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On the stability of phantom K-essence theories
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We show that phantom dark energy, if it is described by a K-essence theory, has three fundamental
problems: first, its hamiltonian is unbounded from below. Second, classical stability precludes the
equation of state from crossing the “Lambda-barrier”, wΛ = −1. Finally, both the equation of state
and the sound speed are unbounded — the first, from below, the second, from above — if the kinetic
term is not bounded by dynamics.
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I. INTRODUCTION

Observations of Type 1A Supernovae [1], of the cosmic
microwave background radiation [3] and of large-scale
structure [4] indicate that the universe is currently ex-
periencing a stage of accelerated expansion. When the
SN data is considered independently of any other osber-
vations, the resulting constraints on dark energy parame-
ters allow (indeed, prefer) values for the equation of state
w = pde/ρde

<∼ −1, where pde and ρde are the cosmo-
logical pressure and energy density of the dark energy
component [2]. However, when cosmic microwave back-
ground and large-scale-structure data are considered as
well, the constraints become much tighter, and there is
not much space to wiggle around w ≃ −1. Neverthe-
less, much thought has been devoted to the possibility
that superacceleration (w < −1) may rule our universe
in the near future [5] and even cause a future spacelike
singularity (“big-rip”) [6].

In this paper we show that, in the realm of General Rel-
ativity, a non-interacting phantom matter field is a very
tough sell indeed. If we try to build phantom matter out
of canonical scalar fields, we are led to consider a nega-
tive kinetic term in the Lagrangian [5], which makes the
theory unstable — classically and quantum-mechanically
[7, 8]. On the other hand, if we enlarge the class of scalar
field Lagrangians to include those of the type of K-essence
[9], then, as we will presently show, phantom K-matter
[10] suffers from at least three basic problems.

First, phantom K-matter is quantum-mechanically un-
stable. This means that there is always a region in phase
space where hard (UV) excitations of the field possess
negative energies. Since there is nothing that can pre-
vent positive-energy modes from decaying into negative-
energy modes, all matter fields in the universe would de-
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cay instantly through tunneling into the negative-energy
modes of such a scalar field. The theory is sick, and there
is no cure.

Second, the equation of state is unbounded from below
(w → −∞) if the kinetic energy is not bounded. More-
over, as the equation of state diverges, so does the sound
speed, c2

s → ∞. This means that, besides potential prob-
lems with causality, the frequency of field oscillations di-
verges near the big-rip singularity. The only way to stop
running into these divergences is if relativistic dynamics
intervenes to stop the field from running to w = −∞.
We will show in Sec. IV that this is indeed possible.

Third, we give a simple proof of a known result [11]
which shows that phantom K-matter, with w < −1, can-
not cross the “phantom barrier” at w = −1 if one as-
sumes classical stability, c2

s ≥ 0. This means that if the
equation of state is found to cross this barrier, then dark
energy must be described by other fluid-like models [12]
or through non-minimal couplings to gravity [13].

II. PHANTOM DARK ENERGY WITH

K-ESSENCE MATTER

A minimal generalization of the usual canonical La-
grangian is the so-called K-Lagrangian, introduced ini-
tially to enlarge the class of inflationary models [14, 15].
Later, they were also studied as dark energy models (see,
e.g., [9, 16].)

Any sensible phantom k-essence matter that can drive
the super-acceleration of the Universe should satisfy
three criteria:

a) It should be a phantom field: w ≡ p/ρ <
−1 in some spacetime volume.

b) Classical solutions should be stable: the
sound speed c2

s of classical perturbations of
the field around homogeneous FLRW solu-
tions cannot be negative.

c) Quantum stability: the Hamiltonian must
be limited from below. Evidently, any system
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with a Hamiltonian which is unbounded from
below would be instantly destroyed by quan-
tum tunelling of positive-energy particles into
the negative-energy particles. For theories
with non-canonical kinetic terms, the quan-
tum stability is a nontrivial issue.

In what follows we will assume that the matter sector is
represented by a K-essence scalar field Lagrangian, which
has the form:

L =
√
−g F (X)V (φ) , (1)

where:

X ≡ 1

2
∂µφ ∂µφ , (2)

and we use the timelike metric signature, ηµν =
diag(+,−,−,−). For a canonical scalar field theory,
L = X − V (φ).

