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Abstract 

The position representation of the evolution operator in quantum mechanics is analogous to the generating function 
formalism of classical mechanics. Similarly, the Weyl representation is connected to new generating functions described 
by chords and centres in phase space. Both classical and quanta1 theories relie on the group of translations and reflections 
through a point in phase space. The composition of small time evolutions leads to new versions of the classical variational 
principle and to path integrals in quantum mechanics. The strong resemblance between the two theories allows a clear 
derivation of the semiclassical limit in which observables evolve classically in the Weyl representation. The restriction of 
the motion to the energy shell in classical mechanics is the basis for a full review of the semiclassical Wigner function 
and the theory of scars of periodic orbits. By embedding the theory of scars in a fully uniform approximation, it is shown 
that the region in which the scar contribution is oscillatory is separated from a decaying region by a caustic that touches 
the shell along the periodic orbit and widens quadratically within the energy shell. 0 1998 Elsevier Science B.V. 

PACS: 03.; 03.65.-w; 03.65.Sq 

Keywords: Variational principle; Path integral; Wigner function; Scars 

0370-1573/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved 
PZZ so370-1573(97)00070-7 



A.M. Ozorio de Almeidal Physics Reports 295 (1998) 265-342 267 

0. Introduction 

The Wigner function was originally devised with the purpose of reconciling quantum statistical 
mechanics with classical phase space [l-3]. An apparent contradiction with the uncertainty principle 
tends to surround this Weyl representation of the density operator with a certain mystery. As a result, 
the Wigner function can be negative-valued, disallowing its direct correspondence with the classical 
Liouville probability density. However, its projections correspond to probabilities in positions or 
momenta, and its smoothing, known as the Husimi function [4,5], is also positive definite. 

The study of the semiclassical limit of pure quantum states has also directed attention to the Wigner 
function [6,7]. The important point is that the features that distinguish integrable from chaotic motion 
in classical mechanics manifest themselves most clearly in the full phase-space picture. Thus, it is 
expected that their emergence in the semiclassical limit should be optimally illuminated by the Weyl 
representation. Indeed, Berry [7] showed that the amplitude peak of the Wigner function for the 
pure state of an autonomous system with a single freedom lies close to the energy shell and Ozorio 
de Almeida and Hannay [38] generalized this picture for the invariant tori of classical integrable 
systems. 

For a point x within the torus, Berry obtained the phase of the oscillating semiclassical Wigner 
function by an appealing “chord construction”: the phase is proportional to the symplectic area (or 
action) bounded by the torus and the torus chord that is centred on x. Later, Marinov [8] found that 
an analogous chord construction determined the semiclassical limit of the Weyl propagator, i.e. the 
Weyl transform of the evolution operator. The difference is that in this case the tips of the chord 
centred on x must lie on the same classical orbit. Marinov [9] showed that the phase of the Weyl 
propagator satisfies a new version of the classical Hamilton-Jacobi equation, thus bringing the chord 
construction into classical mechanics itself. 

The derivation of a path integral for the Weyl propagator introduces the chord construction into the 
core of quantum mechanics. Even though the original presentation by Berezin and Marinov [8, lo] 
obscured this point by doubling the number of variables, the present author [ 1 l] obtained a formula 
that is indeed analogous to the classical variational principle for the centre generating mnction [12]. 

These new presentations of path integrals and classical variational principles are connected with 
the traditional versions through the notion of double phase space. Since the dynamical state of 
a system is completely determined by a point in phase space, its evolution after a time t is de- 
scribed by an ordered pair of such points, or, alternatively, by a point in double phase space. For 
a Hamiltonian system with L freedoms, phase space has (2L) dimensions and double phase space 
has (4L) dimensions, within which the classical transformation is represented by a (2L)-dimensional 
surface. The uncertainty principle only permits complete knowledge of half the coordinates of both 
the initial and the final phase space, usually chosen to be positions, though the momenta are equally 
legitimate. The Weyl representation relies on the alternative choice of the centre of the vector joining 
each pair of initial and final phase space points. 

For this reason I shall often refer to the Weyl representation as the centre representation, specially 
when considering the complementary chord representation. The latter arises from the perception that 
the family of affine vectors that we could choose for a given centre are complementary variables 
to the centres themselves, in analogy to the familiar relation between positions and momenta: In 
both cases we obtain a classical action by integrating one variable with respect to the other. The 
centre representation of the unitary evolution operator relies on half the coordinates of double phase 
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space, just as the usual position representation. In the latter case we forego the specification of the 
momenta, whereas in the former it is chords that remain undetermined. 

Though classical mechanics allows us to specify complementary variables simultaneously, we can 
mimic the quantum view through the formalism of generating functions. Determining a canonical 
transformation via a generating function that depends only on positions, the complementary initial 
and final momenta result from appropriate derivatives. We can also specify a canonical transfotma- 
tion by its centre generating function, from which we obtain the corresponding chords by differen- 
tiation. It is in this sense that we may speak of a Weyl representation in classical mechanics. The 
Legendre transform of the centre generating function coincides with the chord generating function 
and vice versa, whereas symmetrized Legendre transforms connect these with the familiar position 
or momentum generating functions. All these transformations of representation are a consequence 
of the Lagrangian property of the (2L)-dimensional surface in double phase space that defines a 
canonical transformation, that is, it is a null surface for the appropriate action (or two-form). 

The relationship between each of the centre, chord, momentum or position representations in 
quantum mechanics bears exact analogy with that connecting the corresponding classical generating 
functions if we merely substitute Fourier for Legendre transforms. I shall not attempt to provide a 
fully comprehensive survey, but will reveal here instead the novel aspects of this conceptual web. 

The unifying thread is provided by the fundamental operations of translation and reflection in 
phase space. By reflection, I shall always mean reflection through a point, synonymous to inversion 
or half-turn [ 131. It is well known that the translations form a group, but the fact that this is 
contained in a wider group which includes the reflections about each point in phase space [ 131 has 
not been widely appreciated in dynamics. In quantum mechanics, the unitary reflection operators are 
defined as Fourier transforms of the familiar translation operators [57,58]. 

Consider the uniform translation, of the points x = (p,, . . . , pL, ql, . . . , qL) in (2L)-dimensional 
phase space, by a vector r, 

x+=T,(x_)=x_+a, 

and the corresponding quantum operator TN”,. The reflection through the point a is defined as 

x+=Ra(x-)=-x_+2a, 

corresponding to the quantum operator R,. The Weyl (centre) representation of an arbitrary linear 
operator j is the function B(x) defined by the trace of i&b. Similarly, the trace of f_,h defines its 
chord symbol B(5). 

In classical mechanics, the full canonical transformation C :x+ = C(L) is either obtained by 
expressing 5 =x+ - x- in terms of x = (x+ +x-)/2, or vice versa. In the former case we start with 
the centre generating function S(X) and 5 is determined by its derivatives, whereas, in the latter, 
we differentiate the chord generating functions S(c). We can also determine 5 directly, given x, by 
noting that x- = x - 5/2 is the fixed point of the combined transformation R, o C. Likewise, if we 
start with a given displacement c, we obtain X_ as the fixed point of T_, o C. 

Thus, we again find a close analogy between the chord or the centre representations in quantum 
and in classical mechanics. In both cases we combine the operation to be described with either a 
translation or a reflection. Then we take the trace in quantum mechanics or find the classical fixed 
point. 
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There are definite advantages of the centre representation over the one in terms of chords. The 
former is ideally suited for the description of transformations close to the identity and, therefore, 
continuous time evolution, for which the chord representation becomes singular. Another advantage 
is that the Weyl representation of a Hamiltonian operator is necessarily real and, of course, there 
are the many desirable properties of the Wigner function. However, it turns out that there is a great 
increase of analytic flexibility, simplifying the development of the theory if we develop the chord 
along with the centre representation. 

The first three sections of this review are dedicated to classical mechanics. Linearizing the flow in 
the neighbourhood of a classical orbit leads to the Cayley parametrization of symplectic matrices and 
hence to the quadratic centre and chord generating functions for linear canonical transformations. 
Section 1 also develops the relationship between these classical representations and the fundamental 
group of translations and reflections in phase space, a normal subgroup of the full affine symplectic 
group. 

Section 2 is concerned with the composition of canonical transformations. These are described by 
polygons in phase space, specified by the centres of their sides in the case of the Weyl representation. 
Dividing a finite time flow into an arbitrarily large number of steps, we obtain a new derivation of 
the variational principle: Among all the infinite-sided polygons where the centre of one of its sides 
is kept fixed, the symplectic area is only stationary when all the other sides together coincide with 
a classical trajectory. There follows a derivation of the more usual formulations of the variational 
principle and of Marinov’s version of the Hamiltonian-Jacobi equation. Further mathematical results 
concerning the geometry of polygons in phase space are provided in Appendix A. 

Section 3 deals with the variational principle for fixed energy. The construction of the corre- 
sponding orbits that lie on the energy shell, such that their tips are centred on a given point in 
phase space, leads us to the definition of the centre map. The desired orbits determine fixed points 
of this variation of more familiar Poincare maps. For the latter, the fixed points determine periodic 
orbits, so we obtain a family of solutions of the centre variational principle for each periodic orbit. 
The centre representation breaks down along centre caustics, corresponding to the caustics of the 
semiclassical Wigner function [7]. It is shown that in the case of more than one freedom there is 
one fold caustic for each period orbit, along which the caustic touches the energy shell. Inside the 
shell the caustic widens smoothy. Traversal of such caustics involves a passage through the chord 

representation. 
From then on the presentation is concerned with quantum mechanics. The definition of the op- 

erator for translations in phase space in Section 4 is chosen so that compositions of translations 
generate polygons analogous to those in classical mechanics. Together with the reflections obtained 
as their Fourier transform, they reproduce the classical group. To end this section we review the 
representations of quantum states, introducing the Husimi representation in terms of the diagonal 
matrix elements in the basis of coherent states. 

Section 5 presents the centre and chord representations for quantum operators, connecting them 
with the usual representations. We study a few examples of the Wigner function, from which we 
obtain the Husimi representation as a Gaussian smoothing of the Weyl representation. 

The chord representation of the products of operators leads to a generalized formula for the Weyl 
representation of an arbitrary number of operators, which is a semiclassical expansion in powers 
of Planck’s constant in the case of observables, generalizing the Groenewold rule [32]. The rest 
of Section 6 is dedicated to the path integral for the Weyl propagator, obtained from the integral 
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formula for the centre representation of the product of operators. The evolution is expressed as a 
superposition of phases defined as the symplectic area of all the infinite-sided polygonal lines with 
ends centred at a given phase-space point. The trace of this operator is defined by the set of closed 
polygonal lines. The deduction is quite analogous to that of the classical variational principle, so that 
the semiclassical limit becomes specially transparent. Relying on the group of metaplectic operators, 
corresponding to classical linear transformations, we find that observables evolve classically in the 
semiclassical limit of the Weyl representation. 

In the final section, we take the time Fourier transform of the Weyl propagator to obtain the 
spectral Wigner function and hence discuss the nature of stationary states and their semiclassical 
limit. Building on the classical theory presented in Section 3, we obtain a uniform theory for the 
semiclassical limit as the evolution point passes into the energy shell. This includes a curvature 
correction to the Berry theory for the scars of periodic orbits [ 141 which damps the contribution of 
far away orbits. There results a new obstacle to be surmounted by the resummation of the periodic 
orbits for the spectral Wigner functions. 

The geometrical constructions underlying the results in Sections 3 and 7 are more complicated 
than those necessary for the time-dependent theory. Thus, the reader that is not primarily interested 
in the energy shell structure may profitably skip directly from Section 2 to 4. 

The basic purpose of this report is to present a self-consistent formalism for nonrelativistic classical 
and quantum mechanics based entirely on centres and chords. We can certainly translate all the 
quanta1 results into the familiar position representation of wave mechanics, just as we can also 
derive all of classical mechanics from a Lagrangian formulation, but the Weyl representation stands 
on its own as an alternative. In spite of the length of this text, it has been pruned so as to present 
strictly the main line of reasoning. Thus, there are many important subjects, such as Weyl ordering, 
for which the reader will depend on the basic references provided. 

Is there any merrit in presenting yet another reformulation of mechanics? Though it is early to 
predict the possible uses of the present theory, I believe that the fundamental point concerns the 
invariance of the theory with respect to different groups of transformations: classical mechanics is in- 
variant with respect to the full group of canonical transformations, whereas quantum mechanics is 
not. The generating functions of classical mechanics also lack this flexibility, though each type of 
generating function is invariant with respect to a particular subgroup of canonical transformations. 
In particular, the position generating functions are invariant with respect to point transformation, i.e. 
those where the positions transform among themselves without mixing with the momenta. Obtained 
from coordinate transformations of the Lagrangian, we can also bring this invariance into wave 
mechanics. The prevalence of simple Hamiltonians where the momentum dependence is separate 
and quadratic accounts for the enormous success of wave mechanics. 

Quantum mechanics is also invariant with respect to metaplectic transformations, corresponding 
to linear canonical transformations. This fact becomes self-evident in the Weyl representation and is 
reflected in the invariance of the chord and centre generating functions with respect to symplectic 
transformations. The basis of the semiclassical approximation is the linearization of the motion 
along a classical orbit, so that the semiclassical approximation becomes exact for linear motion. It 
is natural that the deepest insight into the semiclassical limit should be obtained in the representation 
that is symplectically invariant. 

Work is in progress along some of the many directions that are left open by the following pre- 
sentation. The most obvious need is for a complete theory of Morse and Maslov indices for the 
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semiclassical approximation, since these are only determined explicitly in the text for small times. 
Another challenge that is being tackled is to derive a resummed formula for individual Wigner 
functions. All the same, I felt that the remarkable evolution of both the extent and the global 
coherence of the present theory since my last papers on this subject [ 11, 121 warranted the pub- 
lication of this report resulting from a series of lectures presented in CBPF (Rio), IF-USP (Slo 
Paulo) and finally the Institut Henri Poincare (Paris), whose hospitality I thank. I am grateful to 
all the discussions, with numerous colleagues and students, in particular, S. Fishman, J. Keating, 
R. Prange, A. Rivas, P. Rios, M. Saraceno, A. Voros and W. Wrezinsky throughout the past year, 
that have continuously clarified my views on the subject and greatly refined the presentation of this 
review. 

1. Linear transformations in classical mechanics 

Dynamical systems obtained as the classical limit of quantum mechanical systems are characterized 
by a Hamiltonian function H(x, t), where x is a point in an even-dimensional phase space. Usually, 
the coordinates of this (2L)-dimensional space are separated into L momenta and L positions, so that 

x=(PI,...,PL,ql,..., qL). In any case, Darboux’s theorem [15] guarantees that this coordinatization 
is always possible. The dynamical system is defined by Hamilton’s equations, 

(1.1) 

which may be compactified into the form 

x=JaH/ax, (1.2) 

with the definition of the (2L x 2L)-dimensional matrix 

3= 
0 -1 H-1 10 . 

(1.3) 

It is important to note that the transpose 3’ = J-’ = - 3. 
Since the equations of motion are of first-order, there exists exactly one orbit passing through 

each point in phase space. Let us choose the origin to be on the orbit that we wish to study; then 
we obtain the neighbouring orbits for a short time by expanding the Hamiltonian in a Taylor series: 

H(~) = H(0) + aH/ax(, . x + &L%%X + . . . , (1.4) 

where j/lc, is the Hessian matrix a2H/ax2 evaluated at the origin. 
The velocities near the origin become, for t = 0, 

qx) = J aH/axl, + 32i+ + . . , 

so that 

6i = i(x) - X(0) = 3x()x = 32?& (1.6) 

(1.5) 
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Fig. 1.1. A closed curve y in phase-space projects onto L closed curves ye in the L conjugate planes. In general, the area 

within each of these circuits evolves, leaving invariant the full symplectic area (1.9). 

Fig. 1.2. The parallelogram formed by the vectors 5 and q in phase-space projects into parallelograms in each of the 

conjugate planes. 

to first order in 6x. Thus, the short time motion surrounding a chosen orbit is determined by a linear 
dynamical system. I have not included the time dependence explicitly because it will only affect the 
matrix X0 and not the form of the equations. 

After an infinitesimal time 6t, we may shift the origin to x=&(O) and there obtain a new 
expansion. Iterating this procedure, we find that the flow x( 0) + x(t) in the neighbourhood of a given 
orbit x(0,0) + x(t, 0) may be approximated by a linear flow 6x(O) + dx(t) resulting from the time- 

dependent linear Hamiltonian system 

6X = 3X(x(t), t)C?x . (1.7) 

Since the product of (infinitesimal) linear transformations is necessarily linear, we can define the 
matrix J’& such that 

6x, = Jh@xo . (1.8) 

It should be noted that for the critical points of the Hamiltonian, where aH/ax = 0, the orbit of x0 
reduces to an equilibrium point, simplifying the foregoing theory. 

The study of the possible matrices JY~, or linear maps, that can arise in Hamiltonian systems 
is of fundamental importance. The essential property is that they preserve the symplectic urea (or 
action) of any closed circuit y in phase space: 

(1.9) 

where the ye are projections of y onto the L conjugate planes (pe, ql) as displayed in Fig. 1 .l. 
This property results from the conservation of the symplectic area of the parallelogram formed 

by any pair of vectors 5 and q: 

$ G/ %l, -5dlp,)=(35)~q = 5Ar, (1.10) 
f=l 
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where the last identity defines the skew product of t and q. Note that the projections onto the L 
conjugate planes are also parallelograms, as shown in Fig. 1.2. Since 

$5 A r) = (3i). vl + (35). ti 

= (3J~5)~~+(J5)~Jmy= -(~5>~~+t~(xy)=o, (1.11) 

the total change in this symplectic area is zero. Using & = &15 and qt = Atv, we must then impose 
that 

which reduces to 

A?yp& = J ) 

the definition of a symplectic matrix. Thus, the linearized flow 
in a Hamiltonian system is determined by a symplectic matrix. 

An immediate consequence of the symplectic property is that 

in the neighbourhood of any orbit 

det&&= 1. (1.14) 

(1.12) 

(1.13) 

Taking determinants of the product in (1.13), we obtain the unit modulus. Then continuity, with 
the fact that A0 = 1, the unit matrix, determines the sign. Thus linear flows preserve phase space 
volumes. 

The properties that we have found for linear systems are extendable to nonlinear flows. Any 
circuit may be divided into an arbitrary number of parallelograms for which symplectic area is 
preserved in the limit of smallness, so the full symplectic area is invariant. Likewise, any phase 
space volume may be indefinitely subdivided into hypercubes for which volume conservation holds. 

It is easy to see that the product of symplectic matrices is also symplectic, that is, symplectic 
matrices form a group. It follows that similarity transformations between symplectic matrices are 
symplectic. We will now show that symplectic matrices that are diagonalized or taken to Jordan 
normal form are also symplectic and hence this is also a property of the matrices that reduce them, 
though they may be complex. 

To see this we show that if y is an eigenvalue of A, so is y-l. Consider the following manipu- 
lations on the characteristic polynomial 

P(y) = det[M - yl] = det[3-‘&‘-‘3 - yl] = det[A’-l - yl] 

hQ2” 
= det(M’) 

det[&’ - y-’ I] = y2L ___ det[&Z - y-l l] . 
det( A) 

(1.15) 

Thus, 

P(y) = * y2LP(y-‘) 

and if y. is a root of P(y), so is ~0’. 

