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Abstract

Microscopic models, which resemble random magnetic systems, have been used recently in the literature for the

description of financial markets. In the present work, a model with many interacting agents, similar to an Ising random

magnet with infinite-range interactions, is investigated. The introduction of a local-field term, depending on the absolute

value of a magnetization-like parameter—which measures the volatility of a financial market—leads to a significant

improvement with respect to previously studied models in the literature. By investigating the return time series, we show

that several features, characteristic of real financial markets, are better reproduced by the present model. In particular,

within this approach one is able to provide a proper behavior for the following properties: (i) the power-law tails and the

nonzero skewness of the probability distribution of returns; (ii) the exponential decay of the two-time autocorrelation

function of returns, typical of high-frequency financial data; (iii) the so-called ‘‘leverage effect’’, which corresponds to a

negative correlation between past returns and future volatility.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The techniques developed in the area of statistical mechanics, which used to be regularly employed
for studying physical systems, have been applied recently in the investigation of a wide variety of
complex systems, composed by many interacting elements. As a result of this, new interdisciplinary areas
of investigation have emerged, and among these, one may single out the rapidly-growing subject of
econophysics [1–4].

Financial markets have been chosen by many physicists as a paradigmatic complex system, characterized by
the intricate character often exhibited, where every part of the system seems to depend on every other [5].
Some basic quantities in these systems are the price returns, which are associated to given relative price
changes, as well as the volatilities, which correspond to the absolute values (or amplitudes) of returns. From
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empirical studies, several aspects are nowadays considered as inherent of real competitive financial markets,
and some of them are listed below.

(i) The time series of price returns exhibits bursts (which resemble chaotic bursts that appear in intermittent
non-linear dynamical systems), characteristic of extreme events [5,6].

(ii) The distribution of returns is non-Gaussian [7–9], and presents a slight asymmetry around the origin,
usually associated to risk aversion [2], characterized either by different power-law (or different amplitude)
behaviors on each side, i.e., positive and negative tails [6].

(iii) The two-time autocorrelation function of price returns decays exponentially, for a time scale of the order
of a few minutes, and after that, one observes a noise level, i.e., no correlations [6].

(iv) The two-time autocorrelation function of volatilities displays asymptotically a power-law behavior,
signaling long-memory effects in this quantity. Such a ‘‘persistence’’ is sometimes referred in the literature
as ‘‘volatility clustering’’ [5].

(v) Past returns and future volatilities present negative correlations, the so-called ‘‘leverage effect’’, which
means that volatilities tend to increase when the corresponding prices drop, and vice versa [10].

One of the main challenges of the physical approach to economic systems consists in the proposal of
theoretical models, which could describe properly the behavior of real financial markets. Based on the
empirical facts, many attempts have been presented in the literature, which were able to reproduce some of the
above-mentioned characteristics, but not all of them. Some of the recently proposed models approach the
financial markets from a macroscopic point of view, and are built from differential equations, like those
models based on Langevin-like equations [11–13] and non-linear Fokker–Planck equations [14,15]. However,
a recent and very promising class of theoretical models try to approach the financial markets from a
microscopic point of view, being defined as a complex system, characterized by many interacting subunits
[16–22]. Based on the facts that every subunit should feel the presence of all remaining ones, and that each pair
of subunits should interact in a different manner, the microscopic models proposed resemble those models
used in statistical physics for the description of random magnets, for which there is a vast literature available
[23–25].

In the present work we define a microscopic model, based on random interactions among the agents,
considering a term that measures the volatility of the financial market. We show that this model presents
substantial improvements with respect to previous microscopic models in the literature. In particular, such a
model is able to cope, satisfactorily, with most of the empirical aspects mentioned above. In the next section
we define the model and the numerical procedure to be used. In Section 3 we discuss the results obtained from
our model, comparing them with some empirical data. Finally, in Section 4 we present our main conclusions.

2. The model and numerical procedure

Let us consider a system composed by N agents that take decisions under the influence of the external
environment, as well as of the remaining agents. Inspired by some recently used microscopic models in
econophysics, and also on well-known models of statistical mechanics, let us assign to each agent a two-state
variable si ¼ �1 ði ¼ 1; 2; . . . ;NÞ, corresponding to the decision for buying ðþ1Þ or selling ð�1Þ a share of a
traded stock, or commodity, at discrete time steps t. The state of agent i at time tþ 1 depends on the actions of
other agents, as well as of random events and volatilities, which will be incorporated in a local field at time t,

I iðtÞ ¼
1

N � 1

X
jai

AijðtÞsjðtÞ þ hiðtÞ � BijxðtÞj. (1)

In the equation above, fAijðtÞg represent the time dependent interactions among agents, whereas fhiðtÞg are
external fields, which take into account the random effects of the environment. The summation

P
jai applies

to all remaining agents, which would correspond, within the statistical-mechanics language, to infinite-range
interactions.
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The average quantity,

xðtÞ ¼
1

N

XN

i¼1

siðtÞ, (2)

represents the difference between the number of buying and selling decisions (i.e., between demand and
supply). The last term in Eq. (1) considers the amplitude of variations, at time t, of the variable xðtÞ. For B40
(which will be the case analyzed herein) this term contributes to adjust the agents in such a way to avoid large
variations on xðtÞ. Therefore, it carries an important ingredient of financial markets: the so-called aversion to
risk.

