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Abstract
The potentially important role of dust in future large power wall loadings and long operation
times expected for new devices such as ITER is now recognized. In this context, we have
studied the effect of the dust poloidal distribution on the plasma dynamics of the plasma edge.
This dust spatial distribution can be natural or artificially induced by dust puffing aiming to act
on the plasma dynamics. We show that, in the considered range of dust densities, in
large-aspect-ratio tokamaks, the poloidal distribution of dust affects only the toroidal velocity.
The poloidal velocity and the radial electric field are defined by the ion–dust friction and by
the ion–dust thermal forces with the magnetic surface averaged dust density. It also follows
from calculations presented in the paper that, in spherical tokamaks, the poloidal distribution
of dust can also affect the plasma poloidal velocity and the radial electric field, in addition to
affecting the plasma toroidal velocity. These results are also applicable to heavy impurities
presented in tokamaks.

PACS numbers: 52.30.Jb, 52.35.Py

1. Introduction

It is well-known that plasma dynamics, namely, poloidalUiθ

and toroidalUiς velocities and, consequently, the sheared
radial electric fieldEr, play an important role in tokamak
plasmas, being responsible for improved confinement
regimes [1]. In conventional tokamaks these values mainly
depend on the ion viscosity or on the ion and electron friction
with neutrals. Now it is well-recognized that dust can be
presented in tokamak plasmas in some conditions, and that
the dust problem becomes more worrisome for future large
power wall loadings and long operation times expected for
new devices such as ITER [2]. It is also noted in [2] that a
strong radial profile of dust density can exist in tokamaks.
Theoretical and experimental results also indicate that dust is
mainly located in the tokamak bottom (divertor region) [2].

Other general information on dust in laboratory and space
plasmas can be found, e.g. in [3].

Recently it was demonstrated [4] that plasma dynamics
in tokamaks with dust crucially depends on the parameter
α = (R2/λ2

i )ndZ2
d/(ni Z2

i )&1, whereR is the major radius of
the plasma column,λi = vTi/νi is the ion mean free path,
vTi =

√
2Ti/Mi is the ion thermal velocity,νi is the ion

collision frequency,Ti and Mi are the ion temperature and
mass,nd, Zd andni ,Zi are the dust number density and charge
and the ion number density and charge, correspondingly.
Accepting that at the plasma edge the conditionsR2

� λ2
i

and Zd/Zi � 1 are satisfied, we come at the conclusion that
even a very small amount of dust,nd/ni&(λ

2
i /R2)(Z2

i /Z2
d),

changes the viscous dependence of the plasma dynamics to its
dust dependence. In this work, distinct to [4], we consider the
effect of a dust poloidal distribution on the plasma dynamics
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at the plasma edge. We mean that we study plasma dynamics
inside the separatrix and not in the scrape off layer. As was
mentioned above, there is a natural up–down asymmetry of
the dust number density distribution in tokamaks. We model
this distribution by the equationnd = nd0 − ndssinθ , where
nd0> |nds| andθ is the poloidal angle. In addition, the left–
right asymmetry of dust in a tokamak can be artificially
induced with the goal to act on the plasma dynamics. We
model this distribution by the equationnd = nd0 − ndc cosθ ,
where nd0> |ndc|. We analyze the effect of such a dust
spatial distribution on plasma dynamics at the plasma edge,
finding the dependence of the poloidalUiθ and toroidal
Uiς velocities and sheared radial electric fieldEr on the
parametersnd0, nds, andndc, and determining conditions when
the viscous dependence of the plasma dynamics is changed to
its dust dependence. We conclude that there is a possibility
to effectively act on the plasma dynamics at the plasma edge
by puffing dust into different regions of tokamaks.

Although we mainly write about dust throughout the
paper, all its results and conclusions are valid for heavy
impurities in tokamaks satisfying the conditionMi/MI � 1
and ZInI � {ne, Zini}, whereMI , ZI andnI are the impurity
mass, charge and number density, respectively. In this case
the subscript ‘d’ should be replaced by the subscript ‘I ’. The
summation should be fulfilled over indices ‘d’ or ‘ I ’ in the
presence of many dust or impurity species in the tokamak
plasma.