(1.16) 
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It is immediately verified that the matrix 

“/I 

Y2 

. . 

0 

0 

-I 

Yl 

r;’ 

(1.17) 

is symplectic, so it was diagonalized by a symplectic transformation. However, this transformation 
will only be real if all the eigenvalues are real. 

Exponentiation permits us to generate symplectic matrices from symmetric matrices. Indeed, if 
$L%‘x is a time-independent quadratic Hamiltonian, the linear flow after a time t is simply 

n(t) = exp[t3X]x(O) = JYtx(0). (1.18) 

Though this is an explicit construction of the symplectic matrix, it relies on an infinite series and 
it does not include all the possible matrices that could result from a quadratic time-independent 
Hamiltonian, such as 

(1.19) 

In both respects there is a definite advantage in using the Cayley parametrization [16]: 

A=[1 -JB][1+3%@-‘=[1 +Jg]-‘[l -38‘1. (1.20) 

Direct insertion of ( 1.20) into the definition (1.13) shows that this is necessarily a symplectic matrix, 
unless JS? has the eigenvalue - 1. The inverse is immediately obtained as 

3B=[l +JzZ-‘[1 -A]=[1 -A][1 +A!-‘. (1.21) 

Thus, it is only symplectic matrices with eigenvalue -1 for which there is no Cayley parametrization. 
In the same way as with the exponential parametrization, changing the sign of a generates A?’ : 

[l + 3B][l - JB]-‘[l - 3B][l + J&l = 1 . (1.22) 

The significance of the Cayley parametrization is emphasized by interpreting 

S(X) = xL%x (1.23) 

as a function that implicitly generates the transformation x- + x+, where 

x*=x f +< (1.24) 

and 

i” = - J(as/ax)( = - 2JBx) . (1.25) 
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We will henceforth refer to x as the centre of the transformation and r as the chord. Evidently, the 
matrix for the linear transformation (1.24) generated by the quadratic form (1.23) is exactly (1.20), 
so the transformation is symplectic. Rewriting 

(1.26) 

we can interpret S(X) as the area of the triangle with corners at 0,x_ and x+, as shown in Fig. 1.3. 
If we expand a general nonlinear function S(X) in a Taylor series: 

S(x) = S(x, + 6x) = S(x0) + a() A 6x + 6x&&)6x + 0(6x3) (1.27) 

while keeping the implicit definition of the transformation x- +x+ given by (1.24) and (1.25), we 
obtain 

5(x) = x0 - 2JS&6x + O(Sx2) . (1.28) 

Therefore, the Jacobian of the transformation is the matrix (1.20), i.e. even the nonquadratic S(x) 
is the centre generating function of a canonical transformation. We shall usually refer to it as the 
centre function, for short. It is easily seen that, if do is the symplectic matrix corresponding to 
go, then the transformation generated by (1.27) up to second order is 

x+ = Ao(x- + cxo/2) + x0/2, 

i.e. we sandwich the linear transformation A0 between two translations by ao/2. 
For small times t = e, we may identify 

S,(X) = - &H(X) + 0(E3) ) 

since the flow is simply 

x+ =x_ + 5 =x_ + EJ(aH/aX) + O(E~ ) , 

i.e. go is just the Hessian -(a/2)X0. In general, exchanging t + -t implies 5 + 

(1.29) 

(1.30) 

(1.31) 

5, so S,(x) must 
be an odd function of t. The third-order correction to (1.30) is derived in Appendix B. 

Even for finite times, the chord 5 will be tangent to the surface S(x) = constant, just as shown 
in Fig. 1.3, because X is tangent to H(x) = E. In particular, the critical points of S(x) correspond 
to fixed points of the canonical transfottnation. These will coincide with the equilibria of H(x) 
in the case of a Hamiltonian flow. In a way, -S(x) is a finite time Hamiltonian, for which we 
obtain a single canonical transformation, specified by t(x), instead of a group of transformations by 
integrating X(x). For this reason we cannot simply add the generating functions so as to compose 
transformations. In the following section we shall study the delicate geometrical patterns involved 
in the composition of centre generating functions. 

The simplest kind of motion that we can consider is that generated by a linear Hamiltonian 
H(x) = --a AX. Hamilton’s equations will then just be X = a, so that immediate integration renders 
the flow after the time t as x+ = ta + x-. In short, the canonical transformations representing the 
flow will be merely the uniform translations of phase space x+ = T,(x_), where cx = ta. 

We shall find that translations play a fundamental role in the following theory. Evidently, the 
composition of translations, Tz2 o T,, (x- ) = T,, +a2 (x_ ) forms a continuous group. The centre function 
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(4 

Fig. 1.3. The chord < is always tangent to the surface S(x) = constant. If S(x) is quadratic, the centre function equals at 

each point the symplectic area of the triangle that <(x) subtends with the origin. 

Fig. 1.4. The level curves of the centre functions for the flow derived from the Hamiltonian (a) H(x) = ypq and (b) 
H(x) = $w(p2 + 4’). They are the same families of hyperbolae and circles as for the Hamiltonian themselves. 

for T, is just the linear function S(X) = M Ax, such that the chord 5 = X, a constant. This is the only 
case where the short time relation (1.30) between H(x) and S(x) can be extrapolated for all time. 
It is pleasing that the definition of the centre function makes sense even when its quadratic part 
(which motivated the definition) cancels. 

The next instance where we may hope to obtain the explicit form of the centre function is for 
the homogeneous linear transformations from which we started. Combining (1.18) with (1.21), we 
obtain, for H(x) = ix%x, 

3% = [l - exp(tJX)][l + exp(t3X)]-’ . 

Obviously, the job of inverting and exponentiating matrices 
diagonalized. The easiest case is when the eigenvalues of 3% 
then H = ypq, so that 

-y 0 
JTr= o 

[ 1 Y 

(1.32) 

will be simplified if they are first 
are real. In the case of one freedom, 

and 3?8 will also have the diagonal form 

r:: _t:h;j. 
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Fig. 1.5. The reflection R, about a given point x in phase space defines a degenerate chord construction where all chords 
pass through the same point. 

It follows that S(X) = -2 tanh(ty/2)pq. So, in this particular case, X(X) and S(x) have the same level 
curves, as shown in Fig. 1.4(a). We also notice that the Cayley parametrization is never singular. 

Let us now examine the more familiar case of the harmonic oscillator H(x) = $w(p* + 4’). Then 
we cannot diagonalize 3X by a real symplectic transformation, but it is easy to verify that the 
equation of motion has the 

(;:) = (s:::: 

well known solution 

- sin wt 

coswt 

Since the movement is merely a rotation of the phase plane, we may rely on elementary geometry 
to observe that the chord [, between x_ and x+, is tangent at its midpoint x, to a circle of the same 
concentric family where H(x) is constant. We can easily calculate the area of the triangle whose 
base is 5 and height /xl= v’m, so that using (1.26), S(x) = -taniwt(p’ + q*). 

Again we find a close family resemblance to the Hamiltonian, as shown in Fig. 1.4(b), but now 
the centre representation breaks down when wt = TC. At this instant the flow of the harmonic oscillator 
reduces to a reflection through the origin: x+ = Z&,(x_ ) = - x-. Indeed, the centre function becomes 
singular whenever the map reduces locally to a rejection Rx about any point in phase space, i.e. the 
map is such that (x, - x) = -(x- - x), represented in Fig. 1.5. Evidently, we obtain a degenerate 
chord structure for this point x. 

This problem is neatly dealt with by defining the complementary chord generating function S(c) 
for the transformation x_ + x+, or chord function, for short. We still use (1.24) but now we obtain 
the centre from 

x=3as/ay. 

Expanding this generating function in a Taylor series 

S(t) = S(&) + 65 A a0 + ~S&?S< + . . . , 

(1.33) 

(1.34) 

we obtain the Jacobian of the transformation in the form 

Jd?= 31 + 3P>(1 - JW’ , (1.35) 
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which is a complementary parametrization of symplectic matrices, unless 38 has the eigenvalue 1. 

Observing its inverse 

Jj?==(d- l))‘(J&f l), (1.36) 

we see that it is only the symplectic matrices with eigenvalue 1 that cannot be parametrized in this 
form, including, of course, the identity matrix. 

The simplest example of a chord limction is just linear: S(c) = i: A a. We then obtain that a is the 
centre for all chords <. In short, this is the generating function for the reflection R,. So, if a 
representation in terms of centres is complementary to that of chords, in a similar sense, translations 
Tc are complementary to reflections through a point: R,. This theme will be developed in the 
following theory. 

Let us now pursue our simple quadratic examples. For H(x) = ypq, z/3 will again be diagonal, 

so that S(t) = $oth(ty/2)t,&. We thus see that the chord function becomes singular as t + 0. 
This is a general feature for all Hamiltonian flows. 

For the harmonic oscillator, H(x) = iw(p’ + q2), it is now easy to verify that the chord function 
for the flow after a time t is just S(c) = icot(wt/2)(ti + [t). Again, this is singular as t-~ 0. 
However, we now have a generating function that is perfect for dealing with the singular region of 
the centre function, since at wt = x we just have S(S) = 0, which is the generating function for the 
reflection at the origin, R,,. 

The general role of reflections and translations in the definition of the centre and the chord 
generating functions is revealed as we enquire into the existence of a chord for a given centre, or 
vice versa. When a canonical transformation C :x_ +x+ is described by a centre function S(x), the 
existence of a chord t(x) is tantamount to the existence of a point x_(x), such that C(x_) = R,(L). 

Since R, o Rx = 1, the identity transformation, it follows that the point x- is determined as the fixed 
point of C composed with R,: 

x- =R,oC(x_), 

as shown in Fig. 1.6. 

(1.37) 

Conversely, if we describe the transformation C by a chord function S(t), the centre of the given 
chord x(t) is defined when we can find a point x_(f), for which C(x_) = Tt(x_), as shown in 
Fig. 1.6. In this case the point x- is defined as the fixed point of C composed ‘with T-r: 

x_=T_~oC(X_). (1.38) 

Thus, it is fair to describe the centre function as “viewing the transformation” as a reflection, 
whereas the chord function “views it” is a translation. The feasibility of using either description will 
depend on the existence of the fixed point for the appropriate compound transformation. To this end 
we return to the first-order expansions of the generating functions (1.27) and (1.34). We have seen 
that S(X) = SI AX generates a translation, T,, while S(5) = t A a generates the reflection, R,. Therefore 
the existence of the required fixed point depends on the products of translations and reflections. 
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Fig. 1.6. The centre representation describes the canonical transformation C : XL -+x+ as a reflection Rx about the point x, 

so that x_ is the fixed point of the composed map R, o C. The chord function represents the same canonical transformation 
as the translation Tt by a given vector <, so that X_ is the fixed point of the map T-C o C. 

Fig. 1.7. (a) The composition of the two reflections Rx1 o R,, is an uniform translation Tt, where 5 = 2(x2 - x1 ). (b) The 

composition of a reflection R, with a translation T, is a reflection about the point x f 5/2 (depending on the order of the 

transformations). 

Though we have seen that the set of all translations form a group, 

Tt, 0 Ts, = T,,+<: , (1.39) 

this is not true of the reflections. Indeed, we easily verify with reference to Fig. 1.7(a) that the 
product of two reflections is always an uniform translation: 

Rx, 0 Rx, = T2(x2 -x, ) . (1.40) 

However, since the product of a reflection and a translation is itself a reflection, such that according 
to Fig. 1.7(b), 

T< 0 Rx = Rx+<12 , (1.41) 

Rx o Tf = Rx-ti2 , (1.42) 

we see that, together, the set of all reflections and translations does form a group. This is the 
product of the translation group with the group of reflections at the origin R,,, which is identical 
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to the group Z2 of the ordinary product of 1 and - 1. Indeed, according to (1.41) and (1.42), R, 

equals the product of T 12n with RO, depending on the order, or Rx = T,RoT_,. 
With the aid of these results, we see immediately that, if C reduces to a reflection, the fixed 

point of (1.38) exists, but not that of (1.37). Conversely, if C is a uniform translation, it is only 
R, o C that has an unique fixed point. In other words, the chord function is ideal for considering near 
reflections viewed as translations, whereas the centre function is constructed to view near translations 
as reflections. The great advantage of the centre function is that we are mostly concerned with the 
arbitrarily small translations that are generated by the Hamiltonian flow. 

The general problem of determining all the chords through all the centres x in phase space reduces 
to that of finding the fixed points of the (2L)-parameter family of maps K, E R, o C. Likewise, the 
problem of obtaining the centres for each chord ;” depends on the (2L)-parameter family Kc - 

T-? o C. 
iet us, therefore, establish the continuity of the fixed points y(i) of a one-parameter family of 

maps, KA :x- +x + = K;,(L), with respect to the parameter. Differentiating y = Ki,(y) with respect 

to ;1, 

du =;, dy 3K; 

~=~z+aE,’ 
(1.43) 

we note that i3KJdy = J&‘A, the symplectic matrix for the linearized transformation near the fixed 
point. Thus, its rate of change with the parameter is just 

dy/d1 = (1 - J&‘J’~~K;,/X. ( 1.44) 

Therefore, the implicit function theorem allows us to define the family of fixed points y(n), except 
at the resonant parameters, where 

det(1 - J;.)=O. (1.45) 

What goes wrong at these parameter events? We can ascribe them to coalescing fixed points. The 
deduction of (1.44) presupposed that we follow an isolated fixed point, so this formula breaks down 
when they come together. Meyer [ 171 proved that the generic resonance of an area-preserving map 
is a bifurcation where two fixed points merge and disappear. In this case there exists a canonical 
coordinate system such that the centre generating function for the map takes on the local form [ 171 

s;,(X)=;q2+3$?+ fp3, (1.46) 

in which p(l) = (&a, 0). It is easy to verify that one of these fixed points is unstable (real 
eigenvalues e7 and e-7) and the other is stable (eigenvalues e*iW ). At i = 0, the eigenvalue is unity. 
The bifurcation diagram is shown in Fig. 1.8. 

The simplest application of this theory should be to the Hamiltonian flow. The parameter of the 
family of maps is then just the time. However, all the points of a periodic orbit with a given period 
will be fixed points of the flow for this time. So, we cannot apply directly the above theory, which 
presupposes an isolated fixed point. Instead, the theory of the bifurcation of periodic orbits relies 
on sections through the orbits that we shall study in Section 3. 

Returning to the chord problem, we seek the fixed points of the mapping K, = Rx o C, so x itself is 
now the (2L)-dimensional parameter of the matrix AX in (1.45). This equation defines the surfaces, 
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Fig. 1.8. Generic bifurcation diagram for a one-parameter family of symplectic maps. 

centre caustics, where pairs of chords coalesce. In other words, they are the loci where the mapping 
x -+ 5 becomes singular. Since 5 is determined by the gradient of S(x), we obtain the alternative 
equation for the centre caustic as 

det(a2S/ax2 )(x) = 00 . (1.47) 

However, we easily find that the mapping 5 +x is nonsingular along the centre caustic and that, 
indeed 

det( a2S/at2)( <) = 0 (1.48) 

along this surface. Of course, there will be chord caustics where 5 +x is singular, but these will 
be nicely described by the centre function. The great advantage of the latter is that S(x) --f 0 for a 
small time flow, so that ( 1.47) is entirely avoided. Conversely S(t) is globally singular as t -+ 0. 

The chord function and the centre function are reciprocally related as Legendre transforms. Indeed, 
according to (1.25) we may write the differential of S(x) as 

dS=&x)r\dx. 

Thus, if we define 

(1.49) 

F(x,!g=(Ax-S(x) (1.50) 

and 

S(5) = W(5), 0 7 
(1.51) 

with x(l) prescribed by aF/i3x = 0, we obtain precisely Eq. (1.33). 
Let us consider x and 5 as alternative coordinates for the double phase space (4L dimensions) of 

initial positions x_ and final positions x+. Then the fact that (1.48) is an exact differential implies 
that there exists a (2L)-dimensional surface in which 

(1.52) 
J J 

for any reducible circuit. Therefore, we can furnish double phase space with a symplectic structure 
of the same form as ordinary phase space by considering that now <pi is the conjugate variable to 
qi, whereas -tqI b ecomes the conjugate variable pi. In other words, the canonical coordinates of 
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double phase space are (x, 30 or (-3x, 5). It follows that (1.52) defines a Lagrangian surface in 
double phase space, along which Stoke’s Theorem [ 151 leads to 

d&,Adq-d&Adp=O. (1.53) 

By making more exchanges of variable we arrive at the traditional generating functions of classical 
mechanics. Indeed, recalling that q = (q- + q+)/2 and defining 

.(,:,,p) =S(‘+:“) +p(q+-q-), 

we find that the function 

S(q+> q- > = F((q+ + q- )/2, p(q+ - q- )> , 

(1.54) 

(1.55) 

with p(q+ - q-) given by i?F/ap = 0, is the generating function of the canonical transformation 
determined implicitly by 

P+ = waq, , p_ = -asjaq_ . (1.56) 

Therefore, the surface in double phase space that determines the canonical transformation has zero 
action 

jp+.dq+ - jp-.dq-=,. 

which can be obtained directly from Stoke’s theorem 

(dp+ - dp-) A (““+ Zdq-) - (dq+ - &-)A 

=dp,Adq,-dp_Adq_=O. 

(1.57) 

and (1.52), since 

Cdq+ :dp-) 

(1.58) 

Evidently, we have returned to the conservation of symplectic area for canonical transformations, 
with which we started. However, in the context of double phase space, we now find that (1.53) 
and (1.58) are equivalent properties of the same (Lagrangian) surface that determines the canonical 
transformation. We always use half the coordinates of double phase space when generating the 
canonical transformation, in such a way that the number of old coordinates equals that of the new; 
which we choose, is a matter of convenience. Further discussion of double phase space is found in 
Refs. [49, 12,481. 

One important criterion selects those generating functions that do not become singular in the 
neighbourhood of the identity map. These are S(p+,q_),S(p_,q+) and the centre function S(x); 
they also share the property that their critical points are fixed points of the transformation. However, 
another criterion is the ease of composing transformations. Here S(q+,q_) has a distinct advantage. 
Indeed, we compose transformations using S(p+,q_) by taking their Legendre transforms, obtaining 
S(q+, q_ ). We shall study the beautiful patterns resulting from the composition of the centre functions 
in the next section and hence derive the variational principle. 
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2. Classical variational principles 

How do we obtain the centre function for the composition of two canonical transformations, 

&(x) and G(x), respectively. The requirement is that the chord y1 through x1 in the first trans- 

formation join onto the chord y2 through x2, to form the chord through some centre x for the 
composition. We will refer to the resulting triangle formed by ql, y2 and y as the circumscribed 
triangle to the midpoints xl, x1, and x, as opposed to the inscribed triangle with comer at these 
points. 