Let us now consider SðtÞ as representing a given time series of prices or market index values; it is widely used
in the literature [12,26] that the time rate of price changes is proportional to both xðtÞ and SðtÞ,

dSðtÞ

dt
/ xðtÞSðtÞ. (3)

From the equation above, one gets, after time discretization,

lnSðt0Þ � lnSðtÞ /
Xm�1
n¼0

xðtþ nDtÞDt,

where t0 ¼ tþmDt. Considering m ¼ 1, one obtains

xðtÞ / lnSðtþ DtÞ � lnSðtÞ, (4)

which shows that the variable xðtÞ is directly related to the return over a time scale Dt (that will be considered
herein as Dt ¼ 1). The absolute value jxðtÞj / j lnSðtþ DtÞ � lnSðtÞj is usually called volatility, and represents
the magnitude of price changes [1]. Therefore, the last term in Eq. (1) introduces a dependence of the local field
on the volatility, taking into account the aversion to risk. For positive (negative) values of Bi, the agent i is
induced to sell (buy) when the volatility increases. It is important to mention that for Bi ¼ 0, the model defined
above recovers the one introduced in Ref. [20].

This system may evolve in time following a certain dynamics. Let us consider herein the heat-bath dynamics,
for which the variables fsiðtÞg are updated according to the probabilistic rule,

siðtþ 1Þ ¼
1 with probability piðtÞ;

�1 with probability 1� piðtÞ;

(
(5a)

where

piðtÞ ¼ f1þ exp½�2I iðtÞ�g
�1. (5b)

It should be emphasized that the variables fsiðtÞg may be updated in a sequential (asynchronous) form, i.e., a
single variable siðtÞ is updated at once, or in a parallel (synchronous) form, i.e., all variables fsiðtÞg are updated
at a given time. Within both procedures, a time step (usually called a Monte Carlo step) corresponds to the
updating of the whole set of variables fsiðtÞg (i ¼ 1; 2; . . . ;N).

Employing the random-magnet-problem language, the model defined in Eq. (1) represents an infinite-
range-interaction model, for which the mean-field treatment yields the correct result for a sequential up-
dating of a given ergodic dynamics of the model, in the long-time and thermodynamic limits. Let us
consider, for the moment, a mean-field approach for the above model, within the sequential updating; if
one considers,

AijðtÞ ¼ AxðtÞ ð8iajÞ; hiðtÞ ¼ hzðtÞ ð8iÞ; BiðtÞ ¼ B ð8iÞ, (6)

where xðtÞ and zðtÞ are random variables in time, uniformly distributed in the interval ½�1; 1�, one gets a local
field that does not depend on the site index i,

IðtÞ ¼ AxðtÞxðtÞ þ hzðtÞ � BjxðtÞj. (7)
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Therefore, the average value of a variable s at time tþ 1, may be easily calculated for the set of rules defined in
Eqs. (5),

½sðtþ 1Þ�av ¼ ðþ1ÞpðtÞ þ ð�1Þ½1� pðtÞ� ¼ 2pðtÞ � 1 ¼ tanh½IðtÞ�.

Within the mean-field approximation, one can identify the above average value with the return variable
xðtþ 1Þ,

½sðtþ 1Þ�av ¼
1

N

XN

i¼1

siðtþ 1Þ � xðtþ 1Þ,

in such a way that

xðtþ 1Þ ¼ tanh½IðtÞ� ¼ tanh½AxðtÞxðtÞ þ hzðtÞ � BjxðtÞj�. (8)

It is important to mention that although the mean-field treatment of the above model, within a parallel
updating, leads, in general, to a different thermodynamics when compared to the one of the well-known
infinite-range interaction model, the recursion relation of Eq. (8) may also be used within the parallel updating
[27,28]. In fact, one expects that a parallel updating of a microscopic system of interacting agents should mimic
better a real financial system than the corresponding sequential updating. Usually, in present-day financial
markets, all agents are interconnected through computer networks in such a way that, in a small time interval,
many agents take decisions almost simultaneously.

From Eq. (8), by considering a given initial condition, xð0Þ, one generates the time series of returns xðtÞ, in
the thermodynamic limit, from which one may define a probability distribution of returns PðxÞ. We have
checked that, for the parameters ðA; h;BÞ within the range of interest of real financial markets, the magnitudes
for the returns gets restricted to small values (typically, jxjo0:2). In this case, considering
jAxðtÞxðtÞ � BjxðtÞj þ hzðtÞj51, Eq. (8) may be linearized,

xðtþ 1Þ � AxðtÞxðtÞ þ hzðtÞ � BjxðtÞj. (9)

In general, the maps of Eqs. (8) and (9) may lead to different regimes, like chaotic ones, or those
characterized by well-defined fixed points, depending on the choices for the parameters ðA; h;BÞ (see the
appendix, for a detailed analysis of these maps). The onset of chaos, signalled by the maximum Lyapunov
exponent becoming positive, occurs therefore at a general threshold surface, which may be defined as A�ðh;BÞ.
For B ¼ 0, both maps fall in a broad class of maps which have been investigated extensively [29–31]. In the
case h ¼ 0, for a uniformly distributed noise xðtÞ in the interval ð�1; 1Þ, there is a fixed point at x ¼ 0 for
AoA�ð0; 0Þ [A�ð0; 0Þ ¼ e ¼ 2:718 . . .], whereas for AXA�ð0; 0Þ this fixed point loses stability and one enters
into the chaotic region. The introduction of a small h40 is sufficient to reduce this threshold value to
A�ðh; 0Þ ¼ 1 [29–31]. As discussed in the appendix, for the case B40 one gets a qualitatively similar picture, in
such a way that for the typical value B ¼ 0:22, considered in the next section, the onset of chaos takes place at
approximately the same threshold values as in the case B ¼ 0.