2. Electrostatic potential

We consider the quasineutrality condition of the form

− ene + eZini − eZdnd ' 0, (1)

where −e≡ ee is the electron charge,ne is the electron
number density,eZi ≡ ei and−eZd ≡ ed are the ion and dust
effective charges, respectively. In addition, we assume that
Zdnd � {ne, Zini}, Mi � Md, Md is the dust particle mass,
and dust particles are motionless (dust temperature is zero).
From equation (1), we find that poloidal variations of the
dust spatial distribution leads to the poloidal variations of
ion and electron densities. Assumingnd = nd0 + nd(θ), ni =

ni0 + ni(θ) andne = ne0+ ne(θ), where

nd (θ)= −ndssinθ − ndc cosθ, (2)

we obtain by acceptingn0 = ne0 ' Zini0,

− ne0+ Zini0 − Zdnd0 ' 0, (3)

and
− ne (θ)+ Zini (θ)− Zdnd (θ)' 0. (4)

From equation (2) we find, in the case of simultaneous
left–right and up–down asymmetries, the condition

nd0>
√

n2
ds+ n2

dc. (5)

We assume stationary charge dust, therefore for
ions and electrons we accept the Boltzmann distribution,

ni,e = ni,e0exp(−ei,eψ/Ti,e), where ψ is the electric field
potential. Consequently, we get from equation (4)

ψ(θ)' −Zdnd(θ)

/(
ene0

Te0
+

eZ2
i ni0

Ti0

)
, (6)

ni (θ)' −
eZini0

Ti0
ψ (θ)=

Zdnd (θ)

Ti0

/(
1

Te0
+

Zi

Ti0

)
, (7)

and

ne (θ)' −
Zdnd (θ)

Te0

/(
1

Te0
+

Zi

Ti0

)
. (8)

3. Starting and magnetic surface averaged equations

For the following calculations we need the summed ion and
electron momentum equations [4]–[6]

− ∇p− ∇ ·πi
‖
− ∇ ·πi

⊥
− eZdnd∇ψ +

1

c

[
j × B

]
+ R ' 0.

(9)

Herep = pe + pi is the plasma pressure,πi is the ion viscosity
tensor,j is the plasma current density,B is the magnetic field
vector,R is the friction force between ions and dust including
the thermal forceRT, where [4]

R ' −Miniνid
(
0.51V i‖ + V i⊥

)
+ RT, (10)

RT ' −2.69
ndZ2

d

Z2
i

b∇‖Ti +
3

2

νidni

ωci
[b × ∇Ti ] , b =

B
B
,

(11)

∇‖ = b · ∇, V i‖ = b (b · V i)≡ bVi‖,

V i⊥ = [b× [V i × b]] , (12)

and
νid = νid0

nd

nd0
, (13)

is the ion–dust collision frequency satisfying the inequalities
νid � ωci andνid � vTi/q R, where

νid0 =
4
√

2πλe4Z2
i Z2

dnd0.

3
√

MiT
3/2
i

, (14)

q = r Bζ/RBθ is the safety factor,r is the minor radius of
the plasma column,Bζ and Bθ are the toroidal and poloidal
components of the magnetic fieldB, correspondingly,V i is
the ion velocity,ωci is the ion cyclotron frequency andλ is the
Coulomb logarithm [5]. The latter inequalities correspond to
the case of a collisional plasma relevant for the plasma edge.

The required relations can be found from the parallel and
ζ -covariant projections of equation (9). In the first case, we
have

∂p

∂θ
+

b
Bθ

·
(
∇ ·πi

‖

)
− eZdnd

∂ψ

∂θ

+ 0.51
Mini

Bθ
νidVi‖ + 2.69

ndZ2
d

Z2
i

∂Ti

∂θ
' 0, (15)
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where the approximate expressionbθ ' 1/q R. has been used
for the θ-contravariant projection of the vectorb. Averaging
equation (15) overθ we obtain〈

b
Bθ

·
(
∇ ·πi

‖

)〉
+ 0.51Mi

νid0

nd0

〈
nind

Vi‖

Bθ

〉
+

2.69Z2
d

Z2
i

〈
nd (θ)