This simple geometry is displayed in Fig. 2.1. It is important to note that a circumscribed polygon 
in the full phase space projects into L polygons in the conjugate planes that are circumscribed 
around the projections of the midpoints. Hence, the following symplectic geometry is reduced to 
plane geometry. The symplectic area of the circumscribed triangle is the sum of the areas of each 
projection: 

&(X,x1,-%)=2(x1 -x)A(X2 -x)=3X, /\x2 +x2Ax+xXx,], (2.1) 

from which we obtain 

aA3,‘ax1 = -23(x2 - x) = -Jy, , ad3/ax2 =2~(~, - x) = -Bag, (2.2) 

where qj is the jth side of A3, in the clockwise direction. 
For the desired composition of the two canonical transformations, we demand that the chords for 

each transformation satisfy 

~,~-Jas,la~,=~~ and c2E-_3as2jax2=yi2, (2.3) 

which is equivalent to imposing zero derivatives for 

~(x,x,,x2)=~1(x,) + s2(x2) + A3(x,xI,x2). (2.4) 

Fig. 2.1. The composition of two canonical transformations requires that the resulting chord q close a triangle whose sides 
are centred on the three centres x1,x2 and x. 
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Indeed, we verify that 

as as, _=- 
ax, ax, +$=3& -2J(x2-x)=0, 

as as, -=- 
ax2 ax2 

+%=3&+23(x, -x)=0. 
ax2 

(2.5) 

Consider now the ‘multiple Legendre transform’ S(x,x,(x), x2(x)), obtained by substituting the so- 
lutions of (2.5) into (2.4). Then the chord for this generating function is just given by -3dS/dx, 
where 

ds as ax, as ax2 as -=- 
dx ax, ax --+zJx+ilx. 

But, because of (2.5) 

(2.6) 

dS/dx = as/ax = a&/ax =23(X2 - Xl) = 3(& + 52). (2.7) 

Therefore, S(x,x, (x), x1(x)) is the desired generating function. 
As a simple example, 

phase space. The centre 

x,=-$2+x, 

so that 

we consider the composition of homogeneous translations by x1, and ~1~ in 
functions are simply S,(x) = Mj AX and conditions (2.5) then become 

x,=$X, f-x, (2.8) 

S(x)=q A(x- ~a*)+X2/\(X+~al)+2t-~a2>~(~~,) 

= (c12 + x2) A x + constant, (2.9) 

as expected. For linear transformations Sj(x) =~!23~x, conditions (2.5) become a system of 4L linear 
equations. The solutions are linear in x, so that (2.4) is again a quadratic form in x. The geometrical 
interpretation of S(x) as the symplectic area of a triangle fits nicely with the composition rule. 
Consider Fig. 2.2; as drawn, sj = i[j nxj have negative areas (the skew product obeys the left-hand 
rule), whereas A3 has positive area. It follows that the three terms in (2.4) combine to give the 
(negative) area of the triangle joining r to the origin, as required. 

The important point that we must consider in order to generalize the composition rule (2.4) is 
that, according to (2.2), the derivatives of the symplectic area of the triangle A3 are specified by 
the corresponding sides. The side q does not depend on the centre x, since it may be considered 
as the translation resulting from the reflections at x1 and x2. All compositions of these two reflections 
generate the same translation by q = 2(x2 - x1 ) according to (1.40), so we may place the centre x 
anywhere without changing q. 

If we now add two more reflections at arbitrary points x3 and x4, we again obtain a specific 
uniform translation by 2(x3 -x4). Since it also has a free centre, we can always fit these together 
to obtain q = 2(x4 - x3) + 2(x2 - xl ) as shown in Fig. 2.3. Evidently, we may repeat this procedure 
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Fig. 2.2. The interpretation of the quadratic centre function as the area of a triangle is fully consistent with the composition 
of such canonical transformations. 

X ‘8 

Fig. 2.3. The composition of four canonical transformations defines a pentagon with midpoints at XI,X~,X~ and x. The 

triangle A; formed by ~II + Q, ‘1s + ~4 and q depends on the positions of XI . . .x4 but not on x. 

Fig. 2.4. The vectors Ej joining x to the centre of the vectors r/>j + ~2,-t are invariant with respect to x. The area of the 
enneagon is decomposed into the pentagon A; and four triangles. 

for any even number of reflections to obtain the remaining side of an odd-sided polygon as 

(2.10) 
j=l 

which is independent of x, just as for the triangle. 
Now, we may calculate the total symplectic area of the polygon L&+~ by subdividing it into an 

internal polygon with symplectic area AL+, and y1 triangles. Any change of x translates the internal 
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polygon rigidly, hence AL,, is independent of X. Therefore, if we lable the fixed vector between x 
and the centre of the jth side of A;,, as OIj (see Fig. 2.4) we obtain 

A -AL+, + 22(X2j - 2n+l - X*j__l)A((X+OIj-X2j)=COnStaIlt+~AX. (2.11) 
j=l 

We have defined the vector y as the sum of the other sides of the polygon yli, so it has the 
opposite orientation to theirs. For each of the other sides we can therefore generalize (2.2) to obtain 

aA2n+&k = -3qk . (2.12) 

Here ?‘Ik is the kth side of the polygon, so the condition that this coincides with the chord & of the 
kth canonical transformation is equivalent to the constraint that the derivative of 

S(X)=S~(~I)+...+S~(X~~)+A~~+I(X,X~,...,X~~) (2.13) 

with respect to xk be zero. Substitution of all the centres xk as a function of x, obtained by the zero 
gradient condition, defines the centre function of the composed transformation. 

Consider now the flow generated by the Hamiltonian H(x). It was shown in Section 1 that 
for a small time t = E, the corresponding centre function is S,(x) = -&H(x), to third order in E. 
We can now use the composition rule to estimate the correction, that is, choosing E = t/2, we obtain 
the time t flow as the composition of two s-flows. Thus, distinguishing the phase-space velocity Xi 
for the first interval and X2 for the second, determines 

A3 = ; (xl&) A (Z&E) , (2.14) 

according to Fig. 2.5. Introducing the ‘acceleration’, 

i E [i . a/ax].i = 325 , (2.15) 

so that X2 21 -IE-, + Xi&, we obtain 

A3 = 1s3X r\jl= &3&&‘X 
2 2 

(2.16) 

according to Fig. 2.5. Here, the Hessian matrix of the Hamiltonian can be evaluated at the point X, 
to lowest order in e. We must now evaluate -sH(xi) and -sH(x2) to calculate the centre function 
for the composition (2.4). Expanding 

H(xf&X)=H(X)+~&2X~~+...) (2.17) 

we obtain, to lowest order in E, 

H(x,)=H(Xz)=H(X)+ iE2 XZZ?. (2.18) 

Therefore, the composition of two short time flows is approximately 

S,(x) = -H(x) - ;(t/2)‘x&?i. (2.19) 

Comparing this result with (B. 10) in Appendix B, we find that we have overestimated here the 
nonlinear term: We shall show that S, depends on the area between the smooth trajectory and the 
chord, rather than the triangle A3. 
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Fig. 2.5. To evaluate the correction of the centre function for short times t, we compose two flows for E = t/2. 

Fig. 2.6. Two possible paths, whose actions are compared by the centre variational principle. 

It is now possible to obtain higher order corrections to the centre function for a time t flow by 
composing four elementary generating functions of the form -47(x), with E = t/N, in the guise of 
two transformations generated by (2.19). However, our immediate objective is to note that composing 
an even number N of flows for time E = t/N we obtain the centre function 

=+ ~H(x,)+d,,,(x,x,,...,xN)+O(t3:N2). 
?I=1 

Increasing the number of subdivisions of the interval to infinite, we thus obtain 

S,(x) = lim 
i 

-; ~H(x,)+&+1(-W, >...> XN) . 
N-+03 

!?=I I 

(2.20) 

(2.21) 

The polygon AN+, has one large side 4 passing through the centre x and N small chords 

Yj = lj N,, (t/N)3 aHlaXj > (2.22) 

i.e. they are tangents to the orbit as N + co. Throughout the limiting process, we guarantee that 

aSt/axj = 0, so that we arrive at the centre variational principle: The centre action 

S(x)= d~.dq- /-H(xWW (2.23) 
JX J 

is stationary along the classical trajectory. The paths to be compared always have their endpoints 
centred on the point x. The second integral is evaluated along this path, whereas the symplectic 
area defined by the first integral is closed off by the chord centred on x, as displayed in Fig. 2.6. 
Note that S,(x) is necessarily an odd function of t. 

This particular version of the variational principle dispenses with any specification of appropriate 
topologies for sophisticated spaces of paths. For any large but finite N, the path becomes a polygonal 
line, uniquely specified by the centres of each of its sides and the point x. In the large N limit, 
the sides of the stationary polygonal line shrink to form a smooth curve that coincides with the 
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Fig. 2.7. A typical polygonal line with self-crossings for N = 6. 

Fig. 2.8. The symmetrized Legendre transform of the centre action in the variational principle restricts the q component 
of 4 to equal (q+ -q_). The new action now includes all the symplectic area between the polygonal line and the q-plane. 

trajectory. What is the result of moving one centre xj from the polygonal approximation for the 
trajectory? We have seen that the side tj is unaffected, whereas, according to (2.10), all the other 
sides will be altered by 6& = f26xj. Therefore, the neighbouring paths are also polygonal lines 
with small sides of order Sxj. Evidently, there will be collective variations of centres such that 
the variations of the sides of the polygonal line remain bounded and therefore smooth in the limit 
N + 00: The centre action will still be stationary among this subset of paths. Conversely, no matter 
how large we take N, general paths defined by an arbitrary choice of centres will be very jagged 
polygons which may self-intersect many times! This is illustrated in Fig. 2.7. 

We can guarantee that there exists an unique solution to the centre variational problem for suffi- 
ciently small times. To see this, recall that the tip of the chord x_ is determined by (1.37), where 
now the canonical transformation C is just G,, the Hamiltonian flow. If t is small enough, the 
stationary chord through x is just 4 = tx. Expanding the Hamiltonian about the orbit to second order 
(see Section 1 ), we obtain the linear transformation, 6x+ = ~&6x_, such that A!! has the Cayley 
parametrization (1.20). Since the centre function is proportional to H(x) for small times, we obtain 

A& = [l + $3%][1 - $3X]- ) (2.24) 

where .Y? is the Hessian matrix for H(x). For small times A!‘, is close to the unit matrix and 
therefore G, is far from being locally a reflection. It is only when t is large enough for G, to 
become locally a reflection that a bifurcation will occur, beyond which there will be more than one 
chord for each centre. 

Evidently, the action S,(x) that is minimized by the variational principle is the centre function 
that generates the Hamiltonian flow for the time t. In the special case of linear transformations 
studied in Section 1, we identified the centre function with the area of the triangle in Fig. 1.3. If 
we extend the composition of an arbitrarily large number of small time evolutions, such as shown 
in Fig. 2.2, we now identify the first integral in (2.23) with the area between the orbit and the 
chord. If the quadratic Hamiltonian is time-independent, the second integral is just Et, the area of 
the circular sector subtended between x+ and x_ in Fig. 1.4(b), hence the difference is the area of 
the triangle. Indeed, we can generally equate S,(x) with the area of a curvilinear triangle between 
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Fig. 2.9. Neighbouring paths y with the same fixed endpoints q+ and q- as the trajectory r may also be considered as 
neighbouring paths with the same centre, by adding a vertical segment 6. Stationarity of the action for the latter implies 
that of the former. 

Fig. 2.10. The composition of three centre functions requires that two triangles with centres x1,x2,x’ and x’.xs,x share a 
common side. This imposes the restriction that XI,XZ,X~,X, must form a parallelogram. 

4 and the origin, but this is not often useful, because it requires the knowledge of time evolution 
of orbits with different energies, whereas (2.23) depends on a single orbit. 

To derive the usual variational principle with fixed positions, we merely perform the symmetrized 
Legendre transform (1.54), (1.55) on S(x). Distinguishing the various actions or generating functions 
only by their arguments, we obtain 

S(q+>q-)=S P, 
( 

q+ + q- 
2 

) 
+ P.(4+ -q-), 

with p determined as a function of (q+ - q-) by the condition that 

t,_t s(P_q+;q-) =-(4+-q_). 

(2.25) 

(2.26) 

In other words, we are merely demanding that the chord [ fit precisely between the two planes 

q=q_ and q=q+, as shown in Fig. 2.8. Since the symplectic area between c and the q axes is 
equal to the last term in (2.25), we obtain 

s(q+,q-)= /q+p-dy-JHdt, 
4- 

(2.27) 

in which the first integral is the entire area under the path. 
It remains to show that the action (2.27) of the trajectory r, joining the endpoints q+ and q- in 

position space is stationary with respect to neighbouring paths with the same endpoints and the same 
interval of time. But reference to Fig. 2.9 shows that all such paths y may also be considered as paths 
with the same centre that are closed by an extra vertical segment, 6. The centre variational principle 
guarantees that the action Sr(p,q) is stationary among such paths. Since the two shaded triangles 
in Fig. 2.9 have the same symplectic area, the difference in action between S,(p,q) and S(q+,q_) 

for all the paths that are being compared is the constant p . (q+ - q-). Therefore S(q+, q_) is also 
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stationary among all the neighbouring paths y. The deduction of the centre variational principle from 
the one with fixed endpoints is presented in Ref. [12]. 

It is important to note that discretization of the variational principle with fixed endpoints is not 
favoured by the cancellation of the second order term as in (2.19). However, it is simple to compose 
generating functions S(q+, q-) by using the rule that 

S(q-,q+)=Sl(q-,ql)+S2(91,q2)+...+Sn(q,-l,q+) (2.28) 

with 

aS/aqj = 0, (2.29) 

This condition implies that the final momentum for the jth transformation, 

pjj' a41aqj= asj+l/aqj= pjj+l 3 (2.30) 

where pjj+l is the initial momentum for the (j + 1 )th transformation, for all j, so that we obtain 
an unique path. However, the small time decompositions S,(qj,q,+l) are not obtained directly from 
the Hamiltonian, forcing us to use a Lagrangian formulation which is awkward for quantization. 

If we enquire into the time variation of the centre function (2.23) defined along the trajectory, we 
find that, to first order, SS, = -H(x+)&, because of the variational principle. Combining this with 
(1.24) and (1.25), we obtain a partial differential equation for the action, 

as,lat + H(~ - ;3 as,jax) = 0, (2.31) 

which is Marinov’s version of the Hamilton-Jacobi equation [9]. Actually, the deduction from the 
variational principle shows that we could also use H(x + ~~iaS,/ax) or any weighted average of 
these two arguments of the Hamiltonian. 

To conclude this section we should discuss the composition of an odd number of canonical 
transformations. This includes the important case of viewing a canonical transformation C in new 
coordinates: C + C’ = G-‘CG. First we note that the general rule (2.13) could have been obtained 
iteratively by joining successive triangles. For example, the composition of four transformations can 
be viewed as Ci 0 C2 composed with C, o Cd. Thus, the pentagon that determines the transformation 
is considered as the sum of three triangles in Fig. 2.3. In general, we then view d2n+l as the sum 
of a (2~2 - 1 )-sided polygon with two triangles. 

Evidently, we can then derive the composition of an odd number of transformations by adding 
a single triangle to an odd-sided polygon. There results an even-sided polygon - a circumscribed 
quadrilateral, in the case of three transformations. The problem is that we are not free to place the 
centres of this even polygon just anywhere we wish. In the case of the quadrilateral, there is a 
simple theorem that the inscribed quadrilateral must be a parallelogram as shown in Fig. 2.10. In 
the general case, we recall that an odd number of reflections about pre-assigned centres is again 
a reflection, rather than a translation. So the centre of this reflection, which must coincide with 
the centre of the remaining side of the even polygon, is uniquely determined by the other centres. 
Taken together, we therefore have 2n reflections adding up to the identity. Considering the rule for 
composing reflections (1.40), we obtain the compatibility condition as 

(2.32) 

where we include the centre x = x~~. 
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Fig. 2.11. There are an infinite number of circumscribed quadrilaterals to the centres x,x1,x2 and x3 if they form a 
parallelogram, but they all have the same symplectic area. In particular, one of the sides (42 in this case) may shrink to 
zero to form a triangle. 

Conversely, once we fix the remaining centre, so that we describe the polygon as 2n reflections, 
we can choose an arbitrary initial corner for the circumscribed polygon, since the compatibility 
condition is just that these reflections add up to the identity transformation. In the case of the 
quadrilateral it is obvious that the symplectic area of all these quadrilaterals equals twice the area 
of the fixed inscribed quadrilateral, as shown in Fig. 2.11. It is not hard to show that in general 
the symplectic area of the circumscribed even polygon depends uniquely on the centres of its sides. 
The proof is presented in Appendix A. 

We can use the freedom in the choice of the circumscribed quadrilateral to fit three of its sides 
to chords obtained from the generating function being composed. Thus defining 

S(x)=4(x1)+&(x1 +x3 -x)+4(x3)+&, (2.33) 

where we used (2.33) to eliminate x 2, and then eliminating x1 and x3 through the conditions 

as/ax, = aslax = 0, (2.34) 

we obtain the centre function for the full transformation. It should be noted that conditions (2.34) 
will be satisfied only when all sides of A4 coincide with the chords through the centres of its sides. 

We will not be concerned with the rules for comparing chord transformations. The reader will 
find a presentation in Ref. [12]. They involve the description of phase-space polygons in terms of 
the vectors composing their sides, rather than the centres. The relation of this rather more natural 
geometry to the specification in terms of centres is discussed in Appendix A, which also presents 
general formulae for the symplectic area of polygons and their variation with respect to arbitrary 
displacements of the centres. 

3. The energy shell, sections and maps 

So far we have considered paths that take the same time, rather than polygonal lines whose centres 
have a fixed energy. However, for an autonomous system we know that the N --+ 00 limit of the 
action, i.e. the solution of the variational problem is a trajectory with constant energy. Thus, we can 
restrict the variations to other paths where all the centres have the same energy, without violating 
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Fig. 3.1. The chord through x is determined by the intersections of the energy curve Y with its reflection through x : R,Y. 

Moving x by 6x translates R,S rigidly by 26x. 

Fig. 3.2. The Wigner caustic is the small cusped curve within the energy shell. (a) Within the caustic there are three 
chords. (b) On the caustic two chords coalesce. The tangents at the tips of the degenerate chord are parallel, so they are 

obtained as a reflection through the centre. (c) Outside of the Wigner caustic there is only one chord. 

the variational principle. Within this restricted class, for which H(xj) = E, if we still demand that all 
paths take the same time, we find that SS, = 8dN+i. But the symplectic area of this polygon is not 
itself a function of time, so we arrive at the energy (centre) variutional principle: The symplectic 
area 4;, p.dq = SE between all the paths on the energy shell and all the chords centred on x is 
stationary for a classical orbit. Evidently, we obtain the usual energy variational principle, defined 
in terms of the end positions, by taking the symmetrized Legendre transform of the centre action, 
in the same way as for the time variational principle. 

Are there solutions to the energy variational problem? First, let us examine the simplest case of 
a single freedom (L = l), where the energy shell, 9, defined by H(n) = E, is just a compact curve. 
The tips of the chord through x result from the reflection, R,, through this point. We therefore 
obtain the chord by reflecting the entire shell and taking the intersection of 9 with R,Y. This is 
displayed in Fig. 3. I. 

Note that displacements, 6x, merely translate the reflected curve rigidly by 26x, because of (1.40) 
and (1.41). If 5@ is convex, there will be no intersection of 9 with Rx9 when x lies outside of 
9. If x is inside and close to 9, there will be an unique chord. Indeed, SE(x) is just the area 
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sandwitched between the chord and the shell, whereas [(x)=~@/~x. Thus, SE(x) grows as x is 
brought further into the interior of Y. 