One may easily obtain the parameter B from Eq. (9); in fact, multiplying Eq. (9) by xðtÞ, one gets,

xðtþ 1ÞxðtÞ � AxðtÞx2ðtÞ þ hzðtÞxðtÞ � BjxðtÞjxðtÞ.

Applying time averages to both sides of the above equation, taking into account the fact that xðtÞ and zðtÞ are
independent random variables in time, randomly distributed in the interval ½�1; 1� (whose averages in time are
zero), one gets the simple relation,

B � �
hxðtþ 1ÞxðtÞi

hjxðtÞjxðtÞi
, (10)

where h i denote time averages. Therefore, the parameter B may be easily estimated for an empirical time series
with elements fxðtÞg within the range of validity of the linear approximation of Eq. (9), and it is directly related
to the correlation function hxðtþ 1ÞxðtÞi.

In the next section we verify numerically that, similarly to what happens in the case B ¼ 0 [32,33], the tails of
the probability distribution associated with the linearized map of Eq. (9) also follow the power-law scaling

PðxÞ�jxj�a�1, (11)
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for small positive values of B, with Bbh40, and jxjbh40. These conditions restrict the ranges to be used for
the parameters B and h, for an appropriated description of a real market. In principle, one may have two
different exponents (a and b) for the two sides of PðxÞ, i.e., xo0 and x40, respectively. However, as shown in
the appendix, a ¼ b, and a simple equation may be obtained (considering h ¼ 0), relating A, B and a [cf.,
Eq. (A.13)],

ðA� BÞ1þa þ ðAþ BÞ1þa

2Að1þ aÞ
¼ 1. (12)

Obviously, Eq. (12) corresponds to a leading contribution in an expansion for small values of h, in such a way
that higher-order terms may become negligible if one chooses conveniently small enough values of h.

Therefore, if one holds an empirical time series with an associated probability distribution following the
power-law of Eq. (11), and whose elements fxðtÞg fall within the range of validity of the linear approximation
of Eq. (9), one may, at first, measure the exponent a by a proper fit of the empirical data to the scaling
behavior of Eq. (11). Hence, the parameter B may be estimated from Eq. (10) and finally, parameter A may be
obtained from Eq. (12). In this way, by fixing h to a small arbitrary value, one finds, as an approximation, the
best pair of parameters ðA;BÞ in order to mimic the real system under consideration.

From Eq. (8), apart from the time series of returns xðtÞ, one may also define a time series of volatilities,
vðtÞ ¼ jxðtÞj. The two-time autocorrelation functions of such quantities are of particular interest in
econophysics,

CxðtÞ ¼
hxðtÞxðtþ tÞi � hxðtÞi2

hx2ðtÞi � hxðtÞi2
, (13)

CvðtÞ ¼
hvðtÞvðtþ tÞi � hvðtÞi2

hv2ðtÞi � hvðtÞi2
. (14)

Another important quantity, relevant for the investigation of the leverage effect, is the leverage correlation
function [10], which corresponds to the correlation between past returns and future volatilities,

LðtÞ ¼
hxðtÞvðtþ tÞi � hxðtÞihvðtÞi

hvðtÞi2
. (15)

In the next section we present and discuss our results.

3. Results and discussion

In this section we show the substantial improvements, of the present model, with respect to previous
microscopic models in the literature. For that, we have compared the results produced from data of our model
with those obtained from the 1-min return time series of the 30 most important individual stocks of Dow Jones
index (the so-called DJ30). Our data refer to the period from July 1, 2004, up to December 31, 2004,
corresponding to nearly 50 000 points for each time series. By employing the method explained in the previous
section, we were able to obtain the values of B for each of the individual time series of DJ30; we verified a
diversity of values of B within a range varying approximately from B ¼ 0:10 up to 0:35, leading to an average
value B ¼ 0:22� 0:05. For each time series, one may construct a histogram of returns; by considering a
superposition of such histograms, one may define an ‘‘average probability distribution’’, associated with the
returns of DJ30 in this period of time. Such a probability distribution is slightly asymmetrical and is
represented in Fig. 1(a); the abscissae are rescaled by their respective variance. In Fig. 1(b) we exhibit a log–log
plot of this probability distribution, showing a good agreement with the asymptotic scaling form of Eq. (11),
with approximately the same exponent for both positive and negative values of x. In this case, we found a
good fitting with the following distribution,