The energy-momentum tensor of this fluid reads:

Tµν =
2√−g

∂L
∂gµν

= V F ′∂µφ∂νφ − gµνV F , (3)

where a prime denotes a derivative with respect to X . In
gaussian coordinates, which can be constructed in finite
regions in general and globally if the topology of space-
time is M4 = R

⊗

M3, one can write:

X ≡ 1

2
g00∂0φ ∂0φ − 1

2
|gij |∂iφ ∂jφ ≡ Xt − Xs , (4)

where Xt and Xs are both non-negative. The Hamilto-
nian then reads:

H = T 0

0 = V (2F ′[Π, Xs, φ]Xt[Π, Xs, φ] − F [Π, Xs, φ]) ,
(5)

where Π ≡ F ′V ∂0φ is the conjugated momentum.
In homogeneous and isotropic spacetimes Xs = 0, and

we obtain:

ρ = T 0

0
= V (2F ′X − F ) , (6)

and:

p = −1

3
T i

i = V F , (7)

implying that:

w =
p

ρ
= − 1

F 2

(

X
F 2

)′ . (8)

Hence, condition (a), w < −1, yields:

0 < 2X
F ′

F
< 1 , (9)

or, equivalently:

F ′ > 0 , F − 2XF ′ > 0 if F > 0 ,

F ′ < 0 , F − 2XF ′ < 0 if F < 0 . (10)

The sound speed, c2
s, is the function appearing before

spatial gradients in the scalar field equation-of-motion,
φ̈ + c2

s∇2φ + . . . = 0, and for perturbations around ho-
mogeneous solutions, it is a function of time. The sound
speed expresses the phase velocity of the inhomogeneous
perturbations of the scalar field. Therefore, to avoid ex-
ponentially growing solutions and thus ensure classical
stability, we must have c2

s ≥ 0. On the other hand, to
ensure causality in the usual sense the condition would be
c2

s ≤ 1. However, since the theories we consider are per-
fectly Lorentz invariant (the superluminal propagation
being just a consequence of the nonlinearity of the the-
ory [15]), we will only impose the first condition (classical
stability), as superluminal propagation cannot be ruled
out by observations if the scalar field is dark, i.e., if it
does not interact with normal matter.

For K-essence models the sound speed takes the simple
expression [15]:

c2

s =
p′

ρ′
=

F ′2

(F ′2X)′
. (11)

Condition (b), that c2

s ≥ 0, implies:

(F ′2X)′ ≥ 0 . (12)

In the subsequent subsections we will use the following
relation between c2

s and w coming from Eqs. (8) and
(11):

1 − w

c2
s

=
2Xw′

1 + w
. (13)

Finally, condition (c) implies that H = V (2F ′Xt − F )
must be bounded from below. As we will show in the
next section, this is impossible given the two conditions
above, Eqs. (10) and (12).

III. GENERAL RESULTS

A. The general Hamiltonian is not bounded from

below

Suppose initially that V > 0, so the function H/V
must be shown to be bounded from below. The condi-
tions in Eqs. (10) are constraints on the function F (X)
and its derivative, that do not depend on how X is ob-
tained from the phantom field (or whether it is homoge-
neous or not). That condition must be satisfied when-
ever X > 0 (which is the only constraint the restriction
to homogeneous fields imposes on the possible values of
the real variable X), otherwise the homogeneous model
would not yield a super-accelerated expansion, and it
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should be discarded. As ρ+3p = 2V (F ′X+F ) < 0 , in or-
der to have acceleration in the homogeneous background
(where X > 0), one must take from condition (10) the
alternative F < 0 and F ′ < 0 because we are now con-
sidering V > 0. Hence, in this case, one must have from
Eq. (10) that F ′

0
= F ′(X0) < 0 and F0 = F (X0) < 0 for

any given value X = X0 > 0. We will show below that
the subset of fluctuations that keeps X > 0 constant,
while varying Xt and Xs, is such that the Hamiltonian
is unbounded from below. This suffices to prove that the
system is unstable.

Consider, then, quantum fluctuations such that X is
kept fixed, X = Xt − Xs = X0 > 0, but where Xt can
vary freely. In order for the Hamiltonian to be bounded
from below, one must have 2XtF

′
0 − F0 > C, where C is

some finite constant. However, since F ′
0

< 0 and F0 <
0 are fixed, the stronger the quantum fluctuation, the
larger Xt and therefore the Hamiltonian is unbounded
from below.

On the regions where V < 0 the proof is similar. Using
the same reasoning, one now has that F ′

0
> 0 and F0 >

0, and hence H = V (2F ′Xt − F ) is unbounded from
below because here V is negative. Notice that for V F <
0, in the case of FLRW backgrounds, the condition (9)
implies that ρ = −V F 3(X/F 2)′ > 0. Notice also that,
within this class of Lagrangians, the Hamiltonians of the
canonical and the Born-Infeld cases, respectively F = X
and F = −

√
1 − 2X, are bounded from below. However,

these cases do not represent phantom fields.