Deep in the interior of 9 we run into a bifurcation, beyond which there are two new chords. 
The locus of these points is known as the IRgner caustic, because it was first studied by Berry [7] 
in the context of the semiclassical Wigner function. Within this closed curve there are three chords 
and hence three functions SE(x) [7]. As x is moved onto the Wigner caustic, two chords coalesce 
and vanish, so that their corresponding centre functions become singular, according to (1.47), while 
the third centre function moves regularly through the caustic. This process is depicted in Fig. 3.2. 
Notice that the tangents to the shell at the tips of the degenerate chord are parallel. The implication 
is that, if the curvature were ignored, there would be a continuum of chords in the shell centred 
about the same point x, i.e., related by a reflection through x. Further discussion of the Wigner 
caustic for L = 1 is provided by Berry [7], where it is shown that there are always three cusps if .Y 
is convex. 

To obtain the chords that solve the variational problem for a given centre X, when L > 1, we 
again reflect the energy shell 9 and examine the intersection of 9 with R,y9. Since both of 
these surfaces have (2L-1) dimensions, their intersection defines the centre section. This (2L-2)- 
dimensional surface is the locus of the tips of all the chords on the energy shell that are centred 
on x, the problem now being reduced to finding which chord tips belong to the same orbit. 

Let us now consider the orbits in 9 through a given neighbourhood of Y n R,Y. If 9 is compact, 
these orbits will eventually reintersect the section, defining the centre map, C,, of the section onto 
itself (as a consequence of the Poincare recurrence theorem [ 18, 191). Evidently, the fixed points of 
the composition R, o C, define the solutions of the variational problem. 

If Y is convex (as well as compact) and x lies outside of 9, then R,Y does not intersect 
9 and there are no solutions to the energy variational problem. As x moves onto Y, Rx9 is 
translated rigidly until we obtain a tangency of .Y with R,9’. The chord then coincides with the 
locally straight orbit through x and SE(x) is still zero. Moving x into 9 determines a smooth fam- 
ily of maps R,oC, with (2L) parameters, the components of x. The fixed points of these maps 
will be smooth functions of these parameters, unless there are bifurcations. Therefore, if x is close 
enough to the shell, we can guarantee the existence of unique short orbit solutions to the variational 
problem. 

However, these are not the only possible short chord solutions even if x is close to Y. Consider 
again the case of L = 1, where the section is just a pair of points. We may consider the unique chord 
through x as pertaining to the short orbit or the long orbit, as shown in Fig. 3.3, or to different 
multiples of these combined, so that we wind many times around this periodic orbit while travelling 
from one tip of 5 to the other. Exactly the same happens for a point x at the centre of a periodic 
orbit chord if L > 1. Each of these different windings will introduce a chord corresponding to a 
different centre map for which it is the fixed point. Since all these maps are smooth with respect to 
variations of x, we also obtain solutions for nearby centres x, even though the segments no longer 
constitute a periodic orbit. Thus, close to the shell, the chords can be classified as belonging to 
short orbits or to smooth continuations of chords belonging to nearby periodic orbits. 

It will be important to understand the geometric structure of the centre section. If x lies close to 
the shell, this geometry is revealed by expanding H(x +X) in powers of X: 

H(x+X)=H(x)+(aH/ax).X+~X~X+... , (3.1) 
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Fig. 3.3. The chord through x determines two alternative centre actions S(x) related to the short and the long segments 
of the periodic orbit that constitutes the shell in the case L = 1. 

Fig. 3.4. The centre section has the topology of a sphere. If x is sufficiently close to the shell, the short orbits will be 
approximately straight. The (short) centre map injects points from the lower into the upper hemisphere. 

where XX is the Hessian matrix at x, i.e. at X = 0. The centre section is defined by the equations 
H(X) = E and H(X) = H( -X), which becomes 

(all/ax) . x = 0 or J(aH/ax) Ax = 0 (3.2) 

to second order in X. Thus, the section of YE by R,9$ coincides in this limit with the section 
by the plane tangent to the shell through the point X. This is the more familiar construction for a 
PoincarC section usually chosen to be a plane cutting the energy shell. 

The form of the section is now revealed by including (3.2) in the expansion (3.1), so that 

E - H(x) = &X&X-. (3.3) 

Adopting coordinates such that the plane (3.2) becomes X& = 0, the (262)-dimensional section 
becomes the ellipsoid (3.3) with XzL = 0. Therefore, the topology of the centre section is that 
of a (2L-2)-sphere in the (2&l)-dimensional energy shell. As x approaches the shell, this re- 
duces to an ellipsoid, but, even when x is far from the shell, the section remains invariant with 
respect to reflections about X. 

Taking coordinates such that X,, = 0 is the tangent plane implies that locally H is only a function 
of X,,. Therefore, the nearly straight parallel orbits intersecting this small ellipsoid will have the 
direction of the conjugate coordinate, which we shall call XX,_, . Taking this as the vertical direction 
transverse to the plane X2L_1 = 0, we can use the remaining coordinates (Xi,. . . ,X2L_2) as coordinates 
for the two halves of the ellipsoid, as shown in Fig. 3.4 for L = 2. The usual definition of a PoincarP 
map involves only one sense of the vertical traversal of the trajectory in or out of the sphere; since 
we work directly with the coordinates in the (Xi,. . . ,X2L_-2) plane, the Poincart section is considered 
as a disk. The centre map C, concerns chords centred on x (i.e. X = 0), so we must consider its 
full spherical structure. 

Evidently, the spherical topology is preserved for large spheres centred on x far inside Y. The 
orbits that intersect such a sphere will divide it into an incoming and an outgoing hemisphere, which 
correspond, respectively, to the lower and the upper hemispheres in the previous coordinates. In the 
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centre section 
\ 

Fig. 3.5. Reducing by one the dimension of the shell Y, it would become a two-dimensional spherical surface and the 
centre section (9P R,Y) would be represented by a closed curve. The orbits define the Poincare map (1 -+ 3) as the 
composition of the in-map (1 + 2) with the out-map (2 + 3). 

Fig. 3.6. The equatorial surface is the locus of midpoints of the chords joining the outgoing and the incoming regions of 
the centre section. 

simplest case, L = 2, the two hemispheres are divided by a line (the equator) where the orbits are 
tangent to the sphere. 

The centre map, when viewed on the sphere, carries points from the incoming hemisphere to 
the outgoing hemisphere. It should be born in mind that the definition of inside and outside of the 
centre section is only natural when x is close to the shell. Since 9 is compact, the two regions into 
which it is sectioned are also compact. So if we take x continuously from one side of the shell to 
the other, we exchange the ‘natural’ inside and outside of the sphere. In this traversal there may be 
further bifurcations analogous to those for L = 1, but these have not been analysed so far. 

Once we choose which side is labeled incoming and which is outgoing, we see that the usual 
Poincari section is the composition of two maps between the hemispheres. First we travel ‘inside’ 
the sphere, then return to the original hemisphere following an outer orbit, as sketched in Fig. 3.5. 
This is analogous to the way that Bogomolny obtains his sections in quantum mechanics [20]. 

In the case of ordinary Poincare sections by an arbitrary (2&l)-dimensional plane, such as 
x2L = 0, we merely describe the appropriate hemisphere by means of the coordinates x’ = (xi,. . . , 

x~~_~). That is why the section appears as a disc. For the description of the centre map it is natural 
to define the equatorial surface of the sphere. This is the locus of midpoints for the chords of all 
orbits that intersect the spherical surface as shown in Fig. 3.6. We have verified that, as x + 9, 
the orbits collapse onto their straight chords. Thus, in this limit, the equatorial surface becomes 
indistinguishable from the plane used for the Poincare section. 

Let us now consider the restriction of the action SE(x) to the equatorial surface. The chords 
generated by differentiating SE as a centre function, will be of the form <(xl) = (<‘, 5zL_r, &), 
where iJ’ is a vector within the tangent plane to the equatorial surface, at the point x’. Since the 
centre function generates canonical transformations, (1.53) holds, i.e. 

dc A dx],r = d[’ A dx’ = 0 (3.4) 
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Fig, 3.7. The point x’ is constrained to the equatorial surface (ES). The variation St’ is the projection of St onto the 

tangent plane (TP). 

(the geometrical basis for this equation is displayed in Fig. 3.7). This shows that the projection of 
the transformation between the two hemispheres is canonical when restricted to the tangent plane 
of the equatorial surface. In the limit of very small spheres, this surface tends to a plane, along 
which the transformation will be canonical. However, when the curvature of the equatorial surface 
must be taken into account, there will be no single plane along which the transformation induced 
on the section will be seen as canonical, even though the full symplectic action is preserved for any 
section. This is consequence of the Poincarl-Cartan theorem [ 151, which may be directly obtained 
from the classical variational principles [ 191. 

The situation is simpler for the more familiar position action 

sE(q+, q- > = I’- P . dq 

Y- 

(where p(q) is an orbit on the energy shell) which is obtained 

(3.5) 

by taking the Legendre transform 

(1.54), (1.55) of S&K). Ob viously, we obtain the corresponding momenta pi by taking the deriva- 
tives ( 1.56). Therefore the restriction to particular planes, qfL = a,, q-L = a-, implies that this action, 
&(q+, q- ), becomes the generating function of the canonical transformation XL = (pi,. . . , pL_ ,, ql , . . . , 

qt-d+& through the equations 

(3.6) 

In the particular case where a, = a_ = a, we obtain the generating function for the Poincare maps. 
Sections are ideal instruments for the study of periodic orbits. The Poincare section can often be 

chosen so as to include almost all the orbits in the shell as periodic points. Conversely, by bringing 
a centre within the shell as close as we like to a periodic orbit, we can make the spherical section 
as small as we like, thus excluding nearby periodic orbits. It is true that, since these are dense, 
there will always be very long periodic orbits crossing the section, but these will not appear as a 
fixed point in the first iteration of the map. 

Let us consider a tube of trajectories that crosses the centre sphere and includes a periodic orbit. 
This orbit will return to the section and it will bring back with it a neighbourhood of non-periodic 
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Fig. 3.8. Generally, the orbits in a narrow neighbourhood of a periodic orbit that intersects a centre section are not 
themselves periodic. 

Fig. 3.9. The total symplectic area .Y’ for a periodic orbit that crosses the centre section is split by the chord through XL 
into the components S,, and SO,,. 

orbits as shown in Fig. 3.8. Eventually, nearly all the orbits will return, because of the Poincare 
recurrence theorem [ 18, 191, but they may explore entirely different regions of the energy shell. 
Indeed, if the system is ergodic, they will come arbitrarily close to any point in the shell. 

The periodic orbit closes in a sequence of two mappings between the ingoing and the outgoing 
hemispheres. We have seen that the in-map is trivial for all the orbits, in the limit of small spheres. 
It is then approximately the identity map in the coordinates of the equatorial plane. The action 
Sin(x’) will thus be small for all the orbits, so that later we shall use the results of Appendix B to 
estimate it. We can clearly decompose the action of the periodic orbit itself as 

y= 
! 

P ’ @=&($I + Sout($) > (3.7) 

where XL is the centre of the chord for the periodic orbit (lying in the equatorial surface) and S,,,(x~) 
is the action for the out-map. Thus there are two chords &JxL) =-rin(XL) shown in Fig. 3.9, 
corresponding to two different solutions of the variational problem, centred on XL. 

These two solutions have very different actions, but, by adding two in-traversals to the out- 
orbit, as shown in Fig. 3.10, we obtain a new solution with action &&x’), for which again 
[ions(x’) =-[OUt(x’) = tin(Y). Evidently, the long solution has nearly the same action as the out 
solution, since 

Slong(X~ > = lfz7 + Sin(xi 1 > (3.8) 

whereas S,,,,(x~) = Y-&(x;). There is an evident extension for the case of multiple windings of 
the periodic orbit. 

So far we have considered only chords lying on a periodic orbit. However, what we are really 
interested in is the chord whose centre coincides with the centre, x, of the sphere. Its tips need not 
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Fig. 3.10. The long orbit is obtained by adding in-segments to the tips of an out-orbit. In 
in-segments overlap. 

the case of periodic orbits, the 

n 

Fig. 3.11. The chords passing through the centre of the section do not generally belong to a periodic orbit, but, again, we 

obtain the long orbit by adding two in-segments to an out orbit. 

lie on a periodic orbit. For any solution I&~(X), we will also find a solution C&,(X), obtained by 
adding two in-mappings to the out-map, as shown in Fig. 3.11. Let us define xi to be the centre 
of the chord for the in-map that extends the out-map in the forward direction and x1 as the centre 
for the backwards extension. Then clearly 

(3.9) 

For the chords centred on x, we will have xi =-XI, but the corresponding centre actions need not 
be equal. It is important to note that the relation (3.9) between the long action and the out action is 
quite general for chords of orbits traversing a small section. It is therefore entirely independent of 
our ability of expressing either of these actions in terms of the action $2’ of a nearby periodic orbit. 

Let us now suppose that indeed there is a periodic orbit traversing the section. Then XL will be 
a fixed point of the out-map, but xi =-x’# 0 if xi # 0. (If the periodic orbit determines periodic 
points of the Poincare map, then we must compose further in and out maps so as to obtain a 
fixed point. In any case, reduction of the section can eliminate all but one of the periodic points). 
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Fig. 3.12. The shaded area of the triangle determines the centre function for the canonical transformation x_ +x+, 

linearized around XL. In fact, this is just the out-map, so the symplectic area of the triangle is &SO,. The chord for the 
long map projects onto the same vector between xi and xi. When these two points touch the outer curve that limits 

the classical motion in the equatorial plane (i.e. the x’ plane), the full chords 5 O(lt and &,a coalesce in a Wigner caustic. 

Evidently, the action SO,, at the centre of the sphere can be obtained from the action of the periodic 
orbit: 

scmt(X> = sout(Xl,> + S&m = y-Sin(XA) + S&ut > (3.10) 

Slonp(X) = Y--Si,(Xi) + ASin + S*(L) + SSOU, . (3.11) 

We may say that SS,,, takes care of “transverse” action differences with respect to the periodic 

orbit of both SO,, and Siong, since the “longitudinal” differences between these is already taken into 

account by the Sin terms. 
If we now linearize &SO,, around the fixed point XL, we find that, according to (1.26), SS,,, can 

be identified with the area of the triangle formed by (x$xI,xi), displayed in Fig. 3.12. Thus, 

SLY,,, “(X - x;)233,(x -xi) =x;!Z$‘$, (3.12) 

where 

JBP = [ 1 - m,][ 1 + q-’ . (3.13) 

For a small enough sphere, we can identify mp, the Jacobian matrix for the fixed point of the 
out-map, with the stability matrix for the ml1 return of the periodic orbit. 

It only remains to estimate Sin(x’) for the traversal of a small spherical section. The symplectic 
area of a chord for a short interval is obtained to third order in time in (B.13) of Appendix B. This 
is just Sin(x’) for a point in the equatorial plane: 

Sin(X’) N ~ t3X’ A X’ = ~t3X’~‘~’ , (3.14) 
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where X’ and X’ are the velocity and the acceleration at the point x’ and 2’ is the Hessian of the 
Hamiltonian at this point. The “time of flight” for the in-map can now be eliminated by using (2.17) 
or (B.ll): 

E - N(x’) = $ t2~‘X’X’ , (3.15) 

so that 

S,&‘) N +21’2[(E - H(x’))3’2]/[A#‘X’]“2 . (3.16) 

Thus, the action of a small chord is obtained by placing x’ = 0 (at the centre of the section), whereas 
s long and Sout result from the evaluation of (3.16) for XL and 5, where appropriate. 

If we are merely calculating Sin itself, it is clear that this action is positive when the shell is 
convex and tends to zero as the centre approaches the shell. Outside the shell, we would obtain an 
imaginary action, according to (3.16). For the evaluation of S,,, and Siong, we must then calculate Si, 
at points where it is smaller than at the centre of the section. Indeed, as XL move to the boundary 
of the equatorial plane shown in Fig. 3.12, H(x’) + E and we obtain S,,, = Slang, according to (3.9). 
This is a Wigner caustic, beyond which we again have imaginary action, even though the reflection 
centre is inside the shell. The possibility of expressing the actions in terms of that of a periodic orbit 
also clearly depends on this orbit crossing the section, since otherwise (3.16) becomes imaginary 
for the orbit. In the original Berry theory [14], the various contributions of the in-action were all 
evaluated at the reflection centre. This is an excellent approximation to the present theory, as long 
as xi and xi all lie well within the spherical section, but it breaks down as the sphere is shrunk to 
zero by bringing the reflection centre onto the shell away from a particular periodic orbit. 

We can now resolve xi in terms of A$, within the linear approximation, using XL = -Xi and 

x; -x;=m,(x: -Xi), (3.17) 

where X,! =x: - x and all vectors are restricted to the equatorial plane. It follows that 

X; = i JB& (3.18) 

so that close to the shell 

Soot(x) = 9 +X;B&; - $2”2{[E - H(~~)]3’3}/[~~~~~]1i2 , 

whereas 

(3.19) 

Slang(x) = S&X) + ;2’12[E - H(x;)]~‘~/[~;X$]“~ (3.20) 

with x+ =x + 3B&. Note that the symmetric matrices -3 and BP have distinct status. The former 
represents local structure of the Hamiltonian near the point x, whereas the latter depends on the 
motion along the full extent of the periodic orbit. 

Finally, we derive the local structure of the Wigner caustic where the second term cancels in 
(3.20). Expanding H(x:) about the point x, we obtain the energy difference between the point X, 
on the caustic and the energy shell as 

a(~,) = fx;zXx; = -~x;B,~~,~B,x;, (3.21) 

i.e. we have a quadratic form in x, -xP. For Xi within the closed curve (3.2 1) there are two chords; 
these coalesce on this ellipse and cease to contribute as x, is pushed away from the periodic orbit 
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leaving 6E constant. Conversely, if we start on the same point, but move onto the shell keeping XL 
constant, we also cross the caustic into the classicaly forbidden region, because 6E ---f 0 in (3.21). 

We are now in a position to appreciate the multiplicity of chords and caustics for a reflection 
centre that is not too close to the shell. It will then have several periodic orbits appearing as fixed 
points of the out-map. Its present position could have been obtained by bringing it smoothly from 
the shell, starting on a point of any of these periodic orbits. In each case this displacement would 
bring with it a pair of chords that would evolve smoothly. In each of these one parameter families 
of maps there must be points where the pair of chords ascribed to the other periodic orbits enter the 
section. Therefore, in each of these evolutions the reflection centre crosses a sequence of Wigner 
caustics. 

4. Quantum operators: representations 

The formalism of quantum mechanics has become more familiar to physicists than the more 
elementary structure of classical mechanics. Indeed, the ease with which we manipulate the symbols 
of the compact Dirac notation hides the greater difficulties of deriving rigorous results within the 
quantum theory. As we are not here concerned with rigor, it will be sufficient to make a quick 
review of the general formalism, so as to establish the notation and highlight the differences with 
classical mechanics. 