PðxÞ ¼ Pð0Þð1þ g�x2Þ
�m� , (16)

where, the þ ð�Þ sign applies to positive (negative) returns and in the asymptotic regime, m� ¼ ða� þ 1Þ=2. The
fitting for negative values of returns (squares), represented in Fig. 1(b) by a dashed line, is undiscernible from
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the one of positive returns (circles), represented in Fig. 1(b) by a dotted line. For positive returns, we have used
the Hill estimator [34] in order to find the tail exponent, aþ ¼ 5:57� 0:08; from a standard non-linear fitting
procedure, we obtained Pð0Þ ¼ 0:582� 0:001, gþ ¼ 0:864� 0:004, with the goodness parameters, chi squared,
w2 ¼ 1:24	 10�6, and reduced chi squared, R2 ¼ 0:99855. For negative returns, the same procedure leads to
a� ¼ 5:54� 0:06, Pð0Þ ¼ 0:582� 0:001, g� ¼ 0:837� 0:003, w2 ¼ 1:1	 10�6, and R2 ¼ 0:99871. One observes
the same exponent a, within the error bars, for both sides of the distribution, which may be well approximated
by a ¼ 5:56� 0:08 [cf. straight line in Fig. 1(b)]. The asymmetry of the distribution is essentially assigned to
the parameters g� which are slightly different from one another. By substituting the values a ¼ 5:56� 0:08 and
B ¼ 0:22� 0:05 in Eq. (12), one finds A ¼ 1:3� 0:06; these represent the best set of values, of the parameters
in the present theoretical model, for an appropriate description of the above-mentioned empirical data. This
shows that the volatility-like term in the local field of Eq. (1), with B40, is indeed very important for a proper
description of real data.

Let us now consider data generated from our theoretical model. It is important to mention that, for the
parameters ðA; h;BÞ used herein, the magnitudes for the returns gets restricted to small values, in such a way
that the two maps [Eqs. (8) and (9)] lead essentially to the same quantitative results; an example of such a good
quantitative agreement is illustrated in the Appendix, through the computation of the Lyapunov exponents. In
the analysis that follows, we consider time series generated by using the values A ¼ 1:5 and h ¼ 0:01 (which
represent typical values used in Ref. [20]), as well as B ¼ 0:25 (which is very close to the average value of DJ30,
mentioned above), for the parameters of Eq. (6). Whenever comparing our theoretical data with the above-
mentioned DJ30 data, we shall use the set of parameters A ¼ 1:3, B ¼ 0:22, and h ¼ 0:01. In addition to that,
some analyses will also be carried for several values of the parameter B. For the one-dimensional map of
Eq. (8), we have always employed the initial condition xð0Þ ¼ 0, although we have verified that the particular
choice of xð0Þ is irrelevant for the general behavior of the time series.

First, we have generated a time series of returns xðtÞ from a numerical simulation, for finite values of N, by
means of both sequential and parallel updatings of the spin variables within the heat-bath algorithm, as
defined above. In the case of a parallel updating, for a very small number of agents, one gets time series
characterized by large fluctuations, as shown in Fig. 2(a) for N ¼ 50. Nevertheless, for increasing values of N,
the amplitude of the fluctuations decreases, and one observes well-defined bursts, even for small sizes, like
N ¼ 500, as shown in Fig. 2(b). Therefore, in the thermodynamic limit ðN !1Þ, one expects a time series of
returns consisting of small fluctuations around zero ðjxj51Þ, with the appearance of bursts randomly in time.
In the case of the sequential updating, we have noticed a slow convergence to the thermodynamic limit, in such
a way that, up to the values of N investigated (typically N ffi 5000), we have not identified clearly the presence

ARTICLE IN PRESS
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Fig. 1. (a) Probability distribution of returns xðtÞ (rescaled by their respective variance), from data of DJ30 (see text); the full line

corresponds to the distribution of Eq. (16), as described in the text. (b) Log–log plot of the probability distribution in (a), showing the

asymptotic behavior of Eq. (11); the straight line presents a slope �6:56, which would correspond to an exponent a ¼ 5:56. The squares

(circles) correspond to negative (positive) return values and are fitted by the same distribution as in (a), represented herein by a dashed

(dotted) line. These two fittings (dashed and dotted lines) are undiscernible to a naked eye.
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of bursts. However, in the long-time limit, the sequential updating of spins leads, in the thermodynamic limit,
to the one-dimensional map of Eq. (8).

In Fig. 3 we exhibit the time series, obtained from iteration of the map of Eq. (8), for B ¼ 0 [Fig. 3(a)] and
B ¼ 0:25 [Fig. 3(b)]. In both cases, one observes the presence of chaotic bursts, characteristic of extreme
events, in agreement with the empirical results [5,6], as well as with the results of the simulations shown in
Fig. 2. Also, one notices that the magnitude of the chaotic bursts increases for B40. It is important to notice
that, in either case of Fig. 3, the amplitude of returns remains small, i.e., jxj51, as expected from the
simulations of Fig. 2, in the thermodynamic limit; in addition to that, this result supports the use of the linear
approximation [Eq. (9)] for the map of Eq. (8). From now on, our results will refer to time series obtained
from the iteration of the map of Eq. (8).