∂Ti

∂θ

〉
' 0, (16)

where〈· · ·〉 =
∫ 2π

0 (· · ·)dθ/2π and [4, 8]〈
b
Bθ

·

(
∇ ·πi

‖

)〉
=

3 · 1.92

4R

piε

νi

×

Uiθ + 1.83UTi − (0.19Uiθ + 1.52UTi)
〈
∂ ln B
∂θ

∂ ln ni
∂θ

〉
〈(

∂ ln B
∂θ

)2〉
 ,

(17)

hereUTi = (1/Miωci)∂Ti/∂r andε = r/R. The last equation
can be rewritten in the form〈

b
Bθ

·
(
∇ ·πi

‖

)〉
=

1.44

R

piε

νi

×

[
Uiθ + 1.83UTi −

nic

εni0
(0.19Uiθ + 1.52UTi)

]
. (18)

From [4, 5] we also get

1

q R

∂qi‖

∂θ
+∇ · qi ⊥ −TiV

θ
i
∂ni

∂θ
+

3Meneνe

Mi
(Ti − 〈Ti〉θ )= 0,

(19)
and, consequently,

∂Ti

∂θ
= 1.28

bTi

νid(b)

[
2

UTi

r

∂2 ln B

∂θ2
+

(
2

5

〈
V θ

i

〉
−

UTi

r

)
∂2 ln ni

∂θ2

]
,

(20)

whered(b)= 1 + 2.2b
√

Me/Mi andb = q2R2/λ2
i .

4. Ambipolarity condition

Now we turn to theζ -covariant projection of equation (9). For
an axially-symmetric tokamak,∂/∂ζ = 0, we obtain from this
equation

−
(
∇ ·πi

‖

)
ζ
−

(
∇ ·πi

⊥

)
ζ

+
√

g

c
j r Bθ + Rζ ' 0, (21)

where

Rζ ' −0.51MiniνidViζ − 2.69
ndZ2

d

Z2
i q

∂Ti

∂θ
−

3
2νidni Mi

√
gbθUTi,

(22)
g is the determinant of the metric tensor, andj r is the
r -contravariant projection ofj . It was shown in [4] that,
using the ambipolarity condition,∫ 2π

o
j r √g dθ = 0, (23)

we obtain 〈
√

g
(
∇ ·πi

‖

)
ζ

〉
= 0. (24)

Multiplying equation (21) by
√

g and using equations
(22)–(24) and the Maxwell equation∂(

√
gBθ )/∂θ = 0, we

arrive at 〈
√

g

{(
∇ ·πi

⊥

)
ζ

+
νid0

nd0
ndni Mi(

0.51Viζ +
1.91

νiq Mi

∂Ti

∂θ
+

3

2
√

gbθUTi

)}〉
' 0. (25)

In equation (25) the ratio of the viscous term to the friction
term, in the neoclassical consideration, is of the order of
(ni Z2

i /ndZ2
d)ρ

2
i /r

2, where ρi = vTi/ωci is the ion Larmor
radius. This viscous term can be neglected fornd/ni >

(Z2
i /Z2

d)ρ
2
i /r

2, i.e. at a very small dust density. In absence
of dust it produces the toroidal velocityUiζ ∼ 0.1(q3/ε)Uiθ

(see [9]). Thus, we can approximate this term as [9]〈
√

g
(
∇ ·πi

⊥

)
ζ

〉 〈√
g
〉
≈ 0.6RMi

∂

∂r

×

[
niνiρ

2
i

(
∂Uiζ

∂r
− 0.107q2∂ ln Ti

∂r

q

ε
Uiθ

)]
. (26)

Note that gyroviscosity,∇ ·πi
∧
, can also be included in

equation (9) producing, at some conditions, terms of the same
order as those in equation (25) [10]. It is related to substitution
of the collisional heat flux into the gyroviscosity [10].
Nevertheless, in our case the gyroviscosity can be omitted in
equations (9) and (25). We represent〈