The state of’ a dynamical system is represented by a vector I$) in Hilbert space (or Banach 
space) when it is described by quantum mechanics, as opposed to a point in classical phase space. 
The evolution of all the states for a finite time, analogous to the canonical transformations that we 
have been studying, results from the action of a linear unitary operator fit: 

Iti) = fi&) > (4.1) 

with the property that the adjoint fi: equals the inverse fil- ‘. The one-parameter family of evolution 
operators ri, are the solutions of Schriidinger’s equation 

ifi(?/lk)Q =riQ , (4.2) 

where the Hamiltonian operator I? is Hermitian, or self-adjoint: I?+ = f?. 
If the Hamiltonian is independent of time (autonomous), we can integrate (4.2) immediately, to 

obtain 

fit = exp(-ifi-‘&), (4.3) 

where we define the exponential by its Taylor series. Conversely, we may define the Hamiltonian as 

A=i!i!im(lJ - i)/t, (4.4) 

where i is the identity operator. Thus, any Hermitian operator can be considered as the “infinites- 
imal generator” of a possible evolution in Hilbert space, just as any real function in classical phase 
space is capable of generating a Hamiltonian flow. 

The eigenvalues of Hermitian operators, being real, allow us to identify them with the results 
of ideal measurements. These quantum equivalents of classical variables are thus referred to as 
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observables. For an arbitrary state I$) the average value predicted for the measurement of the 
observable A is 

(A) = Wl~lti) . (4.5) 

Consider now the “evolution” of a classical variable A(x) under the flow of the Hamiltonian H(x). 
For any initial position x0, we obtain ,&(x0) =A(x(xo,t)), so that A, results from considering the 
classical states (i.e., phase space points) as fixed and attributing the change experienced, because 
of movement of the state, to A itself. If we now assume this same point of view for the quantum 
evolution (the Heisenberg “picture”) we find that, attributing the change of (A), to 2 rather than to 
I$) in (4.5) implies that 

& = QGOfil . (4.6) 

Thus, to first order in t, 

A^, = (i + (i/fi)tfi)a,( 1 - (i/fi)tti) =a0 - (i/fi)t[Aa,tj] , (4.7) 

using the definition of the commutator, 

[Al,l?]=B -2%. (4.8) 

So, the evolution of the observable 2 is governed by Heisenberg’s equation, 

(d/dt)a= -(i/h)[a,fi] . (4.9) 

It is well known that (4.9) corresponds precisely to the classical equation k = {A, H}, defined in 
terms of Poisson brackets [2 1,231. In particular, if A is just a component of position or momentum, 
we recover one of Hamilton’s equations. 

Just as in classical mechanics, we are primarily interested in the system’s position qo, described 
as the eigenvalue of the operator 4 for the eigenstate lqo): 

4140) = 40140) 3 (4.10) 

and likewise the system’s momentum: 

APO) = APO) . (4.11) 

The fundamental postulate is that these observables do not commute, indeed the components ik and 
P; satisfy 

[ik, pj] = ifid, i , (4.12) 

where fi is Planck’s constant. 
The fact that the commutators (4.12) are a multiple of the identity operator (with the dimension 

of action) has far reaching consequences. If we construct the family of unitary operators 

fq = exp( -iK’q . j) , (4.13) 

where the L parameters qk have the dimension of distance in position space, we can transform any 
observable a--+~? =2(q) according to (4.6). Obviously, ?q leaves the observable j invariant, but, 
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if we take a= ij and associate any of the parameter components qk with the time in (4.9), we 

obtain the derivative of a(q) as 
n 

(a/dqk)G, = (-i/fi>[ip Sk1 = 611 . (4.14) 

Integrating with respect to the parameter components qk, we then obtain the action of f4. on 4, 
for a particular vector parameter qO, to be 

& = f-&Q” = 4 + qa i ) (4.15) 

so that 

i:lqb) = (qb + d1qb) . (4.16) 

Evidently, we are using the “Heisenberg picture”. In the “Schrodinger picture”, the states are 
transformed rather than the operators; so, to obtain the new eigenvalue we must have 

$0 lqb) = 1% + qb) . (4.17) 

In the same manner, we can form the operators 

c = exp(ih-‘p . cj) , (4.18) 

obtaining from the fundamental commutator (4.12) that 

j?’ = T_,jqP<, = i, f p,i (4.19) 

and 

chb) = IPa + Pb) . (4.20) 

We can now compose $, with fq to obtain operator equivalents of general translations in phase 
space. The fact that these two families of operators do not commute is not a major problem because 
of the fundamental theorem [21]: If both 2 and j commute with their commutator, then 

e”ij = eA^eBe-( I j2)[‘4”,& (4.21) 

Since the condition is satisfied by j and @, we obtain the translation operator by 5 = (p, q) as 

Ft = exp((i/h)t Al) = exp[(i/h)(p 4 - q . j)] 

= TPTqexp[-(i/2h)p. q] = Tq$exp[(i/2h)p. q] , (4.22) 

where naturally JG = (i, 4). In other words, the order of fa and i?q affects only the overall phase of 
the product, allowing us to define the translation as above since unitary operators act in joint pairs 
to transform other operators in (4.6). However, we shall find that the detailed form of these phase 
factors plays an important role in the following theory. ?t is also known as a Heisenberg operator. 

The group property is maintained within a phase factor: 

(4.23) 
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where II3 is the symplectic area of the triangle determined by two of its sides. Evidently, the inverse 

of the unitary operator f<r’ = ptt = f_; and we can generalize (4.23): 

%, . . . ft:fc, = ~~,+...+t,exp[(-i/n>o,+,(~1,. . . , L>l , (4.24) 

where Dn+t is the symplectic area of the resulting (n + 1 )-sided polygon defined in Appendix 
A. Thus, it can be said that the phase stores the memory of the sequence of translations of the 
Heisenberg group. This is known as a cocycle [22] in the theory of representations of groups. 

Let us now define a new family of linear operators as proportional to the Fourier transform of 
the family of translations f(: 

& = (47tn)-L 1 dt exp[(i/h)x A t]ft = (4~fi))~ / dt exp[(i/fi)t A (i - x)] . (4.25) 

Evidently, this relation can be inverted, such that 

w-” J’ dx exp[-(i/h)x A @I = (27~fi))~~ 
.I 

dx dc’ exp[-(i/fi)x A (5’ - t)]?[, 

= 
s 

dt’ S(c - <‘)f<, = f< . (4.26) 

Comparing the last integrand in (4.25) with the middle integrand in (4.26), we see that, in a 
way, the i?, corresponds to an operator version of the Dirac S-function. However, the following 
investigation of the properties of this family of operators through their combinations with f< will 
reveal their true nature. First we verify that 

l&f< = (4Tcn)-L 
J’ 

dt’ exp[(i/h)x A t’]fcJyt = (47~&)-~ /dt’exp [ii (x - f) A [‘] ft+tl 

(4rrh)-‘Jdqexp [k ( x - 2 ‘) r\(q - t) fV = exp [-(i/n)x A 51 Z?_l;2 , ] (4.27) 

whereas, similarly 

FtriX = exp[-(i/fi)x A ~]kI+ciZ . (4.28) 

These products may now be used to simplify the evaluation of 

l?,,l?,, = (4rcn)-L 
s 

dl exp [(i/fi)xz Ml f$%, = (4nfi)YL J’ dc exp [(i/fi)(x, - x1 ) A [I k,+tp 

= (TC~)-~ / dq exp [(i@)2( ~2 - XI > A (Y - XI )I R, = exp [W)x, A x21 f22(x2-x, j . (4.29) 

Comparing (4.24) and (4.27)-(4.29) with (1.39)-( 1.42) we verify that the operators k, and fX 
form a group that is analogous to the classical reflections and translations in phase space. From 
(4.29) we see that 

li;=i, (4.30) 

so k, definitely does not correspond to a S-function operator. Also, since it is obvious that l?$ = k,<, 
we find that I?, has been defined as an unitary operator. Therefore, the full group of k, and ft is 
an unitary quanta1 representation of the classical group of translations and reflections [57,58]. 
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These properties will be of fundamental importance when we come to study the Weyl represen- 
tation. But now we will start with the more familiar representations of quantum mechanics. The 
eigenfunctions of position and momentum form a complete set, so we can expand 

(4.3 1) 

where lhW12 and IW)12 are, respectively, the probability density that the state I$) has the 
position q and the momentum p. Evidently, 

(4%) = fi(q - 4’) and (P’IP)=~(P- ~‘1, (4.32) 

as a consequence of (4.3 1 ), whereas it is well known that 

(plq) = (2r~h))~‘~ exp [-(i/fi)p . q] . (4.33) 

Therefore, the state /qO) has a specific position qo, but an uniform probability density for its mo- 
mentum, while lpo) specifies the momentum rather than the position. 

These representations depart radically from the classical concept of a state as being represented 
by a point in phase space where both the momentum and the position are precisely determined. It 
is therefore natural to seek representations in terms of states such that both the position and the 
momentum are as narrowly determined as possible. Recalling the definition of the mean value (4:5) 
of the observable A for the state I$), we relate the uncertainty in A to the variance ( Ad)2 = ((A - 

(A))2). Then, following standard manipulations [21,23], one obtains the uncertainty principle: 

(dp>2(Llq)2 > $2. (4.34) 

The states of minimum uncertainty, for which the equality holds in (4.34), are known as coherent 
states. Most of their basic properties (reviewed in Refs. [24,25] and in complement G, of the 
standard reference [23]) are derived from the fact that coherent states are eigenstates of 

2 = (2fi)11/2(w’U2G + iw-112$), (4.35) 

the lowering operator for the harmonic oscillator: 

II = #? + w’i”) = wn(w~2 + w-‘1;2)/2!i = wn[ri+a^ + ;I ) (4.36) 

where the adjoint, 

hi = (2jj)p1i2(w1/24 _ iw-1’2jj), (4.37) 

is known as the raising operator. Indeed, recalling that the eigenstates of 2 have a regularly spaced 
spectrum, 

&z) = wfi(n + i)ln) , (4.38) 

it is shown [2 1,231 that 

CIn) = (n + l)“‘(n + 1) and 6In) =n1/‘21n - 1) . (4.39) 

(Note that, for simplicity, we are now restricting consideration to the case L = 1.) 
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The eigenvalues of the lowering operator (4.35) need not be real, since it is not self-adjoint. Let 
us solve the eigenvalue equation 

&lz) =zIz) ) (4.40) 

where we will express the eigenvalue z in terms of two real parameters, P and Q: 

z = (2h)-“2(w”2Q + iw-li2P) (4.41) 

in a natural way. In the position representation i? = -iha/i3q, so that (4.40) becomes the differential 
equation 

(w1’2q + nw -1/2a/aq)(q(zj =d2i(+j , 

with the normalized solution 

(4.42) 

(q(z) = (w/7cn)“4 exp[-(w/W4 - Q>’ + WWI . (4.43) 

Since the Fourier transform of a Gaussian has the same form, we obtain the momentum represen- 
tation of the coherent state as 

(plz) = (l/rcnw)1’4 exp[-(1/2fiw)(P - P)2 - WW2~1. (4.44) 

It is evident from the form of (4.43) and (4.44) that the average values satisfy (q)Z = Q and 
(p)= = P. Furthermore, we can verify that the product ApAq is independent of w and of the eigen- 
value z, providing the equality in (4.34). In the limit w --) W, except for the need to redefine the 
normalization, we obtain (qlz) + S(q - Q), i.e. Iz) becomes a position eigenstate. Alternatively, when 

w + 0, (41z) + exp[-(i/fiPql, which is a momentum eigenstate. By choosing w - 1, we localize 
both the momentum and the position within an &area of the expected value (P, Q). 

The coherent states would thus form an ideal “phase-space basis”, if it were not for their overcom- 
pleteness. There are many ways of showing this and of determining a complete subset of coherent 
states. Let us just note that in the limit w -+ co, the subset of states with eigenvalue P = 0 becomes 
the set (q), which is complete. Indeed, any function P(q) specifies a complete subset of these “ex- 
treme” coherent states. All the same, we shall verify that we still obtain useful expressions by 
treating the decompositions into the full set of coherent states as if they were merely complete. 

Another natural representation for the coherent states is the harmonic oscillator basis In) defined 
by (4.38) (with the same choice of frequency w). Expanding 

Iz) = c cn(z)l4 9 

n 

we obtain 

hlz) = c Cn<Z>&z - 1) = )+n(z,ln) > 

using (4.39) and (4.40). Thus, normalizing the resulting recurrence relation, we obtain 

(4.45) 

(4.46) 

(4.47) 
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We can now use this decomposition to represent an arbitrary state I$) in the coherent state 
representation. Indeed, the expansion coefficient is 

(zI$) = e-1’l”2F(z*) > (4.48) 

where 

F(z) = g- z” n 
n=O (n!)‘!2 ( ‘H (4.49) 

is an entire function, since the sum (nI$) is normalized to unity. It is then easy to show that the 
scalar product can be decomposed in the usual form implied by the Dirac notation. 

even though this representation is overcomplete. It 

WW) =(l/~)Jdr’(zl~lz’)(z’l~) ) 
A 

where (z]AIz’) is the coherent state representation 
product rule 

of the operator 2, 

(4.50) 

(4.51) 

and we can use the matrix 

(4.52) 

Alternatively, we can employ the analyticity of the coherent state representation to resolve its 
overcompleteness. It is known that if an entire function of z and z’ is zero along z’ =z*, then it 
cancels for all z and z’ [26]. Since 

e(l!*)l~l’+(l!*)lz’I’(z’~‘z~) = F ;:I;;/; (nl+) 
. . (4.53) 

is an entire function of z* and z’, then it is uniquely determined by the diagonal elements (zla(z). 
The diagonal coherent state representation is known as the Husimi representation [4,5] usually con- 
sidered as a function of the real phase space variables (P, Q), rather than of the complex number z: 

&(P, Q> = 
w'/*Q + iw-‘f2P a 

(2fi)‘!2 IAI (4.54) 

The essential analytic part of the Husimi representation is known as the Bargmann representation 
[54,55]. However, the present emphasis on the real phase-space variables justifies the former term. 

We obtain a more intuitive grasp of the Husimi representation by rewriting 

AH(P, Q> = ‘Wlz) (4~) . (4.55) 

The projection operator Iz)( z onto the coherent state Iz) is identified with the density operator pz 1 
for the pure state Iz). Recalling the definition of averages for operators, given the density p [2 1,231, 
we find that AH(P, Q) = (AX, th e average value of A for a system that is in the coherent state Iz). 
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As well as considering ]z)( z as a density operator, it is important to study the Husimi represen- / 

tation of an arbitrary pure state density operator p = I$) ($1: 

PH(p, Q> = (4.56) 

We see immediately that this Husimifinction represents the density operator as a real non-negative 
function in phase space. 

As an example, let us consider the Husimi function for the eigenstates of the harmonic oscillator. 
Since the coherent state itself can be decomposed into eigenstates of the harmonic oscillator (4.47), 
we obtain 

(z]m) = c+l’.!2z*m/m. (4.57) 

Therefore. the Husimi function will be 

l(z]m) I2 = ( 1/2hm!)(wQ2 + P2/w)2m exp[-( l/21i)(wQ2 + P2/w)] , (4.58) 

which is constant along the elliptical level curves of the classical Hamiltonian. It should be recalled 

that (K Q> = UP), (4 1, i.e. the mean values for the coherent state 12). 
It is important to note that the simplicity of (4.58) depends on the choice of the free parameter 

w’ for the coherent state as equal to w, the frequency of the harmonic oscillator. If we chose w’ >> w, 
the Husimi function would have oscillations resembling those of l(qlm) I2 instead of being smooth. 
In the case where w = 1, the elliptical level curves of (4.58) become circles of radius Iz]. The 
maximum intensity of the Husimi function is found by taking 

W’442N4~~12 = L-1 + ~l14211tzl~j12 =O > (4.59) 

i.e. at lz12 = m. Recalling that the classical Hamiltonian is just H,(p, q) = $I’ + q2) = h(z12, we find 
that the maximum intensity of the Husimi function is obtained at 

K(p, 4) = mfi , (4.60) 

which is just inside the quantized circle i(p’ + q2) = (m + i)h, obtained as the classical orbit with 
the energy of the mth eigenstate. 

This example is not untypical of the marvellous way that the Husimi function highlights the 
classical structure underlying a quantum state. We see, however, that this depends on an appropriate 
choice of the free parameter. The fact that the phase space is complexified is not a major problem. 
Indeed, the classical theory of normal forms around stable equilibria [ 15, 191 relies on an entirely 
analogous procedure. 

Retrieval of the phase of the coherent state representation of a given state from its (Husimi) 
modulus involves analytic continuation. This can be neatly obtained from the knowledge of the 
zeros of the Husimi function as a consequence of Hadamard’s factorization theorem [27]. Thus, it 
is true to say that the zeros of the Husimi function encapsule a minimal determination of a quantum 
state. Leboeuf and Voros [28,29] have verified that the nature of the distribution of zeros in the 
phase plane is correlated to the chaotic or regular character of the corrresponding classical motion. 
The remarkable feature is that these zeros do not generally lie in the region of classical motion. We 
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shall see in the next section that the previous simple example is quite typical, in that the Husimi 
distribution has a smooth maximum on the classically allowed region, thus expelling the zeros from 
this neighbourhood. 

The formulae beyond Eq. (4.34) in this section have been restricted to a single degree of freedom 
so as not to encumber the notation. Thus, for instance, the representation of a coherent state in the 
harmonic oscillator basis (4.47) generalizes to 

121 . ..zL)= exp{-f[~rl~2 +...+ ~zL~]') C ~L!$!&Fz, . ..nL). 
n, ...ni 

(4.61) 

Here, each of the oscillators is free to have a different frequency: wI . . . wL, so that the position 
representation will be a (2L)-dimensional Gaussian with L different widths. The only difficulty lies 
in the analytic continuation required to obtain the phase of the coherent state representation from 
the Husimi function, involving the analytic continuation for several complex variables. In particular, 
the zeroes of entire functions will not be restricted to points in phase space. 

5. Centres and chords in quantum mechanics 

By expressing the Husimi symbol of an operator as the trace (4.55) of its product with another 
operator, we attain a different level of representation in quantum mechanics. Indeed, the trace of an 
operator is invariant with respect to any unitary transformation of the basis with which we represent 
it, so we may omit this basis from consideration. We shall now develop this theme, while substituting 
different choices of unitary operators fi for the projection operator Iz)(z/ onto a coherent state. First, 
let us note that Tr fi corresponds intuitively to a measure of the fixed points of a classical mapping, 

since I ($1 Q+) I2 is the probability that the quantum map, 

I$‘) = fil$) > (5.1) 

brings the states I$) back onto itself. 
Let us examine specifically the translation and reflection (unitary) operators defined in the previous 

section. Starting with the translations, 

= (27wW) > (5.2) 

and then taking the Fourier transform, 

Tr li%, = Tr 2Li, = (2xh)-L J d5: exp [(i/h)x A [] Tr ?t = 1 , (5.3) 

where, it is now also convenient to define the exact Fourier transform k, of fC. We recall that the 
classical transformation Rx has a single fixed point (X itself), whereas Tt has fixed points only if 
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5 = 0, when all points are fixed. These results are in general agreement with our intuition as to the 
classical correspondence of the traces of unitary operators. 