In Fig. 4 we exhibit the probability distribution of returns for B ¼ 0 [Fig. 4(a)] and B ¼ 0:25 [Fig. 4(b)]; the
abscissae are rescaled by their respective variance. It is a well-known fact that the probability distribution of
returns of a real financial market does not follow a Gaussian distribution [5,6]. As an example of this, we have
the probability distribution of the above-mentioned DJ30 data, fitted by the function of Eq. (16). In the case of
Fig. 4(a), we have verified that the return distribution was well fitted by a symmetric power-law [cf. Eq. (16)]
with a tail exponent obtained through a Hill estimator, a ¼ 3:84� 0:04, and a standard non-linear fitting
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Fig. 2. The time series of returns xðtÞ generated from a parallel updating of N agents, for the cases (a) N ¼ 50; (b) N ¼ 500. The

parameters of Eq. (6) were considered as A ¼ 1:5, h ¼ 0:01, and B ¼ 0:25.

(a) (b)

x 
(t

)

x 
(t

)

t t

Fig. 3. The time series of returns xðtÞ generated from the map of Eq. (8), for the cases (a) B ¼ 0; (b) B ¼ 0:25. In both cases, the values

A ¼ 1:5 and h ¼ 0:01 were used.
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leading to Pð0Þ ¼ 0:532� 0:003, gþ ¼ g� ¼ 0:57� 0:03, with the goodness parameters w2 ¼ 1:4	 10�4 and
R2 ¼ 0:9847. Since Tsallis distributions [35,36] are closely related to dynamical systems containing additive
and multiplicative noises [37], like the one treated herein, we shall present as an equivalent fitting, a symmetric
Tsallis distribution,

pqðxÞ ¼
ðq� 1Þb
pð3� qÞ

� �1=2 Gðq=ðq� 1ÞÞ

Gððqþ 1Þ=2ðq� 1ÞÞ

1

½1þ bððq� 1Þ=ð3� qÞÞx2�1=ðq�1Þ
, (17)

represented in Fig. 4(a) by a full line. Within this fitting, one gets the entropic index q ¼ 1:42� 0:01 and
b ¼ 0:85� 0:03, with the same goodness parameters specified above. The probability distribution of Fig. 4(b)
displays an asymmetry, similarly to what happens in real financial systems; in this case, the best fitting, which
applies to the whole range of returns (positive and negative values), was found through a Tsallis distribution,
with a nonzero skewness,

pqðxÞ ¼ pqð0Þ
1

½1þ bððq� 1Þ=ð3� qÞÞðx2 þ cx3Þ�1=ðq�1Þ
, (18)

represented in Fig. 4(b) by a full line. For this fitting, we found b ¼ 1:68� 0:05, c ¼ 1:62� 0:04,
q ¼ 1:47� 0:03, and pqð0Þ ¼ 0:515� 0:003 (w2 ¼ 1:2	 10�3 and R2 ¼ 0:9454).

As mentioned before, the return probability distributions of real markets are asymmetric, presenting
different behaviors for the positive and negative tails [6]. Therefore, the model defined in Eq. (1), with B40,
leads to a probability distribution of returns that approaches real systems better than the corresponding model
without the volatility-like term (B ¼ 0). In order to show evidence of this, we have applied our theoretical
model by considering the parameters A ¼ 1:3, B ¼ 0:22 (which are the values we obtained from DJ30 data),
and h ¼ 0:01. The resulting probability distribution displays an asymmetry, similarly to what happens in real
financial systems, and may be fitted by the function of Eq. (16), with Pð0Þ ¼ 0:457� 0:007, and
gþ ¼ 0:44� 0:08, aþ ¼ 5:47� 0:04 (w2 ¼ 4:5	 10�4 and R2 ¼ 0:95199), for positive returns, whereas
g� ¼ 0:20� 0:06, a� ¼ 5:40� 0:03 (w2 ¼ 1:7	 10�4 and R2 ¼ 0:9880), for negative returns. The tail exponents
of each side coincide (considering the error bars), in such a way that one may define a single exponent,
a ¼ 5:44� 0:06, which agrees, within the error bars, with the estimate for the DJ30 data, a ¼ 5:56� 0:08. Such
large values for the exponent a are compatible with finite variances in the probability distribution of returns.
One expects that by considering larger-horizon series of returns, this distribution should approach a Gaussian,
in agreement with recent works [6,38], instead of a Lévy distribution, as previously conjectured [39]. However,
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(a) (b)

Fig. 4. Probability distributions of returns xðtÞ (rescaled by their respective variance), for the cases (a) B ¼ 0; (b) B ¼ 0:25. In both cases,

the values A ¼ 1:5 and h ¼ 0:01 were used. Nice fittings are represented in each case, by (almost undiscernible) full lines. In (a) the full line

represents a symmetric Tsallis distribution [cf. Eq. (17)], whereas in (b) the full line stands for a Tsallis distribution with a nonzero

skewness [cf. Eq. (18)].
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such an approach occurs more slowly than expected if one analyzes convolutions in the return variables; this
effect is attributed to the dependence of returns on volatility, which presents long-lasting correlations [40,41].