Vi‖

Bθ

〉
= q

〈
gζ ζ

〉 〈
V ζ

i

〉
+ q

〈
g̃ζ ζ Ṽ

ζ

i

〉
+ 〈gθθ 〉

〈
V θ

i

〉
+

〈
g̃θθ Ṽ

θ
i

〉
,

(27)

(̃
Vi‖

Bθ

)
= q

〈
gζ ζ

〉
Ṽ ζ

i + qg̃ζ ζ
〈
V ζ

i

〉
+ g̃θθ

〈
V θ

i

〉
+ 〈gθθ 〉 Ṽ θ

i , (28)

and〈√
gndni Viζ

〉
=

〈
√

ggζ ζndni V
ζ

i

〉
= nd0ni0

〈√
g
〉 〈

gζ ζ
〉 〈

V ζ

i

〉
+2nd0ni0

〈√
g
〉 〈

g̃ζ ζ Ṽ
ζ

i

〉
+ ni0

〈√
g
〉 〈

gζ ζ
〉 〈

nd (θ)V ζ

i

〉
. (29)

5. Perturbed values

In addition, we should use the frozen-in condition,

∇ × [V × B] = 0. (30)

From this equation we find oscillating values

Ṽ ζ

i = qṼ θ
i . (31)

We take the metric tensor components and their determinant
as follows [8]

grr = 1, gθθ = ε2gζ ζ , gζ ζ = R2 (1− 2ε cosθ) ,
√

g = εgζ ζ . (32)
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Hence,〈V ζ

i 〉 ' Uiζ/R and〈V θ
i 〉 ' Uiθ/r . Then, from the ion

continuity equation,

∇ · (niV)≈ 0, (33)

we obtain
∂

∂θ

(√
gniV

θ
i

)
≈ 0. (34)

As a result, we have

V θ
i ≈

Uiθ

r

1 + 2ε cosθ −
Zi Zdnd (θ)n0Ti0(

1
Te0

+ Zi
Ti0

)
 . (35)

We represent

Ṽ θ
i = V θ

ic cosθ + V θ
is sinθ, (36)

and

Ṽ ζ

i = V ζ

ic cosθ + V ζ

is sinθ, (37)

where definitions are obvious.
Now equations (27) and (29) can be rewritten in the form〈

Vi‖

Bθ

〉
= q RVi‖0 − qr RVζic , (38)

and 〈√
gndniViζ

〉
= nd0ni0r R2Uiζ − 2nd0ni0r 2R2V ζ

ic

−
1
2ni0r R3(ndsV

ζ

is + ndcV
ζ

ic ), (39)

where Vi‖0 = Uiζ + (ε/q)Uiθ . In addition, we have from
equation (16)〈

nind
Vi‖

Bθ

〉
= ni0nd0(q RVi‖0 − qr RVζic )

−
1
2ni0q2R2

(
ndsV

θ
is + ndcV

θ
ic

)
+ ni0qrVi‖0ndc, (40)

from equations (15) and (20)〈
nd (θ)

∂Ti

∂θ

〉
= 1.28

bTi0

r νid(b)

×

[
εndcUTi +

1

2ni0

(
2
5Uiθ −UTi

)
(ndsnis + ndcnic)

]
, (41)

and from equations (20) and (25)

2.44

qr

νid0

νi

ni

nd0

bTi

νid(b)

×

〈
√

gnd

[
2UTi

∂2 ln B

∂θ2
+

(
2
5Uiθ −UTi

) ∂2 ln ni

∂θ2

]〉
=

2.44

q

νid0

νi

bni0Ti R

νid(b)

[
UTiε

(
2ε +

ndc

nd0

)
+

(
2
5Uiθ −UTi

)
×

(
ε

nic

ni0
+

1

2

(
nds

nd0

nis

ni0
+

ndc

nd0

nic

ni0

))]
. (42)

6. Plasma flow velocities

We transform equation (16)

Uiθ + 1.83UTi −
nic

εnio
(0.19Uiθ + 1.52UTi)

+
Z2

dnd0

Z2
i ni0

R2

λ2
i

q

ε

[
Uiζ +

ε

q
Uiθ − rV ζ

ic −
1
2q R

×

(
nds

nd0
V θ

is +
ndc

nd0
V θ

ic

)
+ ε

(
Uiζ +

ε

q
Uiθ

)
ndc

nd0

]
+ 2.39

Z2
dnd0

Z2
i ni0

bR2

r 2d(b)