B. The equation of state and sound speed are

unbounded if w < −1 and c2

s
≥ 0

From Eq. (13) one has:

c2

s =
|w||1 + w|

2X |w′| − |1 + w| . (14)

In order for 0 ≤ c2
s < ∞ we must have:

lim
X→∞

[−2Xw′(X)] > lim
X→∞

|1 + w| > 0 . (15)

We will prove by contradiction that one cannot have
w(X) = w∞+f(X), where −∞ < w∞ < −1 is a constant
and limX→∞ f(X) = 0. Notice that:

lim
X→∞

[−2Xf(X)]′ = 2 lim
X→∞

[−f(X) − Xf ′(X)]

= lim
X→∞

[−2Xf ′(X)]

> |1 + w∞| ,

where we used Eq.(15) and limX→∞ w(X) = w∞ in the
last step. Hence:

lim
X→∞

f(X) = −1

2
lim

X→∞
[
1

X

∫

(−2Xf ′(X))dX ]

< −1

2
|1 + w∞| < 0 ,

contradicting the hypothesis that limX→∞ f(X) = 0.
Hence, for w < −1 and 0 ≤ c2

s < ∞ we must have that:

lim
X→∞

w(X) → −∞ . (16)

Similarly, we can prove that the sound speed, c2
s, is also

unbounded (from above) in phantom K-matter models.
Here it is useful to write Eq. (13) as:

c−2

s =
1

w
− 2Xw′

1 + w
. (17)

One can see that c2

s does not diverge if and only if the
expression above does not goes to zero when X → ∞,
where, as we have proven above, w → −∞. Hence, for
very large values of X we have:

1

w
− 2Xw′

1 + w
≈ 2

(

X

w

)′

= h(X) = hmin > 0 , (18)

where hmin is the minimum value of h(X) for X very
large. However, from Eq.(18), one could then write:

lim
X→∞

2

w
=

1

X

∫

h(X)dX > hmin , (19)

which is contradiction with the previous result that
limX→∞ w(X) → −∞. Hence, limX→∞ c2

s(X) → ∞.

C. The equation of state cannot cross the value −1
if c2

s
≥ 0

Let us first consider cosmological solutions, for which
X = Xt > 0. If w < −1, Eq.(13) reads:

1 +
|w|
c2
s

= − 2Xw′

|1 + w| , (20)

and w′ < 0. This means that, as a function of X the
equation of state is a monotonically decreasing function.

On the other hand, if −1 < w < 0 then Eq.(13) reads:

1 +
|w|
c2
s

=
2Xw′

|1 + w| , (21)

and w′ > 0. In this case, w as a function of X is a mono-
tonically increasing function. Hence, w cannot cross the
value −1 if the sound speed is non-negative [11].

IV. TOY MODEL

In this section we present an example of a K-essence
Lagrangian where conditions (a) and (b) of Sec. II are
satisfied, and in which no divergences of w and c2

s appear.
The kinetic function F (X) reads:

F (X) = 1 + aX(1 + X) − b(1 − Xn)n , (22)
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FIG. 1: The three curves are, from top to bottom: ρ/V
(black), the sound speed c2

s
(red), and the equation of state

w (blue).

where a and b are some constants, n is some positive half-
integer, and V (φ) is left arbitrary. General-relativistic
dynamics constrain X to the interval 0 < X < 1, be-
cause at X = 0 and X = 1 there are singularities in
the derivatives of the curvature tensor. With n = 5/2,
a = 0.1 and b = 0.01, for example, the equation of state
remains bounded, −1 < w < −2, and the sound speed
is always positive but finite, 0.43 < c2

s < 1 — see Fig.
1. However, the parameter subspace where this occurs
seems very small when compared to the full parameter
space of this toy model.

V. DISCUSSION

We have shown in this paper that one cannot obtain K-
essence phantom models without quantum instabilities.
This is a direct consequence of the phantom imposition,
namely, w = p/ρ ≤ −1 for some range of X ≡ ∂µφ∂µφ/2,
which in fact must be true for all values of X if one im-
poses classical stability. Hence, lagrangians of the type of
Eq. (1) cannot be considered as fundamental descriptions
of phantom fields, being at most effective lagrangians
aplicable to the cosmological set-up.

We have also shown that classically stable K-essence
phantom models present divergences of w in the negative
direction (w is bounded from above by w = −1, but un-
bounded from below), and of c2

s in the positive direction.
These divergences occur unless X → ∞ is dynamically
forbidden – either by limiting the range of X in the la-
grangian or by adjusting the potential V (φ). We have
exhibited an example of a phantom K-essence lagrangian
with the first property.
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