We can now consider the possibility of expressing any operator A as a linear superposition of 
elementary translation operators: 

(5.4) 

The confirmation results from 

which furnishes explicitly the expansion coefficient. Comparison with (1.38) reveals that, when A 
is an unitary operator, equation (5.5) represents the unitary map, in close analogy to the way that 
the chord generating function represents a canonical transformation. In the latter case, we are given 
the chord 5 and determine the missing centre, x, by finding the fixed point of the transformation 
combined with f-t. In quantum mechanics we now take the trace of the combined operators to 
dermine the chord representation A(r) that uniquely specifies A according to (5.4). Of course, we 
cannot determine the centre x simultaneously with 5 because of the uncertainty principle. However, 
we can equally represent any operator A as a superposition of reflections: 

I s dx A 
A = (2rth)LA(x)R = 

.I 

dx 
-A(x)& . 
(+=ijL 

Again we obtain the expansion coefficient by calculating 

A A 

Tr( R&A) = Tr .I dx’ n A 
(27cm)LA(x’)RIRx, = 

J’ 

dx’ 
-Abet exp 
(2nfiY 

exp gx’ A x (2~h)~ 
[. 1 ‘(’ - “) =A(x) 

22L 

(5.6) 

(5.7) 

Notice that comparison of (5.4) and (5.6) with (4.25) and (4.26) yields 

R,(t) = 2-L exp [(i/n)x A 51 and q(x) = exp [-(i/n)x A <] . 

In analogy with our previous result, we may refer to A(x) as the centre representation of the operator 
A, but the historic term is the Weyl representation. If A is an unitary operator, we are now specifying 
the centre x, rather than the chord (now unknown), and we determine the Weyl transform (5.7) in 
close analogy to (1.37). Evidently, the origin of the analogy between (1.37) and (1.38) with (5.7) 
and (5.5) is the achievement of defining the fundamental group of translations and reflections in 
both classical and quantum mechanics. 

By defining different orderings for the operator fa and c in (4.22), we arrive at alternative 
representations that are discussed in the review by Balazs and Jennings [30], on which this section 
is largely based. It is also important to note that we are not able to express an arbitrary operator as 
a superposition of ]z)( z , so as to invert the Husimi representation in the manner of fc or fi,, 1 since 
Tr( ]z) (ziz’) (~‘1) = 1 (zlz’) 1’ is not a b-function. 
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Our ability to exchange chord and centre generating functions by means of 
in classical mechanics is exactly matched by the Fourier transform between the 
representations. Inserting (4.25) into (5.6) 

A = (4rcn))L 
.I 

dx 
---d&4(x)exp ix A t ft 
(nfi)L [’ I 

=/&{(2rrB)L/dx4(x)exp[kxAC]}?t, 

so that comparison with (5.4) reveals that 

A([) = (27rn)-L 
s 

dxA(x)exp [(i/h)x A 51 . 

An analogous treatment of (4.26) and (5.4) compared to (5.6) reveals that 

A(x) = (2~rfi))~ [ dcA(t) exp [-(i/fi)x A 41 . 

311 

Legendre transforms 
chord and the centre 

Consider now the coordinate representation of the operator 2. Using (5.4), we have 

(q+l&-) = / & m)k&lq-) 

= (27&)L s 
-!T% A(l)&q+ - 4- - 5,) exp [k cP. (q- + $)] 

= .I &A(tp,q+-q-)exp 5y.qp~q+ , 
1 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

which is just a (symmetrized) Fourier transform, whose inverse is 

45) = s di(i + ~5,)& - &) exp[-(i/h) 5, .q] . (5.12) 

If we now take the full Fourier transform of A(t), we also obtain the Weyl representation of 2 as 
a Fourier transform of (q+lalq_), i.e. 

A(x) = 
s 

d&(q + i&l& - /&) cxp[-(i@>p . &I , (5.13) 

with its inverse 

iq+lKq-)=S~A(p,~)exp[~ p.(q+-q-11 . (5.14) 

Comparison of these last equations with (1.49)-( 1.55) reveals that the Legendre transforms of clas- 
sical mechanics between generating functions are isomorphic to the corresponding Fourier transforms 
in quantum mechanics. 
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The reciprocity of the relations (5.4) with (5.5) and of (5.6) with (5.7) would have allowed 
for an arbitrary real factor in the definition of the centre and the chord representations. As well as 
agreeing with various previous definitions of the Weyl transformation, the choice adopted guarantees 
that 

Tra=A([ =0) = (2r~fi))~ 
s 

dxA(x) . (5.15) 

Also, we obtain a pleasing simplicity in the representation of the identity operator i: 

l(5) = (27~h)~S(t) and l(x) = 1 , (5.16) 

within a phase factor. Substitution of these expressions in the previous formulae furnishes a good 
check for stray constants. 

The advantage of the centre representation lies in its ability to deal with motion for short intervals 
of time, just as we found in classical mechanics. The corresponding operator will be very close to 
the identity, hence it will be smooth and close to unity in the centre representation, whereas its chord 
representation will be a sharply peaked function at the origin. This short time motion is generated 
by Hermitian operators (4.4). Since the respective representations of the adjoint operator, At, are 

A+(t) = M-t)l* and At(x) = [A(x)]* , (5.17) 

we see that the centre representation of a Hermitian operator is always a real function, while the 
restriction on its chord representation is not so satisfying. 

We find immediately from (5.13) that any function f(G) has f(q) as its Weyl transform, whereas 
the Fourier transform of (5.13), 

A(x)1 .i’ 
d5~ (P + +5,lJlp - is,) exp[(i/fi)s . ~$1, (5.18) 

shows that the centre representation of f(j) is f(p). The linearity of the Weyl transform then 
implies that the Weyl representation of the important class of Hamiltonians 

A E ( 1/2m)~2 + V(i) zH(x)=(I/2m) P2+wk (5.19) 

i.e. the Weyl representation equals the classical Hamiltonian H,(x). This is not true for general 
Hamiltonians or Hermitian operators, but the Weyl representation will be a smooth real function 
close to the classical Hamiltonian and tending to it in the limit h -+ 0. The chord representation 
of these Hermitian operators, will therefore be close to the Fourier transform of the corresponding 
classical functions. 

The advantage of the centre representation for Hermitian operators has obscured its basic reci- 
procity with the chord basis. It seems mysterious to find a representation of quantum mechanics 
where observables are represented by real functions that are at least close to the corresponding 
classical variables. The situation becomes clearer if we focus on unitary operators which transform 
states. These correspond classically to transformations in double phase space, as presented in Sec- 
tion 1. The generating functions of these canonical transformations are defined in terms of only half 
the variables of double phase space, but the other half can be obtained explicitly as derivatives. The 
corresponding representations of the unitary transformations in quantum mechanics are also deter- 
mined by half the variables in double phase phase, but we cannot obtain the other half explicitly 
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because of the uncertainty principle. If we now consider the observables as generators of unitary 
transformations, we find that, though the centre representation is just one of many options related 
by Fourier transforms, it is remarkably appropriate. 

Even though we can migrate among the several representations of operators via Fourier transforms, 
there is an important distinction concerning the centre and the chord representations, namely that 
they are not directly concerned with the states. We may consider that the position, the momentum 
and even the coherent state representations represent operators as a consequence of the way they 
represent the states. Indeed, we may choose the Schrodinger picture with static operators and moving 
states, or the Heisenberg picture that reverses the attribute of mobility. The centre and the chord 
representations concern only the operators and are therefore bound to the Heisenberg picture. 

Only the density operators, b, will represent states in this view, be they pure or statistical mixtures. 
Historically, the centre representation of the density operator 

W(x) = (27rn)-Lp(x) (5.20) 

is named the WQner function. In the case of a pure state, b = /I/) ($1, we see from (5.13) that the 
Wigner function can be considered as the Fourier transform of the spatial correlation of the wave 
function [ 11: 

W(x) = (1/2nfi>L / Wh + &‘lti) ($14 - jq’) exp[-W)p . 4’1. (5.21) 

Projecting this back onto the q-plane, we find that 

J dp W(p,q)= l(qlr1/)12 3 

whereas a similar treatment of 

J dq W(p>q)= IM$)12. 

Integrating again either (5.22) 
satisfies 

f 

(5.22) 

the momentum representation reveals that 

(5.23) 

or (5.23), we find that the Wigner function of a normalized state 

.I dpdqW(p,q)= 1 =Trb. (5.24) 

We therefore find that the Wigner function represents the state I$) as a real function in phase space; 
even though W(x) may be somewhere negative, its projectors onto the position and the momentum 
planes correspond respectively to the correct probability densities. 

Unlike the Weyl transforms of observables that are smooth functions in phase space, we expect 
a function that projects into correct probability densitites to be sharply peaked in the regions of 
classical motion, as we found with the Husimi function. Let us consider some examples. The first is 
a travelling wave in the interval (-l/2,1/2), with periodic boundary conditions. The wave function is 

(41$) = (Y1’2 exp[(ilh)p,ql , pn = 2nnhll. (5.25) 

Inserting the corresponding density matrix into (5.13), we obtain 

wcp qj= 1 sinW’(p - PJ > 
xl 

h f S(P - Pn). 
P-Pn - 

(5.26) 
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The Wigner function is independent of position and it is sharply peaked around the classical motion 
as was found for the Husimi function. 

Replacing the boundary condition by hard walls at f i I leads to the wave function 

(ql$) =(2/P coaw)Pnql . (5.27) 

Care must now be taken to cancel (5.27) whenever one of the two wave functions lies outside the 
walls, i.e. if q > 0, then the limit of integration is l/2 - q. Therefore, 

1 

- i 

sin[fi-‘2(1/2 - q)(p - pn) 

2Tcl (P - Pn) 

+ sW-‘2(U2 - q)(p + PJ 
P-tPn 

+ 2 cos(fi-’ pnq) sin[fi-‘2 (l/2 - q)p] 

P 
(5.28) 

In the limit h--f 0, the first two terms condense onto the classical manifold p = fp,, in the same 
way as for the travelling wave. But now there is also a nonclassical term. This interference term 
oscillates along the q-axis itself and it is essential for the correct projection of 1(q1$)(2 onto the 
q-axis: 

J’ 
dpW(p,q)=Z-‘[l+ cos(2h-‘p,q)]=21-‘cos2(K’p,q). (5.29) 

In the classical limit, the oscillations of 1 (q1$)12 b ecome infinitely rapid, so we can measure only 

its average I (ql$) I2 = l/l. By the same token, the interference term of the Wigner function can be 
considered to vanish as a consequence of its infinitely rapid positive and negative oscillations. The 
smoothed Wigner function corresponds to the classical probability density. It is interesting to note 
that the Wigner function broadens nonclassically, close to the wall. This feature is not present in 
the case of two periodic waves travelling in opposite directions, treated in previous presentations of 
this example [ 19, 3 11. 

As another important example, we now derive the Wigner function for a coherent state 12) with 

mean values (p) = P and (q) = Q: 

W=(x) 

=(&~(~)iilJdq’exp{-z [q-Q+g]‘-g [q-Q-g12+i (P-p)q’} 

= (f~n)-~ exp -i(q - Q)’ - -&(p - P)z> . (5.30) 

This minimum uncertainty state is thus a non-oscillating Gaussian centred on (P, Q). In the case 
where (P, Q) = 0, we obtain the Wigner function for the ground state of the harmonic oscillator. 
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We have used a multidimensional version of (4.43) in deriving the above formula, with the same 
frequency for each freedom, but this restriction is not necessary in (5.30). 

We can now use (5.30) to derive the relation between the Weyl and the Husimi representation. 
Developing 

~H(~&>=(~~&)= 1 dq'dq"(zlq")(q"lalq')(q'Iz) (5.31) 

and taking q = (q’ + q”)/2 and q”’ = q” - q’, we obtain 

(5.32) 

In the case where 2 = bti, the density operator for the state ]I/), we obtain 

PH(~', Q> = J’ dx W,(x>wti(~) = I kI$> I2 . (5.33) 

So we find that the Husimi representation can be viewed as a Gaussian smoothing of the Weyl 
representation. Because of the analyticity of coherent states, it is possible though nontrivial to 
retrieve the information masked by the smoothing. Conversely, we see from (5.33) that a Gaussian 
smoothing of the Wigner function necessarily produces a positive definite distribution. Indeed, we 
may consider the projections (5.22) and (5.23) as particular instances of (5.33), when we choose 
W--P cc or w-0, for which w=(x) + b(q - Q) or S(p -P), respectively. Since the Husimi function 
must be positive (or zero) for any w, we deduce that the Wigner function can only be negative in 
the context of narrow oscillations. 

Returning to the example of a particle in a box with hard walls, we see immediately that a 
convenient choice of w will produce a smoothing that effectively cancels oscillations along p = 0. 

We thus obtain a representation which underlines the classical structure. However, we cannot recover 
the wave intensity by a mere projection, once the Husimi smoothing has been performed. (See 
Ref. [31] for further discussion of smoothings of the Wigner function.) 

A similar situation arises with the eigenstates of the harmonic oscillator. According to Groenewold 
[32] the Wigner functions in the case of w = 1 are 

Wn(x)=((-l)n/nfi)exp(-x2/fi2)L,(2~2/fi2), (5.34) 

were L,(z) is the nth Laguerre polynomial normalized to unity at the origin. We recognize here the 
same oscillatory structure that is familiar in the position representation. This must be so, if we are 
to obtain the correct projections. These oscillations are wiped out by the Gaussian smoothing which 
leaves the single maximum along the classical manifold that we found for the Husimi function 
(4.58). Berry [7] showed that generally the semiclassical approximation of the Wigner function for 
a pure state has a maximum along the energy shell in the case that L = 1. This is the border of 
Airy function fringes inside the shell (se also [ 191) that are wiped out by the Husimi smoothing. 
Therefore, the zeros of the Husimi function will be forced away from the classical region. 
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6. Products of operators and path integrals 

It may be surprising that the derivation of the composition rule for successive unitary transfor- 
mations is actually simpler than the classical counterpart studied in Section 2. We shall see that 
the corresponding geometrical structures arise as a mere consequence of the algebraic rules that we 
have defined in the two previous sections. 

Starting with the chord representation, we have, for the product a,&, . . . A^, , 

A, .A,_, . .A,(<) = Tr 
n A.. 

d<,, . ..~~.A,(~,)...A,(~I)T_~~~~TE,_, ... ft, 

= (&r-l J’d& .d~lA,(~,)...A,(41)Tr[~,+...+6,-51 

x exp 
[ . 
-~u.,,(t.,,...,r.,-r)] 

x exp -~D.-I(~I,... [ . (6.1) 

where we note that the Dirac J-function has reduced the (n +2)-sided polygon with symplectic area 
D n+2 to an (n + 1 )-sided polygon, with n free sides. Evidently, we can now use the S-function to 
remove one of the variables in the integral, but (6.1) is in its most symmetric form. 

To obtain the composition rule of operators in the centre representation, we can proceed in several 
ways. The simplest is just to take the Fourier transform of (6.1): 

c 

A, .A,_1.. .A,(x) = (l/27&) Ln 
.I 

d&, . . .d51d5A,(~,)...A,(5,)6(~, + ...tn - 5) 

x exp{-(ilfi)Pn+~(51,. . . , L> -x A tl> . 

Recalling that 5 = 5, + . . + 4,, we now define the multivariable function 

2, . . .A:(% ,...,xn)= (~~~de,.,.d,‘,e”p[-$0,+,(:,,...,6.)] 

which takes on the special value 

‘A, . . 4:(x,x )‘..) x)=An.. .A,(x). 

(6.2) 

(6.3) 

(6.4) 
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This multivariable function is now evaluated by expanding the exponential with the polygonal area 
D n+l, so as to yield a series of integrals. For the zeroth order, the integrals decouple, so that 

‘A,. 94;(x,,.. .,x,)0 =Al(xl). . .‘%(&) . (6.5) 

The next term is given by 

x fJAjCtjlexP [-kxj A t,] ) 

so, if we notice that D,+i([l,. _ . , <,) is a bilinear function of its arguments and that 

x exp 
C 

-&ht.j+n*rt*l)} , 

(6.6) 

(6.7) 

we obtain 

‘An...A{(xI,...,x,), = -ihD,+1 (a/ax,,...,a/ax,)A,(x,)...A,(x,). (6.8) 

But we can easily generalize (6.8) to higher-order derivatives, allowing us to resum the exponential 

expansion in the symbolic form 

‘A,, . . .A’,(x,,.. .,x,)=exp{-inD,+,(a/axl,...,a/ax,))A,(x,)...A,(x,). (6.9) 

For the product of only two operators, (6.9) reduces to the Groenewold rule [32]: 

AZ.AI(x)=exp A $}A,(x,)l,,=,A*(x~)l,=, . 
2 

(6.10) 

Since the Weyl representation of Hermitian operators is of zero-order in Planck’s constant, (6.10) 
and its generalization (6.9) are useful starting points for semiclassical expansions. In particular, we 
see that 

A2 .A,(x)=A,(x)A,(x) - ;f$ A 2 + 0(h2), (6.11) 

where we recognize the Poisson bracket {Al, AZ} in the term that is of first order in fi. Hence, the 
commutator has the Weyl transform 

P~,&l(x) = ifi{A~(~)A(x>} + o(fi2>, (6.12) 

neatly reflecting the correspondence between commutators and Poisson brackets which was the 
starting point of quantum mechanics. For the symmetrized product, 

;(A, .A2+A2.A,)(x)=A&4A2(x)+O(fi2). (6.13) 
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If 2, and 2, are Hermitian, so is their symmetrized product, implying that the first term holds to 
second order in ?L, because the Weyl transform must be real. Using (6.9) we also find that the 
power of an Hermitian operator A is represented by 

H”(x) = [H(x)]” + O@“) . (6.14) 

In particular, we may expand the square of an observable as 

H2(x) = [H(x)]~ + $fi2Tr(JZ’)2 + O(fi") , (6.15) 

where S is the Hessian of H(x) and J is defined by (1.3). 
We shall also need integral formulae for the product of operators. The result depends crucially on 

the parity of the number of operators so we will start with the simplest case where yt = 2. Proceeding 
from the definition (5.6), we obtain 

A2.A1(x)=Tr(&):*/ * n m dx2 dxi A2@2 >A 161 I Rx Rx, ‘J&B,, 

dx2 dxl A2(x2) A (xi ) exp [; -xl A x2] T2 [ffx fc,:-.x,,] 

dx2 dxi A2(x2)A1(x1) exp 

1 2L 

=(-) I 
dX2dx1A2(x2)A1(x1)exp 

i 

7di 
-~3(x>xl>x2) . 
n 1 (6.16) 

The extension to (2n) operators can be derived by dividing the polygon of (2n + 1) sides rj into a 
set of IZ triangles that result from pairing the sides (as shown in Figs. 2.3 and 2.4) and an internal 
polygon A;+, . Its symplectic area is 

A;,, = ; &l A (Yl + Y2) + . . . + ; &I A (v2n-1 + r2n) 7 (6.17) 

where CXj is the vector joining x to the centre of the jth side of A;,,. Thus, we can insert (5.6) for 
each operator into (5.7), to obtain 

A 2n . . .Al(x)=Tr (&y/ dxzn . . . dx, Azn(xzn) . . . AI L%, @8,,n . . . L% 

1 2nL 

=(-I s nfi 
dxzn . . ’ dxl.42&2n). . .Al(xl) 

xexp :(x1 Ax2+.+ 
[ 

+ + .~--l A ~2~ > 1 Tr [k p2(X2n-XZ,_ ,) . . . f2(x2-x, ,] 

- ix A 5 
I 

Tr &C/Z 

dx2n . . . dxd2&2n)~ .AI(XI 1 
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xexp i[A3(x+GI,,x,,x2)+... 
{. 