[
ε

ndc

nd0
UTi +

1

2ni0nd0

×

(
2

5
Uiθ −UTi

)
(ndsnis + ndcnic)

]
= 0 (43)

and equation (25)

1

niνi

∂

∂r

[
niνiρi2

(
∂Uiζ

∂r
− 0.107q2∂ ln Ti

∂r

q

ε
Uiθ

)]
+ 1.2

Z2
dnd0

Z2
i ni0

[
Uiζ − 2rV ζ

ic −
1

2

R

nd0

(
ndsV

ζ

is + ndcV
ζ

ic

)]
+ 2.88

Z2
dnd0

Z2
i ni0

q

εd(b)

[
UTiε

(
2ε +

ndc

nd0

)
+

(
2

5
Uiθ −UTi

)
×

(
ε

nic

ni0
+

1

2

(
nds

nd0

nis

ni0
+

ndc

nd0

nic

ni0

))]
+ 3.54

Z2
dnd0

Z2
i ni0

ε

q
UTi ' 0. (44)

Then, we substitute necessary values into equations (43)
and (44)

Uiθ + 1.83UTi +
Z2

dnd0

Z2
i ni0

R2

λ2
i

q

ε

{
Uiζ +

ε

q
Uiθ

(
1− 2q2

)
−

q2

ε

ε

q
Uiθ

[
ndc

nd0
+

Zd(n2
ds+ n2

dc)

2εn0nd0

Zi

Ti0

/(
1

Te0
+

Zi

Ti0

)]}
+ 2.4

Z2
dnd0

Z2
i ni0

1

εd(b)

q2R2

λi2

[
ndc

ni0
UT i −

Zd
(
n2

ds+ n2
dc

)
2εn0nd0

×
(

2
5Uiθ −UT i

) Zi

Ti0

/(
1

Te0
+

Zi

Ti0

)]
= 0 (45)

and

0.83

niνi

∂

∂r

[
niνiρ

2
i

(
∂Uiζ

∂r
− 0.107q2∂ ln Ti

∂r

q

ε
Uiθ

)]
+

Z2
dnd0

Z2
i ni0

{
Uiζ − 4εqUiθ −qUiθ

×

[
ndc

nd0
+

Zd
(
n2

ds+ n2
dc

)
2εn0nd0

Zi

Ti0

/(
1

Te0
+

Zi

Ti0

)]}

+ 2.4
Z2

dnd0

Z2
i ni0

q

d(b)

{
UTi

(
2ε +

ndc

nd0

)
−

(
2
5Uiθ −UTi

) Zd
(
n2

ds+ n2
dc

)
2εn0nd0

Zi

Ti0

/(
1

Te0
+

Zi

Ti0

)}

+ 2.95
Z2

dnd0

Z2
i ni0

ε

q
UTi ' 0. (46)

317



V S Tsypinet al

Equations (45) and (46) are the basic equations for the
analysis that follows.

7. Analyses of flow velocities and the radial
electric field

7.1. The conventional neoclassical case Z2
dnd0/(Z2

i ni0)
� ρ2

i /r
2

We find from equations (45) and (46) the well-known
equations [9, 11, 12]

Uiθ + 1.83UTi = 0, (47)

and

1

niνi

∂

∂r

[
niνiρ

2
i

(
∂Uiζ

∂r
− 0.107q2∂ ln Ti

∂r

q

ε
Uiθ

)]
= 0. (48)

Substituting solutions of equations (47) and (48) into the
equation for the radial electric field

Er ≈
1

c
(−BζUiθ + BθUiζ + BUpi), Upi =

c

eini B

∂pi

∂r
, (49)

we can obtain the well-known neoclassical result [9, 11, 12].

