
∂ S

∂ p

)m−1(
∂ S

∂q

)n−1

+ n(n − 1)

2

∂2 S

∂q2

(
∂ S

∂ p

)m(
∂ S

∂q

)n−2)
+ O

(
1

λ2

)]
expλS. (A.1)

From there one can generalize and write

H
(

− h̄

i

∂

∂ y
, y

)
exp

(
i

h̄
S

)
=

[
H

(
− ∂ S

∂ y
, y

)
+ h̄

2i
Tr

{
∂2 H
∂x2

(
− ∂ S

∂ y
, y

)
∂2 S

∂ y2

}
+ O

(
h̄2)]exp

(
i

h̄
S

)
. (A.2)

Appendix B. Consistence with Heller’s equations

The paragraph 2.3. Linearized Green’s function and wavepacket propagation of [7], starts with a Gaussian wave function,

ψh(q, t) = exp
{

i/h̄
[

A(q − Q )2 + P (q − Q ) + st
]}

, (B.1)

where A = a + ib is a time dependent complex number, P a real time dependent number and we have sticked to the 1-dimensional case.
Then he proceeds with

Q̇ = ∂ H

∂ p
, Ṗ = −∂ H

∂q
, A = pz

2z
, ṗz = −V ′′z, ż = 1

m
pz, (B.2)

where H stands for H(P , Q ) = P 2/2m + V (Q ), and V ′′ for d2 V /dQ 2(Q ). This defines the consistent Gaussian dynamics of (B.1).
In this appendix we show that the evolution of the chord representation χh(t) of the state |ψh(t)〉〈ψh(t)|, as defined above, also follows

Eqs. (20) in the unitary case D = 0. This shows in a simple case that our consistent Gaussian evolution is consistent with the one of Heller
in the unitary case. Both theories also agree for a general state, although the derivation, carrying much heavier expressions, is not written
out in this appendix.

From (B.1) and (5) one has

χh(t) = exp
i

h̄

(
−P yp − Q yq + st − s∗

t + i

2
y · My

)
, (B.3)

with

M =
(

b + a2

b
a

2b
a

2b
1

4b

)
. (B.4)

Notice already that the first two lines of (B.2) give the second line of (20) with X t = (P , Q ). On the other hand Y t = 0 and Nt = 0 in this
case. Moreover, the equation for A in (B.2) gives

Ṁ =
(− 4

m ab − 2a
b ( V ′′

2 + 2
m (a2 − b2)) + ( a

b )2 4
m ab − 1

2b ( V ′′
2 + 2

m (a2 − b2)) + a
2b2

4
m ab

− 1
2b ( V ′′

2 + 2
m (a2 − b2)) + a

2b2
4
m ab 1

4b2
4
m ab

)
, (B.5)

that is

Ṁ =
( −2V ′′Mqq −V ′′Mqq + 1

m Mpp

−V ′′Mqq + 1
m Mpp

2
m Mpq

)
. (B.6)

It is equivalent to the fourth line of (20), with

∂2 H
∂ y∂x

=
(

0 −V ′′(Q )
1
m 0

)
. (B.7)

We do not take into account st which corresponds to the prefactor of χ , which would be given by the next order in h̄ in our expansion.
To check the general case, with Y t �= 0 and Nt �= 0, one must write the chord representation χh

ab of the cross product |ψh
a (t)〉〈ψh

b (t)|
of two different Gaussian states which follow Eqs. (B.2). The expression of the time derivative of that chord function can be shown to be
consistent with (20) in the same way as what is done above, but quite heavier.
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Appendix C. “Schrödinger cat” states

The generalized “cat state”, that is a coherent superposition of two squeezed states, is an important example for two reasons. First it is
Gaussian, and therefore is adapted to the treatment of this Letter; and secondly it gives a quite transparent physical interpretation of the
chord function. We define the two ingredients of such a state: two squeezed states

ψa(q) = 1

(π h̄ω2
a )1/4

exp

(
− (q − Q a)

2

2ω2
a h̄

+ i Paq

h̄

)
, ψb(q) = 1

(π h̄ω2
b)1/4

exp

(
− (q − Q b)

2

2ω2
b h̄

+ i Pbq

h̄

)
, (C.1)

centred respectively on Xa = (Pa, Q a) and Xb = (Pb, Q b). The density operator of the corresponding “cat state”, |ψa〉 + |ψb〉, has two
diagonal terms and two off-diagonal terms:

ρ̂ = 1

2
|ψa〉〈ψa| + 1

2
|ψb〉〈ψb| + 1

2
|ψa〉〈ψb| + 1

2
|ψb〉〈ψa|. (C.2)

We are interested here in the sum of the pair of non-local terms, |ψa〉〈ψb| and Hermitian conjugate. Notice that the two other diagonal
terms, which have a classical interpretation, can be retrieved anyway by setting a = b. In the Weyl representation, this non-local term can
be written

Wab(x) = 1

π h̄

√
2ωaωb

ω2
a + ω2

b

exp

(
− (q − Q )2 + ω2

aω
2
b(p − P )2 + i(ω2

b − ω2
a )(p − P )(q − Q )

2h̄(ω2
a + ω2

b)
+ i

h̄
(−Y · x − P Y p)

)
, (C.3)

where X = (P , Q ) = (Xa + Xb)/2 and JY = Xb − Xa . In the chord representation, one has

χab(y) = 1

2π h̄

√
2ωaωb

ω2
a + ω2

b

exp

(
− (yp − Y p)2 + ω2

aω
2
b(yq − Yq)

2 + i(ω2
b − ω2

a )(yp − Y p)(yq − Yq)

2h̄(ω2
a + ω2

b)
+ i

h̄
(−X · y + Yq Q )

)
. (C.4)

Then one has

A0(y) = 1

2

ω2
a − ω2

b

ω2
a + ω2

b

(yp − Y p)(yq − Yq) − X · y + Yq Q , (C.5)

and

B0(y) = 1

2

(yp − Y p)2 + ω2
aω

2
b(yq − Yq)

2

ω2
a + ω2

b

. (C.6)

One may notice that χ(y) = χ(−y)∗ does impose that A0(y) be an odd function and B0(y) an even function, but one has to bear in mind
that we looked only at χab(y), and that the complete chord function contains also χba(y), which re-establishes the overall symmetry for
Hermitian operators.
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