+ 4(x + ~Zn-~,.Qn-l,~2n) + 4+,1 

=( 
1 

- 

nn 
dx2n . . . dx, AZn(xZn ) . .A1 h 1 exp 2n+l(X, Xl (6.18) 

Here the symplectic area A2n+, corresponds to the (2n + I)-sided polygon circumscribed around the 
centres (x,x1, . . . ,x~~). In Ref. [ 111 this result was derived by induction. 

The simplest way to derive the composition law for an odd number of operators is merely to 
particularize 2 1 2n = 1. In this case we immediately obtain 

dx2,,_, ... dx,&,-,(x2+,)...A,(x,) 

(6.19) 

But, according to (2.11), we have 

J dxexp{ ~A2,+l(x,xl,...,x2~)} =(2~n)“s(r)=(2?ch)2L6 (2E(-l)kx4 > 

where l is the side centred on x. Since this becomes zero, the polygon loses one side and 

A&,.‘~A,(X)=(l/rcZL) (2n-1)L J dx2+, . . . dxl An-,(a--1 1. . .AI(XI 1 

xG[X2n--] - . . +x1 - xl exp{G/fikL(v1,. . . ,.G,-1)) . (6.21) 

Taking one of the sides of A2n+l as zero has created an even-sided polygon Azn. This will only be 
properly defined by its midpoints if the argument of the d-function cancels. In the important case 
of three operators, we obtain 

A3 . A2 . Al(X) = ( 1/7cfi)3L J dxg dx2 dx, A3(~3).42(~2)~1(~)4~3 - x2 fx, -xl 

x exp{(i/n)A4(x,xl,x2,x3)}. (6.22) 

The S-function here forces the inscribed quadrilateral to be a parallelogram, which is necessary for 
the existence of the circumscribed quadrilateral, as we saw in Section 2 (Fig. 2.10). Evidently, we 
can use the S-function to eliminate one of the variables, say x2 as shown in Fig. 2.11, so that 

A3 .A2 4,(x)=(l/iriQ3’/ dxgdx,&(x3)A2(xj fx, -x)A,(x,) 

x exp{(i/n)A3(x,x,,x3)}, (6.23) 

where we use the fact that all the quadrangles circumscribed on a parallelogram have the same area, 
as proved in Appendix A. The triangle adopted here is just a particular case where the side t2 = 0. 

We will now discuss a few important results concerning the phase space representation of products 
of operators. Even though the chord and the centre representations of the product of two operators 
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are not equal to the product of the functions that represent them, this interchange does hold for the 
trace: 

A * 
TrA2AI = J’ (dSi(2nn)L)A2(5)Al(~) = .I’(dx/(2~fi)%(xM(x). (6.24) 

These results are easily obtained by applying (5.15) to (6.1) and (6.16). Clearly, they reflect the 
fact that the trace of the product of two operators commutes. Since the trace of the product of more 
than two operators does not necessarily commute, we cannot expect to obtain such a remarkable 
simplification of the trace in general. In Section 7 we shall discuss the trace of the product of an 
arbitrary even number of unitary operators. 

A direct consequence of (6.24) is that, for any observable 2, 

(ii) = /- dxA(x)W(x) . (6.25) 

This remarkable formula has been for a long time one of the main attractions of the Weyl repre- 
sentation; indeed, it is the motivation for Wigner’s original paper [l]. We see that even though the 
Wigner function need not be positive definite, it allows us to calculate mean values of the observ- 
ables in the same manner as with the classical Liouville probability distribution. This is specially 
appealing in the cases where the Weyl representation of the observable coincides exactly with the 
classical variable. This feat cannot be emmulated by the positive-definite Husimi function. 

The product rules can be used to study unitary operators. First, let us establish that we can define 
a group of unitary operators by their Weyl representation of the form 

U(x) = c exp[iE’x%x] (6.26) 

for any symmetric matrix B. To do this we use (6.16) to show that the corresponding operator 

satisfies riot = i, for an appropriate choice of the constant c. Thus, we define 

1 
L@) = (&)2L 

I 
dxl dx2U(xINU(x~)I* exp i~x,x,,x:,] 

[’ 

ICI2 - 
(7&)2L J’ 

dx, dx2 exp { ;[x,%xl - x223x2 - 2(x, - x)3(x2 - x)]} 

HZ - 
(7-h )2L I dxl dx2 exp k[xlBxl - x223x2 - 2x13x,1) , (6.27) 

where in the last equation we have taken the origin to the stationary point of the quadratic phase; 
since x1 =,x2 there, the x dependence cancels. We easily ascertain that Z(B) is real and that 1(23) 
=1(-B). 

To calculate the resulting multiple Gaussian integral, it is convenient to define the double vector 
X = (x1 ,x2) and the (4L x 4L) symmetric matrices 

and 5= 
03 H-1 30 

(6.28) 
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so that 

321 

(6.29) 

Therefore, we need to define 

c = ]det[lEE - J]]1’4ei” (6.30) 

for (6.26) to represent an unitary operator. To simplify this (4L x 4L) determinant, we first note 
that 

/det[B - J]] = ]det[l -JIB]] =det 
1 [&?I 1) 

since Co2 = 1. Now we use the fact that I( %) = I( -B) to write 

Jdet[B - J]] = ]det[l + JS][l - JEE]]‘!2 

=idet [m]i”2 =/det[l-(3B)2]], 

(6.31) 

(6.32) 

which has reduced to a (2L x 2L) determinant. This can be further simplified by recalling the 
relation (1.20) between the symmetric matrix !B and the sympletic matrix A, such that det JZ = 1. 
The result is that 

]det[l - JB]]1’2 = ]det[l + J!B]]‘12 = ]det[l - (32L%)2]/1’4. (6.33) 

Thus, we obtain alternative forms for the unitary operators related to the symmetric matrix !B as 

U(x)= ]det[l f J%]]1’2 exp[iK’xBx + iQ] = 2L]det( 1 + &)lPri2 exp[iS’x!& + i0] . (6.34) 

The phase 8 is unimportant for the action of the unitary operator on another operator, since 
it cancels in (4.6). However, we have seen that the definition of the Weyl representation relies 
on the linear superposition of unitary operators, for which it is essential to take account of the 
phase. Moreover, we can also obtain the position representation (q’)U(q), through a symmetrized 
Fourier transform and hence transform wave functions (q($). Though these are only defined within 
a phase factor, the latter must be accounted for in the phenomena of interference between waves. 
The determination of these phases in the context of the semiclassical approximations will be the 
subject of future work. 

How do these unitary operators act on other operators? Using (6.23) to obtain the Weyl repre- 

sentation of A’ = fi+Afi, we have 

A’@) = (Kfi)2L 
.I 

dX’[[U(x,)]*A(x2 + xl - x)U(x,) exp ~A,(x,x,,x2)] 

= ]det[l - 3‘B]] / 3 exp ; [-x, 23x1 + X~23.q - 2(x1 - x)3(x2 - x)] 

x A(x2 + xi - x) (6.35) 
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with the change of variables x2 + xl - x =X, x2 - x1 = Y (which has Jacobian 22L), the integral 
becomes 

A’(x) = /det[l - JB]j 1 z&) / dY exp {i [Y23(X +x> + Y3(X -x)1} 

= jdet[l - JB]I / dx A(X)&%@ +x> + 3(X - x>> . (6.36) 

Thus, recalling again (1.20), we obtain 

A’(x) =A(&f!x) ) (6.37) 

where & is the symplectic matrix corresponding to the centre function S(x) =x23x + 8. 
Actually, we can add a linear term, to obtain S(x) = SI AX + ~‘23~. This is the centre function for 

a non-homogeneous (linear) symplectic transformation in classical mechanics. The only effect will 
be to change the origin of the preceding Gaussian integrals. Thus, we find that there is a one-to- 
one correspondence between this restricted group of classical canonical transformations generated 
by the centre functions S(x) with the subgroup of quantum unitary operators, given in the Weyl 
representation by 

U(x) = 2Lldet( 1 + &)IP1j2 exp[-%‘(a Ax +x%x) + i@] 

= Idet[ 1 i 3a2S/ax2] /1/2 exp[ifi-‘S(x)] . (6.38) 

Taking the Fourier transform of this expression, we find that the corresponding chord representation is 

U(t) = 2Lldet( 1 - &)J-“’ exp[(i/fi)(a A 5 + $ CR) + if?], (6.39) 

where now the symmetric matrix % is given by M in (1.35). The corresponding position represen- 
tation of the evolution operator, resulting from the symmetrized Fourier transform (5.14), is 

(4’IUlq) = (2~n)-1i2(det(a2s/aqaq’)11’2 exp[(i/fi)S(q’,q)] , (6.40) 

where S(q’, q), the symmetrized Legendre transform (1.54) of S(x), will again be quadratic. In these 
representations, the undetermined phase 8, can be interpreted as the arbitrary additive constant in 
the definition of the corresponding generating function. The unitary operators that we have been 
discussing form the inhomogeneous metaplectic group [41,47]. The latter reference includes some 
discussion of the overall phase 8. 

We do not have simple closed forms for the general unitary transformations generated by nonlinear 
Hamiltonians. Just as in classical mechanics, it is then important to develop approximations that are 
valid for small intervals of time. By expanding the exponential (4.3) we obtain the Weyl transform 
term by term: 

U,(x) = 1 - i(t/fi)H(x) - i(t/fi)2H2(x) + . . . + (l/n!) (-it/n)” H”(x) + . . . . (6.41) 

We have seen that H(x) will be within O(n) of the classical Hamiltonian H,(x) and (6.14) shows 
that the centre representation of A” is 0(h2) of [H(x)]“. Therefore, the above series is uniformly 
convergent, which allows us to rearrange the terms in the form 

U,(x) = exp[-i(t/fi>H(x>] + 0((t/fi>2) . (6.42) 
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For sufficiently small times, we may thus use the exponential of H(x) as an approximation for the 
Weyl propagator. This is in close analogy to the theory in Section 1, where the centre function was 
found to have -t&(x) as a limit. However, the classical approximation holds to 0(t3), whereas the 
range of validity of (6.42) is exceedingly small in the semiclassical limit. Futhermore, contrary to the 
classical theory where -tH,(x) can always be used to generate a transformation that is guaranteed 
to be canonical, we cannot be sure that (6.42) represents an unitary operator. 

To improve our approximation, we can include the first correction (6.15): 

U,(x) = exp[-i(t/h)H(x)] - i t2/h2[(fi2/8)Tr(3A?)2 + O(n”)] + 0((t/fi)3) 

x exp[-i(t/h)H(x)]{ 1 - (t2/16)Tr(3Z’)2} + 0(t2n2) + 0((t/h)3), (6.43) 

where X is the Hessian matrix evaluated at the point x. Even though this is still not as good as the 
achievement in classical mechanics, the first correction becomes small specially in the semiclassical 
limit, while the second correction is now of third order. The small time propagator can now be 
rewritten as 

U,(x) = (det[l - (3(t/2)~P)*]1”~ exp[-(it/fi)lr(x)] + O(t*fi*) + O((t,/fi)3). (6.44) 

The advantage of this form is that comparison with (6.33) and (6.34) demonstrates it to represent 
an unitary operator if H(x) is quadratic. Indeed, -(t/2)% will then just be the constant matrix B in 
accordance with the theory in Section 1. Since we can always expand H”(x) to second order terms, 
we find that the simple rearrangement between (6.43) and (6.44) really accounts for a resummation 
of higher-order terms in the expansion of H”(x). 

We can now extend the range of the Weyl propagator for the Hamiltonian flow by composing 
the unitary operators corresponding to small periods: 

G(x) = J (6.45) 

This formula is exact, but we can only insert (6.44) for &N(x) in the limit as N + 03. We can 
then ignore the amplitude, since 

if the Hessian yi”, remains bounded for each centre x,,. Thus, we obtain the path integral 

U,(x) = lim J dxl . . . dx, 

NKX (Tch)“L exp 
. . ..xN))- f&&) 

Il=l 

(6.46) 

(6.47) 

We immediately recognize that the phase of this integral coincides with the action of the variational 
principle (2.23) for the polygonal path with endpoints centred on x and whose kth side is centred 
on xk. Just as with the variational principle, we need not worry about the definition of a “path 
space” since (6.47) is an ordinary multiple integral. The only cost is that there will be some very 
jagged polygonal paths (see Fig. 2.7) as well as smooth paths, such as the classical trajectory that 
solves the variational problem. 
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It is interesting to note that the geometry of q(x), represented in terms of the polygon AN+,, 
is reminiscent of that for the Wigner function W,(x) obtained in [ 191. This will result in the next 
section from the Fourier transform of U,(X). The original derivation relied on the iteration of the 
pure state condition bz = j,, instead of the group property for fir:. 

The clearest way to derive the semiclassical approximation for the Weyl propagator is to return to 
(6.45) with the individual small time propagators specified by (6.44). The latter are already in their 
semiclassical form, in the limit of small intervals. The semiclassical limit for the full propagator 
now involves evaluating the multiple integral (6.45) by stationary phase. This depends only on 
the quadratic expansion of the phase and, since d N+l is already quadratic, we need only expand the 
Hamiltonian about each stationary point x,: 

H(x,+X,)=H(x,)+aH/ax,.X,+X,~~X,+... . (6.48) 

But to this order, each of the propagators Q,N(x,) has exactly the Gaussian form (6.38) with the 
symmetric matrix ‘23 = -(t/2N)&. We have seen that these propagators correspond to the group 
of classical (linear) symplectic transformations. Therefore, the composition of these metaplectic 
operators is isomorphic to the composition of the corresponding classical transformations. In other 
words, the stationary phase evaluation of (6.18) at a given point x must have the same value as 
(6.38), with J&! being the symplectic matrix for the full linear transformation obtained by composing 
the linearized transformations about each stationary centre x,. 

The stationary points lie on the classical trajectory which solves the variational problem. Thus, 
with this choice of x,, we cancel the sum of linear terms in the phase of (6.45), whereas the constant 
part of the phase about which we expand is just rY’$(x) as given by (2.23). It follows that the 
semiclassical approximation is just 

x exp{(i/fi)&+~(OJ~, . . ,%J>} , (6.49) 

where X,, = x, - x,, , x,, being the stationary point on the classical orbit, so that 

U&(Xn) = 27( 1 + J&Z~)(-“~ exp[-i(t/!N)X,X,X,] (6.50) 

is the metaplectic propagator for the linearized (t/N)-flow about xn,, . It is important to note that, for 
small times (t/N) we can determine the phase 8 in (6.36) to be zero, since we use l(x) = 1. The 
decomposition of the polygonal area in the above formula results from (A.13) in Appendix A. The 
explicit result of this infinite composition of linear transformations is finally obtained as 

U,(X>~~ = Pl(l + ~)I~‘~‘exp[(i/~>S,(x>] , (6.51) 

where J&Z’ is the symplectic matrix for the linearized transformation between the neighbourhood of 
the tips of the chord t(x) generated by S,(x) as a centre function. 

This result is only valid for sufficiently short times such that the variational problem has an unique 
solution. Eventually, there will be bifurcations producing more chords whose number increases with 
time. So, generally we will have 

~,(x)sc wx2Lldet(l + J&‘~)I~“~ exp {ih-‘Sj(x) + i?j> 3 (6.52) 
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where the index runs over all the contributing classical orbits. In the case of a single orbit, the 
corresponding Morse index y, = 0. The linearized motion around each orbit can also be used to 
approximate the propagation of wave packets as developed by Heller [52,47]. 

Derived in this way, we understand that the semiclassical approximation has more meaning than 
a mere expansion in powers of h to some arbitrary order. It is exact in the case of linear trans- 
formations and it would be exact if we could approximate the nonlinear evolution by a sequence 
of linear transformations. If we keep J? constant, while expanding the action S,(x) to second order 
in x, we obtain the Weyl representation of an operator that is exactly unitary. On the other hand, 
we easily verify that the semiclassical Weyl propagator corresponding to a nonlinear transformation 
is self-consistently unitary within the stationary phase approximation to the first integral in (6.27). 
Indeed, this is completely determined by the quadratic approximation of the phase, so that 1(B) 
reduces to its metaplectic approximation in the case where there is only one chord. Should there be 
more chords, we insert (6.50) into (6.27) to obtain an integral that decomposes into terms of the 
form 

Ijj/ = 22L]det( 1 + dj)det( 1 + .JZ’,~)1-’ / dXidX1 exp{(i/fi)[,!$(x,) 

- S{j'(X2) - 2(X1 - X)3(X2 - X)] + i(yj - y,f )} . (6.53) 

The stationary-phase condition is precisely that xl(x) and x2(x) be chosen so the canonical transfor- 
mation generated by S,(x) be combined with that generated by -$(x2) to result in a new canonical 
transformation, as explained at the beginning of Section 2. In other words, the endpoint xl+ for the 
first evolution must coincide with x2_ for the second, as shown in Fig. 6.1(a). For the diagonal 
terms (j =j’), -Slj(x) generates the inverse canonical transformation to ,5$(x), so the return and the 
outgoing orbit coincide. There may be many chords through the point x1 in Fig. 6.1(b), but it is 
clearly the chord for which xl _ = x that determines the integral with the stationary point. In this case 
the other centre x2 = xl, whereas the chord [ and the triangle A3 collapse. There can be no stationary 
points for the nondiagonal terms (j&j’), because there is only one orbit reaching the comer of A3 
opposite to x in Fig. 6.1(a): The only backwards transformation matching onto that generated by 
S, is -S,j with j’ = j. The principle behind this simplification is that there may be many chords 
through each centre for long times, but there is still an unique canonical transformation. Therefore, 
there is only one orbit through each endpoint, x*, travelling forward or backward in time. 

The property that S,(x) is always an odd function of t guarantees that U_,(x) = [U,(x)]* in (6.52). 
This is a necessary, but not a sufficient condition for Q(x) to represent an unitary operator. Still 
we find that there is a correspondence between classical canonical transformations generated by the 
Hamiltonian and semiclassical Weyl propagators (6.52) that are unitary within the stationary-phase 
approximation. This equivalence is not restricted to the Weyl representation, having been systemat- 
ically discussed by Miller [50]. It is remarkable that the approximate unitarity of the semiclassical 
propagator (6.52) is not affected by the choice of phases yj, though these will have to be fully 
determined for the construction of a theory for the semiclassical evolution of Wigner functions [52]. 
A much simpler task is to derive the semiclassical evolution of observables in the Weyl repre- 
sentation. This is obtained by inserting (6.52) into (6.35) and evaluating the resulting integrals by 
stationary phase. The fact that the function A(x) representing the observable is smooth, rather than 
highly oscillatory, reduces the condition of stationary phase to that of the integrals I,1 in (6.53). 
Therefore, there is only one stationary point for each of the diagonal terms. The full evaluation now 
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x1+= x2_ 

dff+ B 
X' 

x2 
Xl =x2 

Xl- 
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5 
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(4 (b) 

Fig. 6.1. (a) The stationary points XI(X) and x2(x) for the composition of two unitary operators in the semiclassical 
approximation must be such that xl+ =x2-. (b) In the case that CA(x) = U;(n), the only solution collapses the triangle 
A3 into a single chord. The comer opposite x becomes its image under the Hamiltonian flow. 

proceeds exactly as in (6.35) and (6.36), hence the result is that 

A’(x)sc =&‘(x)) , (6.54) 

where x’(x) is the point to which x evolves in the Hamiltonian flow. 
Thus, we find that observables evolve classically in the semiclassical limit of the Weyl repre- 

sentation. Again, this result is invariant with respect to the choice of phases in the semiclassical 
propagator. There will be no problems with crossing caustics in this simple limit of the Heisenberg 
picture. 