Let us now consider the two-time autocorrelation functions, as defined in Eqs. (13) and (14). In Fig. 5 we
exhibit the absolute values of CxðtÞ, for B ¼ 0 [Fig. 5(a)] and B ¼ 0:25 [Fig. 5(b)], as well as those of CvðtÞ, for
the same values of B [Figs. 5(c) and (d)]. In the autocorrelation function of returns, the well-known
exponential decay for small values of t, peculiar of intra-day empirical data [5,6], can only be found if B40; in
Fig. 5(b) one finds the characteristic decay time t� ¼ 8 [in arbitrary time units, as defined by Eq. (8)]. The case
B ¼ 0, for which one finds a noisy behavior in CxðtÞ for all values of t, is only appropriate for the description
of inter-day empirical data (i.e., large values of t). An entire satisfactory agreement with the expected
empirical behavior for the correlation function CxðtÞ, i.e., exponential decay for small t (intra-day data) and
noisy behavior for larger values of t (inter-day data) is only obtained if B40. However, in what concerns the
autocorrelation function of volatilities, the volatility-like term in Eq. (1) does not change qualitatively its
behavior. Figs. 4(c) and (d) are both in disagreement with the empirical results, that yield a power-law decay
for CvðtÞ [5,6]. In addition to that, we have verified numerically that correlation functions of powers (i.e.,
moments) of absolute returns did not exhibit multiscaling properties, in contrast to what has been found from
empirical data [42–44].

It is possible to define a correlation function CxðtÞ, associated with the DJ30 data (see Fig. 6), as a sample
average over its respective constituents. In this way, each square in Fig. 6 corresponds to an average of CxðtÞ
over the 30 stocks of DJ30. From this data, one gets the characteristic decay time (see dashed straight line in
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(a) (b)

(c) (d)

Fig. 5. Absolute values of the autocorrelation functions of returns CxðtÞ and volatilities CvðtÞ, for the cases B ¼ 0 [(a) and (c)] and

B ¼ 0:25 [(b) and (d)]. Full (empty) circles represent positive (negative) values of the correlations. In all cases, the values A ¼ 1:5 and

h ¼ 0:01 were used.
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Fig. 6), t� ¼ 4:50� 0:18 min. Now, if one computes CxðtÞ from a time series generated by our model, with the
parameters previously calculated from DJ30 data, i.e., A ¼ 1:3, B ¼ 0:22, and h ¼ 0:01, one finds (from full
straight line in Fig. 6), t� ¼ 4:19� 0:15 [in arbitrary time units, as defined by Eq. (8)]. Therefore, if one sets
1min as the unit of time in Eq. (8), our estimate for the correlation function CxðtÞ agrees, within the error
bars, with the real one.

The leverage correlation function LðtÞ, which measures the correlations between past returns and future
volatilities, is presented in Fig. 7 for B ¼ 0 [Fig. 7(a)] and B ¼ 0:25 [Fig. 7(b)]. The leverage effect, which
corresponds to a negative correlation between past returns and future volatilities, may be reproduced by
considering B40. In Fig. 7(a) one notices a simple noisy pattern, whereas in Fig. 7(b) one observes a behavior
similar to the empirical correlation for stock indices (see, e.g., Ref. [10, Fig. 2]). Such an empirical behavior is
well fitted by the function LðtÞ ¼ �A expð�t=t0Þ, which defines a characteristic time, t0.

Finally, we have also analyzed some of our results, namely, the correlation functions CxðtÞ and LðtÞ, for
different values of the parameter B. We have verified that the associated characteristic times, t� and t0, may
depend, in general, on the particular choices for the parameters (A; h;B). In order to illustrate the dependence
to these characteristic times on B, in Fig. 8, we plot ðt�Þ�1 and ðt0Þ�1 for several values of B in the range
[0.1,1.0], considering A ¼ 1:3 and h ¼ 0:01. The error bars, which represent uncertainties in the fits for the
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Fig. 6. The absolute value of the autocorrelation function of returns CxðtÞ from DJ30 data (squares) is compared with the one obtained

through the present model using the parameters A ¼ 1:3, B ¼ 0:22, and h ¼ 0:01 (circles).

(a) (b)

Fig. 7. The leverage correlation function LðtÞ, for the cases (a) B ¼ 0; (b) B ¼ 0:25. In both cases, the values A ¼ 1:5 and h ¼ 0:01 were

used.
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determination of these quantities, become smaller than the symbol sizes for BX0:4. One notices that both
ðt�Þ�1 and ðt0Þ�1 approach zero, for increasing values of B (typically, for B�1), indicating the ceasing of
validity for the exponential behavior of such correlation functions. It is important to stress that B�1 is well
above the appropriated range of values of B, mentioned in the beginning of the present section, to be used for
a satisfactory description of empirical data.

4. Conclusions

We have introduced a multi-interacting agent model, for the description of financial markets. The model
takes into account random interactions among the agents, including a significant term that measures the
volatility of the market. This new term contributes to adjust the agents in such a way to avoid large return
variations, taking into account a very important ingredient of financial markets, known as aversion to risk.
The model resembles, within the magnetic language, an Ising random magnetic model with infinite-range
interactions. We have shown that, the introduction of the volatility-like field term, provides a substantial
improvement, leading to important qualitative changes with respect to previous works in the literature. The
present model is able to reproduce the empirical behavior of several aspects of a real financial market: (i) non-
Gaussian probability distribution of returns, characterized by a nonzero skewness; (ii) exponential decay of
the two-time autocorrelation function of returns; (iii) negative correlations between past returns and future
volatilities (leverage effect). We have verified that the results obtained from data of the present model are in
good agreement with those obtained from one-minute return time series of the 30 most important individual
stocks of Dow Jones index. It appears to be surprisingly that such a simple microscopic model is able to
reproduce, so accurately, many features together of a real financial market. Although some methods that
enable the emergence of the long-time power-law behavior observed empirically in the two-time
autocorrelation function of volatilities have already been introduced [45–48], its appearance through
microscopic multi-interacting agent models of financial markets remains as a challenge for future
investigations.
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Appendix A. Analysis of the maps in Eqs. (8) and (9)