7.2. The case of the negligible perpendicular viscosity
λ2

i /R2
� Z2

dnd0/(Z2
i ni0)� ρ2

i /r
2

From equations (45) and (46) we find

Uiθ = −1.83UTi, (50)

and

Uiζ = −UTi

[
ε

q

(
2.95 + 7.32q2 + 4.8

q2

d(b)

)
+ q

ndc

nd0

(
1.83 +

2.4

d(b)

)]
. (51)

Then we obtain

Er ≈
B

c
UTi

(
2.83 +

κn

κT

)
, (52)

whereκn = d ln n/d ln r andκT = d ln Ti0/d ln r . We see that,
in this case, the poloidal distribution of dust affects only the
toroidal velocity. The poloidal velocity and the radial electric
field are practically neoclassical.

7.3. The case of the negligible plasma viscosity
εZd/Zi � Z2

dnd0/(Z2
i ni0)� λ2

i /R2

We find from equations (45) and (46)

Uiθ = 2.95(1 + 2q2)−1UTi

[
1 +

1.63q2

d(b)

]
, (53)

Uiζ = −
ε

q

(
1 + 2q2

)−1
UTi

{
2.95

[
1 +

1.63q2

d(b)

]
×

(
1− 2q2

−
q2

ε

ndc

nd0

)
+ 2.4

q2

εd(b)

ndc

ni0
(1 + 2q2)

}
,

(54)

and

Er ≈ −
B

c
UTi

{
2.95

(
1 + 2q2

)−1
[
1 +

1.63q2

d(b)

]
− 1−

κn

κT

}
.

(55)

We again conclude that the poloidal distribution of dust affects
only the toroidal velocity while the poloidal velocity and the
radial electric field are defined by the ion-dust friction and by
the ion-dust thermal forces. Nevertheless, it is clear that in
spherical tokamaks, where the parameterε ∼ 1, the poloidal
distribution of dust can also affect the plasma poloidal velocity
and the radial electric field. Equations (53)–(55) correct the
corresponding results of [4].

7.4. The large dust density1> Zd{ndc,nds}/(Zini0)& ε

It follows from equations (45) and (46)

Uiθ = 2.95
(
1 + 2q2

)−1
UTi

[
1 +

1.63q2

d(b)

]
(56)

and

Uiζ =
q Zd(n2

ds+ n2
dc)

2εn0nd0

Zi

Ti0

/(
1

Te0
+

Zi

Ti0

)
×

{
Uiθ

[
1 +

0.96

d(b)

]
−

2.4

d(b)
UTi

}
, (57)

i.e. the same equation for the poloidal velocity. Substituting
equations (56) and (57) into equation (49), we obtain equation
(55). It means that the dust poloidal distribution practically
has no effect on the plasma poloidal velocity and the radial
electric field, affecting only the plasma toroidal velocity.

8. Conclusion

Recognizing the potentially important role of dust in future
large power wall loadings and long operation times expected
for new devices such as ITER, we have studied the effect of
the dust poloidal distribution on the plasma dynamics at the
plasma edge. This dust spatial distribution can be ‘natural’,
as evidence exists that dust can mainly be presented in the
divertor region of future tokamaks, or ‘artificial’, induced by
the dust puffing aiming to operate plasma dynamics. We have
shown that, in the considered range of dust densities, the
poloidal distribution of dust affects only the toroidal velocity
while the poloidal velocity and the radial electric field are
defined by the ion-dust friction and by the ion-dust thermal
forces. The conclusion of [4] was confirmed that plasma
dynamics in tokamaks with dust crucially depends on the
parameterα = (R2/λ2

i )ndZ2
d/(ni Z2

i ), changing the viscous
dependence of the plasma dynamics to its dust dependence at
α&1. Note that, as follows from our calculations, in spherical
tokamaks the poloidal distribution of dust can also affect
the plasma poloidal velocity and the radial electric field in
addition to affecting the plasma toroidal velocity. The results
of the paper are also applicable to heavy impurities presented
in tokamaks. We have considered only the spatial dust
distribution of the form equation (2). Really, this distribution
can be arbitrary. It seems that the general results of the
paper are qualitatively valid for this arbitrary distribution if an
amplitude of this distribution is of the order of amplitudes in
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equation (2). But only detailed numerical analysis can confirm
or reject this assumption. Such an analysis could be a topic of
future investigations.
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