In this appendix we will discuss in detail the map obtained through the application of the mean-field
approach for the model discussed above [cf. Eq. (8)],

xðtþ 1Þ ¼ tanh½AxðtÞxðtÞ þ hzðtÞ � BjxðtÞj�. (A.1)

For small arguments, jAxðtÞxðtÞ � BjxðtÞj þ hzðtÞj51, this map may be written in its linearized form [cf.
Eq. (9)],

xðtþ 1Þ � AxðtÞxðtÞ þ hzðtÞ � BjxðtÞj. (A.2)

Depending on the choices of the parameters ðA; h;BÞ, the maps in Eqs. (A.1) and (A.2) may be dominated by
well-defined fixed points, or may present more complex behavior, like chaotic regimes. The onset of chaos,
signalled by the maximum Lyapunov exponent, lmax, becoming positive, should take place at a threshold
surface A�ðh;BÞ. For B ¼ 0, these maps fall in a general class of maps that have been investigated extensively
[29–31]. In the case h ¼ 0, for a uniformly distributed noise xðtÞ in the interval ð�1; 1Þ, there is a fixed point at
x ¼ 0 for AoA�ð0; 0Þ ½A�ð0; 0Þ ¼ e ¼ 2:718 . . .�, whereas for AXA�ð0; 0Þ this fixed point loses stability and one
enters into the chaotic region. We have computed lmax through the algorithm described in Ref. [49], for the
maps above, and the results in the simplest case h ¼ B ¼ 0 are exhibited in Fig. 9. In this case, we have verified
that both maps present essentially the same lmax up to A � 3, which implies that the threshold value,
A�ð0; 0Þ ¼ e ¼ 2:718 . . . ; applies to both maps. However, beyond A � 3, the two maps present different
estimates for lmax: whereas for the map of Eq. (A.1) the chaotic regime disappears at A � 3:12, with the fixed
points x ¼ �1 becoming new attractors for larger values of A, the chaotic regime persists for wider ranges of
A in the map of Eq. (A.2). Therefore, this later map presents a much richer behavior than the former and, for
this reason, has been more investigated in the literature.

For h ¼ B ¼ 0, the map of Eq. (A.2), which was introduced in the context of intermittency [29–31], may
present very interesting behavior, due to the multiplicative noise xðtÞ. In this case, the trajectories depart from
a laminar phase (x ¼ 0), when Ax4e, and are reinjected towards x ¼ 0, when Axoe, yielding the typical
on– off intermittency behavior. The on–off regime is composed by rare sequences of large (on average) values
of x separated by laminar phases of random length which, at the onset of intermittency, are characterized by a
power-law distribution with an exponent �3

2
[29,31]. The introduction of the additive noise term, hzðtÞ (h small,
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Fig. 9. The maximum Lyapunov exponent associated with the maps defined in Eqs. (A.1) (full line) and (A.1) (dashed line) is exhibited

versus A, for the case h ¼ B ¼ 0.
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typically, h � 0:01), leads to smaller values for the threshold of chaos, i.e., A�ðh; 0ÞoA�ð0; 0Þ; indeed, one finds
A�ðh; 0Þ ¼ 1 for any additive noise [29–31]. In this case, for A41, the system is said to be in an attractor

bubbling regime, where the additive noise is responsible for the bursts; the role of the multiplicative noise
consists in the amplification of the bursts generated by the additive noise.

Let us now turn to the case B40. In Fig. 10 we exhibit lmax, computed through the algorithm of Ref. [49],
for the maps above, in the case h ¼ 0, and the estimated DJ30 average value of B, i.e., B ¼ 0:22. The fact that
the two estimates for lmax are very close reflects the validity of the linear approximation. Surely, one of the
effects of B40 is to restrict the validity of the linear approximation to smaller ranges of A; this is verified for
B ¼ 0:22, where the two maps present approximately the same lmax up to A � 2, to be compared with A � 3,
when B ¼ 0. Through similar estimates of lmax, we have checked that for the range of B of interest in this
paper (0pBp0:35), the two values of A used herein (A ¼ 1:5 and 1:3) fall inside regions of validity of the
linear approximation. From Fig. 10 one gets always lmaxo0 for the map of Eq. (A.1), leading to a complete
suppression of the chaotic regime. However, for the map of Eq. (A.2), such a regime takes place for any
A4A�ð0; 0:22Þ, where A�ð0; 0:22Þ � A�ð0; 0Þ ¼ e ¼ 2:718 . . . [in fact, we have computed A�ð0; 0:22Þ up to two
decimal places, A�ð0; 0:22Þ � 2:72]. Similarly to what happens in the case B ¼ 0, the introduction of an
additive noise term, hzðtÞ, leads to smaller values for the threshold of chaos. For h ¼ 0:01 and B ¼ 0:22, we
have estimated, up to two decimal places, the same threshold of chaos as in the case B ¼ 0,
A�ð0:01; 0:22Þ � 1:00. Since the parameter B does not bring any external noise to the maps above, the on-
off intermittency [produced by the multiplicative noise term AxðtÞ] and attractor bubbling [produced by the
additive noise term hzðtÞ] regimes are still present for B40. Therefore, apart from the expected shrinking of the
range of the A parameter, along which the linear approximation is expected to remain valid, the introduction
of the new term BjxðtÞj does not change significantly the stability properties of the maps of Eqs. (A.1) and
(A.2), at least for the magnitudes of B of interest in the present paper.

Let us now derive a simple equation relating the exponents of the tails of the probability distribution
associated with the map of Eq. (A.2), in the case h ¼ 0, with the parameters A and B. Since this map presents
two branches, each one of them being similar to the multiplicative-noise map studied in Ref. [32], we assume
that the probability density function presents the following asymptotic behavior,

PðxÞ�
jxj�a�1 if xo0;

jxj�b�1 if xX0;

(
(A.3)

where, in principle, aab, since the dynamics for the positive and negative parts may be different. Carrying out
the change of variables y ¼ ln jxj, and imposing the conservation of probabilities ½PðxÞdx ¼ pðyÞdy� for each
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Fig. 10. The maximum Lyapunov exponent associated with the maps defined in Eqs. (A.1) (full line) and (A.1) (dashed line) is exhibited

versus A, for the case h ¼ 0 and B ¼ 0:22.
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of the parts in the equation above, one gets

p�ðyÞ�e�a y; pþðyÞ�e�b y, (A.4)

where the �ðþÞ notation applies to the y variable associated with xo0 ðx40Þ. Considering the fact that the
new variable y may be obtained from both positive and negative values of x, the full probability density
function for y, in its asymptotic regime, should be proportional to the sum of p�ðyÞ and pþðyÞ, i.e.,

PðyÞ / e�a y þ e�by. (A.5)

Let us now consider the map of Eq. (A.2) in the case h ¼ 0; taking the absolute value on both sides and
splitting the contributions for negative and positive values of xðtÞ,

jxðtþ 1Þj � jðAxðtÞ þ BÞxðtÞj if xo0;

jxðtþ 1Þj � jðAxðtÞ � BÞxðtÞj if xX0;

(
(A.6)

and then, applying the logarithm on both sides,

yðtþ 1Þ � ln jAxðtÞ þ Bj þ yðtÞ if xo0;

yðtþ 1Þ � ln jAxðtÞ � Bj þ yðtÞ if xX0;

(
(A.7)

where we have used yðtÞ ¼ ln jxðtÞj.
In the analysis that follows we shall restrict ourselves to parameters A4B40, which corresponds to the

situation of interest in the present paper. Defining z ¼ jAxþ Bj, z0 ¼ jAx� Bj, and reminding that x is a
uniform random variable in the interval ð�1; 1Þ, one immediately verifies that the probability distributions
associated with these variables are given by

PðzÞ � Pðz0Þ ¼
1=A if 0oz; z0ojA� Bj;

1=ð2AÞ if jA� Bjoz; z0ojAþ Bj:

(
(A.8)

Now, for a variable w ¼ Z; Z0, where Z ¼ ln z and Z0 ¼ ln z0, one obtains,

pðwÞ ¼
½1=A� expðwÞ if �1owo ln jA� Bj;

½1=ð2AÞ� expðwÞ if ln jA� Bjowo ln jAþ Bj:

(
(A.9)

From (A.7) one gets that the probability P½yðtþ 1Þ�, for obtaining the variable y at time tþ 1, is given by
summing the contributions from x40 and xo0; the contribution for xo0 (x40) results from an integration
over all possible values of yðtÞ and ZðtÞ (Z0ðtÞ). In other words,

P½yðtþ 1Þ� /

Z
p�½yðtÞ�p½ZðtÞ�dfyðtþ 1Þ � yðtÞ � ZðtÞgdyðtÞdZðtÞ

þ

Z
pþ½yðtÞ� p½Z0ðtÞ�dfyðtþ 1Þ � yðtÞ � Z0ðtÞgdyðtÞdZ0ðtÞ, ðA:10Þ

which, after using Eq. (A.4), results in

P½yðtþ 1Þ� / exp½�ayðtþ 1Þ�

Z
p½ZðtÞ� exp½aZðtÞ�dZðtÞ

þ exp½�byðtþ 1Þ�

Z
p½Z0ðtÞ� exp½bZ0ðtÞ�dZ0ðtÞ. ðA:11Þ

Comparing Eqs. (A.5) and (A.11), one getsZ
p½ZðtÞ� exp½aZðtÞ�dZðtÞ ¼

Z
p½Z0ðtÞ� exp½bZ0ðtÞ�dZ0ðtÞ ¼ 1. (A.12)

Since pðZÞ ¼ pðZ0Þ, the two integrals above are equivalent. Therefore, a ¼ b, i.e., the asymptotic behavior of the
probability distribution PðxÞ [cf. Eq. (A.3)] follow a power-law with the same exponent a for both positive and
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negative values of x. By solving Eq. (A.12), one gets the following relation:

ðA� BÞ1þa þ ðAþ BÞ1þa

2Að1þ aÞ
¼ 1, (A.13)

which is used in the main text.
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