Our discussion of the variational principle for fixed time in Section 2 revealed that there will be 
an unique solution for a sufficiently short interval. This is in sharp contrast to the Ml quantum path 
integral which includes all polygonal paths joining the tips of all possible chords centred on x. We 
obtain a somewhat intermediary situation for the Husimi propagator. Combining (5.32) with (6.47), 
we obtain 

Uu(P, Q) = lim s dxN . . . dxr 

N--i02 (7&y exp 
-i& cH(n,) 

n=l 

x$-p /dxexp { -$ - !a2 - -$P - n2 + ~~,_,(x,x,, . . . ,XNl} . (6.55) 

If we now recall the linear relation (2.11) of AN+, with x, (6.55) can be integrated to yield 

U,(P, Q) = lim J’ dx, . . . dx, 

N-03 (T&)NL exp 
XN) - &f&n) 

?l=l 

(6.56) 

where the chord 5 passing through X = (P, Q) depends only on the other centres x1,. . . ,xN, according 
to (2.10). This expression again highlights the complementarity between chords and centres. We 
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I 4 I I 1 I , 

q+ Q, Q2 Q3 Q4 9, ’ 

Fig. 6.2. The area between the polygonal line and the q-axis is the same as that of the succession of strips with width 
Q,, - Qn_l and height pn, i.e. the p-coordinate of xn. 

derive the Husimi propagator by taking a local average over centres; the consequence is a Gaussian 
cutoff on the length of the chords. The full semiclassical limit of the Husimi propagator is the 
subject of ongoing work. 

We have discussed the fact that the centre and the chord representations of any operator transform 
classically as the result of a metaplectic transformation. This property is also explicitly verified for 
a general Weyl propagator since the Hamiltonian and the symplectic areas determining the phase 
of the path integral are invariant under a canonical transformation, while the chord construction 
is preserved by its linearity. However, a general symplectic transformation will alter the Gaussian 
amplitude in the path integral for the Husimi propagator (6.56) so that this representation will not 
usually transform classically. 

We can now derive the more familiar path integrals by taking the symmetrized Fourier trans- 
form (5.14) of (6.47). This matches the Legendre transform between variational principles that we 
discussed in Section 2: 

(s+Ifi$-) = (27V 
s ( 

dpul p.&++q-) 
> I 

exp &.(q+ -q-) 
I 

= (27~fi)-~ Jlx 
J’ 

dpd~E~)N~l exp p . (q+ - q- ) - $2 H(G) 
II=1 

+ AN+, (( P&q+ +4-I) ,x1 >...> &)]} 

= lim J’ dxN . . . dx, 

(nh)NL 
&q+ -q- -&)exp . 

N-+%2 1 (6.57) 

S’ is now the symplectic area between the polygonal line (with centres at x1,. . . ,xN) and the 
p = 0 plane. The 6-m nc ion t ensures that the tips of this polygonal line project precisely onto q+ 

and q-. To eliminate the b-function we redefine the coordinates of the integration variables as 

41 = ;(!A + q- ), . *. 3 qn=~<en+en-,>,...,qN=~(eN +eN-1). s ince the area under the polygonal 

line is the same as that of the succession of strips p,, . (Qn - Qn_1), as shown in Fig. 6.2, we can 
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rewrite 

sl=CP..(e,-a-~,-~{H(p,,q-:PI) +... 
n 

+H p Qn+Qn-1 +...+H p QN-I+QN ( n, 2 > ( 
n, 

>> 2 . 
(6.58) 

The argument of the S-function then reduces to QN - q+, so that the phase for each path of steps 
at Q,, Q2 . . . is just 

sl=b(q,,q-)=C~n(en-Q~-l)-~{H(p,,~-:ei)+... 
n 

+H p Qn+Qn-1 
n, 2 -) +...+H (P~,“~-;+“+)}, (6.59) 

i.e. the generating function (2.25). Since the Jacobian of the coordinate transformation is 2NL, we 
have 

(q+/iTlq_) = lim 
N-CC J dpl “‘d~~~~~‘.dQN-l exp { ;"(4“q_)}, (6.60) 

the usual definition of the path integral in phase space [8]. 
The advantage of the present derivation of path integrals is that there is no reliance on special 

properties of the Hamiltonian. This is explicitly realized as the Weyl representation of the quantum 
operator, which will equal the classical Hamiltonian only in simple cases. However, we generalize 
the usual path integrals to arbitrary Hamiltonians by writing the actions in terms of the Weyl 
transforms rather than the classical Hamiltonians. On the other hand, the equivalence between the 
centre path integral and the one defined by (q-,q+) allows us to incorporate in the former the difficult 
discussions about the convergence of the latter. Of course, it will be difficult to verify convergence 
for the complete generality of path integrals that can be defined in the Weyl representation, though 
this question is now seen in a clearer light than in the original presentation [ 111. 

7. Stationary states 

One of the outstanding problems of quantum mechanics is the development of a full theory 
for the semiclassical limit of stationary states. We have presented a simple derivation of such a 
limit for the evolution operator for an arbitrary quantum Hamiltonian, but the traditional theory for 
energy eigenstates is restricted to classically integrable systems. These have L independent constants 
of the motion commuting with the Hamiltonian. Classically, this restricts the motion to invariant 
L-dimensional tori in phase space. Arbitrary small perturbations will destroy this perfect foliation 
of phase space even if many tori are preserved. For stronger perturbations most of phase space 
becomes chaotic and we must completely abandon our reliance on invariant surfaces. Arnold’s book 
[15] is the standard reference on the perturbation of classical integrable systems. For the problems 
concerning their semiclassical limit see [ 19,33-351. 
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The best course is to rely on the semiclassical theory that we have obtained for the evolution 
operator, based on its spectral decomposition, 

fit = exp{-(it/fi)Ej} = C IPZ)(~] exp{-(i/fi)E,t} , 
n 

(7.1) 

where In) are now taken to be the eigenstates of the Hamiltonian. Taking appropriate transforms of 
this formula we can extract information about the eigenstates and the energy spectrum. In particular, 
we have the spectral operator 

-i Im(E + ie - k))’ = & Re IX dtexp{k(E-fi)t-g} 

1 E 

n (E-Ei)2+~2 
- &(E - 8) = c ln)&(E - En)(nl , 

n 
(7.2) 

where 6,(x) is a normalized function whose width E can be taken to be arbitrarily small, so that 6, 
tends to the Dirac S-function as E --+ 0. Notice though that in this limit we require knowledge of the 
evolution operator for all time. 

By taking the trace of (7.2), we obtain the smoothed density of states: 

c &(E - E,) = -(l/n) Im Tr(E + ie - A)-’ . 
?I 

(7.3) 

We can also sum the wave intensities over a narrow energy range: 

- (Vr)(q+lIm(E + is - fi)-l/q-) =x&(E - E,)(q+]n)(nlq-) . 
n 

(7.4) 

Finally, by taking the Weyl transform of (7.2), we define, as Berry [14], the spectral Wigner 
function, 

W(X; E, F) = (27~~5)~ c &(E - E,)Ff+) = (l/di)Re 
s 

dt exp{(ilfi>@ + i&)}U,(x) . (75) 
n 0 

Let us first consider the energy spectrum. Since the trace is merely the integral of the Weyl 
representation (5.15) 

c 6,(E - E,) = (l/&) Re /- dt exp{(i/fi)t(E + is)} / dx@tfi)-‘rll(x) . 

n 0 
(7.6) 

Inserting the path integral (6.47) into (7.6) and recalling that the x dependence of U,(x) is just 
a phase equal to c Ax, where 5 is the side of the polygon A N+l centred on x, we obtain, using 

(6.20), 

Tr o( = 
s 

$&x)=2’ (~)iZ-l’i!_/dX\....dx,dX(J(r) 

x exp ;A&,,... 7-w) - f&w 
n=l 

(7.7) 
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The arbitrary side of the polygon has thus collapsed. In the semiclassical limit, all the other remaining 
sides will be small and parallel to a classical trajectory, which must therefore be periodic. If we 
now perform the time integration in (7.6), we find that the density of states will depend on all the 
periodic orbits with periods below that allowed by the cutoff factor. 

Before deriving the semiclassical amplitudes of the contributions of the periodic orbits 
density of states, let us view the general features of the spectral Wigner hmction. Inserting 
into (7.5), we obtain 

x exp 
{’ 

J&+,(x,x,, . . .,xN) E - $f(xn) . 
n=l 

to the 
(6.47) 

(7.8) 

If we neglected the width of the &function in this expression, it would seem that all the centres 
of the polygon, except x itself, would be forced onto the energy shell Y of energy E. Among all 
these possible polygons, we would obtain a stationary action AN+, for the one that coincides with 

the classical trajectory that solves the energy variational problem studied in Section 3. We recall 
that these trajectory solutions arise in continuous families as the centre x is varied and that, as x 
approaches the shell, the trajectory either becomes very short, or it approaches a periodic orbit. It is 
important to note that, contrary to the formula for the density of states, these semiclassical scars of 
periodic orbits, that affect the spectral Wigner function close to Y, involve only the reduced subset 
of periodic orbits that intersect the small centre section studied in Section 3. 

However, the b-function in (7.8) does not really require that all the centres lie on the same 
energy shell. Indeed, it is only the energy average that is restricted. In the semiclassical limit this 
is sufficient, since the stationary trajectory must lie entirely within a single shell if the Hamiltonian 
is autonomous. Even so, there is a real need to relax the constraint on the allowed paths. Though 
there is not yet a full theory of tunnelling in the Weyl representation, we cannot hope to deal with 
the Wigner function in a double well potential without allowing chords to join the separate energy 
shells in phase space. 

Let us now evaluate the semiclassical approximation of the spectral Wigner function, i.e., we 
insert the semiclassical approximation of the Weyl propagator (6.52) into (7.5): 

W(x; E, E) = $ c Re ./I dt ,det,l ~~~~~x~l,l,2 exp { ;[%(x) + Et1 + iii} . 
I 

(7.9) 

This integral will be dominated by its points of stationary phase, such that 

(d/dt)[S,(x) + Et] = 0 . 

This determines the t,(E) for which 

(7.10) 

&j(X) + Etj(E>=SE,(X) (7.11) 

is the energy-dependent action defined in Section 3, where we found that, if x lies inside the energy 
shell 9, there will be at least one chord in the centre section uniquely determined by the point x. 
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If all the chords centred on x and having tips on the energy shell 9 are 
we may evaluate (7.9) by the method of stationary phase, which substitutes 
each stationary point by a Gaussian integral. Taking 

d2S,/dt2 = dEj/dt = (dtj/dE)-’ , 

sufficiently separated, 
the neighbourhood of 

(7.12) 

we obtain the semiclassical Wigner functions as 

W(x; E, E) = s C {(dtj/dE)ldet[ 1 + Aj]I-‘}“2e-Ef~ih cos[h-‘SE,(X) t {;.I f (7.13) 
J 

Before discussing this formula, let us simplify the amplitude of each of the classical contributions. 
Recall that we can choose coordinates near the orbit yj, such that one coordinate is the energy E 

and the conjugate coordinate is the time along the orbit, t. In Section 3, these were, respectively, 
called X2L and X2,,-, close to the shell. In the transformation 6x+ = Aj6x-v we evidently obtain 
6E, = 6E_ and at+ = bt-. So, using the coordinates x = (x’, 6t, 6E) we have 

Wlj 0 
A!j= 

ir) 

0 10 (7.14) 
01 

and so 

det[l + A,] =4det[l + mj], (7.15) 

where m,i is now the (2L - 1) x (2L - 1) symplectic matrix for the centre map determined by the 
jth orbit or chord. Hence, we finally obtain 

W(x; E, 5) = 
l/2 

2 det[ 1 + mj]-’ e-ct~ih COS[fi-'SEj(X) + Ai] . (7.16) 

To understand this semiclassical expression for the spectral Wigner function, we must return to 
the discussion of the chord solutions of the centre map. If the energy shell is closed and convex, 
there are no chords when x lies outside of Y’. Once x is inside 9 there will be solutions, but with 
small chords if x is close to Y. For one freedom there will be a single chord, though there will 
be many possible windings around the periodic orbit, which in this case we must identify with the 
shell. Berry [7] showed that in this case we can infer the correct quantization condition from the 
identification of the Wigner function for all the different windings. His work dealt directly with a 
single Wigner function, rather than the spectral Wigner function; this can be sampled in (7.16) by 
taking E --f 0. 

When L 2 2, we can no longer identify the energy shell with a single periodic orbit. If x lies 
close to the shell, we will always find a small chord connecting the tips of a short orbit for the 
centre section. We will also have short chords connecting the tips of orbits that wind very closely 
around periodic orbits. In the limit E + 0, there will always be periodic orbits traversing the section, 
no matter how small. However, for any finite a, the period of most of these orbits will be too long 
for them to contribute to (7.16). Overall, the majority of periodic orbits never enter a small section. 

The simple semiclassical approximation to the spectral Wigner function breaks down when x is 
taken very close to the shell, for then the time to of the short orbit approaches the limit of integration. 
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Instead of dealing directly with this problem, it is preferable to double the range of integration and 
to use a smooth cutoff function at the origin. Thus, we substitute (7.9) by 

W(x; E, E) Y & J’ _m dt 
+2$/h’ 

o. Idet[le+ 4!(x)](1/z exp 
;LV+) + W} , (7.17) 

so that, instead of interacting with the origin, the stationary point to, interacts with its time-reversal 
pair at -to. This is typical of the way that the stationary points of the Airy integral 

(7.18) 

interact as the free parameters x and ,!? are changed. Hence, we can map the integral (7.17) onto 
(7.18) using the method of uniform approximation [36, 371, choosing the parameters in (7.18) so 
that the stationary phases of both integrals coincide, i.e., 

p = -(3/2hto)&(x) and cx = /3/t,’ , (7.19) 

where to is the (positive) stationary point for the short orbit and SE(x) is the corresponding action 
(7.11). The result is the uniform expression for the spectral Wigner function 

W(x; E, e) = 7 ,d 
e 
t;;;;o,,l,2 (T)“3toAi [- (2x$2)2;‘] . 3s”;l, (7.20) 

Strictly this last formula only holds if the cutoff parameter E is large enough to cancel all orbits 
except the shortest. Otherwise, we must add the contributions of the other orbits already obtained 
in (7.16). If the evaluation point x is brought away from the shell, we may expand the Airy 
function asymptotically as a cosine and thus retrieve the previous semiclassical approximation. More 
interesting is the limit where x approaches c4p. This is just the situation analysed at the end of Section 
3, where we derived that the action SE(x) --+ Sin(x) for the orbit of the in-map within the small 
centre section, where 

S;,,(x) z &kZi = ;21’2(E - H(x))~‘~/[~%%]“~ . (7.21) 

Also m. becomes the identity map, so det[ 1 + mo] = 2(2L-2). 
We thus resolve the indeterminacy in (7.20), where both L&(x) and to tend to zero, as 

W(x; E, E) Xzy 2(h2x&?i)-“3Ai -2 
E - H(x) 1 (Pi&%)“3 . (7.22) 

We therefore find that the spectral Wigner function oscillates inside the energy shell, arrives at a 
peak just inside the shell and decays exponentially outside. This behaviour was deduced by Berry 
[56], having derived it for the Wigner function itself [7] when L = 1. The caustic structure and the 
structure of the Wigner function close to a quantized torus of an integrable system are discussed in 
Refs. [38, 391. If we convolute (7.22) with a Gaussian window, we find that the spectral Husimi 
function is appreciable only very close to the energy shell. This semiclassical result generalizes our 
previous deduction for the harmonic oscillator to any convex energy shell for an arbitrary number 
degrees of freedom. 
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If instead of integrating (7.22) with a Gaussian window, we integrate it straight, we will obtain 
the trace of the spectral operator (7.3). Semiclassically the integral will be dominated by the region 
close to the shell. Therefore, if we keep (X.#i) constant and recall that the integral of the Airy 
function is unity, we obtain 

c 6,(E - En) cv (2r~fi))~ dV/dE, (7.23) 

where V is the phase-space volume of the energy shell Y. Integrating over the energy, we obtain 
the approximate number of eigenstates below the energy E as 

N(E) = V(E)/(2@. (7.24) 

This is the well known WeyZ rule for the density of states, that the number of states below 
the energy E is the phase-space volume of the shell divided by the minimum uncertainty volume. 
Evidently, this is a smoothed approximation, not only because (7.24) should represent a sequence of 
unit steps, but also we recall that it is only valid in the limit where the smoothing E is large enough 
to cancel the contribution of all other orbits. This is only the first term in an asymptotic series in 
powers of fi for the smooth approximation of the density of states. (See [40] for a derivation based 
on the Weyl representation.) 

If we reduce the smooothing, there will be new contributions to the spectral Wigner function. 
If x is inside the shell and very close to it, we must take into account pairs of chords for orbits 
that wind very close to the periodic orbits that intersect the centre section. These pairs of chords 
subtend actions very close to that of the periodic orbit Sp, as was derived in Eqs. (3.10) and (3.11). 
The periods of this pair of contributions also approximate the periods of the periodic orbit itself. In 
the limit as x touches the periodic orbit in the shell, or in the limit when the contributing chords 
enter the centre section at the border of the equatorial plane, both the chords will determine orbits 
with the same period. We therefore have to deal with Airy-like contributions to the spectral Wigner 
function, very similar to those already deduced for the short orbit. 

Close to the energy shell we can assume that both chords tlong and &,t project onto the same 
end points (X LY:) in the equatorial surface, defined in Section 3. Furthermore, we can identify the 
corresponding mappings mj. Therefore, the contribution of this pair of chords near the jth periodic 
orbit is 

P&Y, E,E) = s ,det,;_tn:,l,,,2 cos [ $ + ;.I 
J 

x /Idfexp[$ (AS~+E~)] , (7.25) 

where Sj = i (S,,,, + S&,) and SS, + Et = ~(S,,,,,, - Sout) for this pair of orbits at the stationary time. 
Thus, the time origin has been brought over to the average time rj. Integrating, we obtain 

(7.26) 
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corresponding to (7.20). Here tin is the time for one of the tips of the out-orbit to complete another 
in-traversal of the centre section. 

It is worth noting that, so far, we have not invoked the periodic orbit, i.e., the structure of (7.26) 
arises merely from the need to deal with a pair of nearly degenerate actions. However, we can now 
insert the approximations (3.19) and (3.20) for S,,, and Siong into (7.26), obtaining 

2= 
F(X’E’e)= Idet[l + m,,ll/:e 

-cr,ih cos Yj +X;BjX; _ ; 2’;2 

i 

[E - H(.$)]3’2 

1 

x (h%;*X;)-1~3Ai -2 (7.27) 

Now the time rj refers to the periodic orbit crossing the centre section, Sg is its action (with 
the multiplicity appropriate to the map considered) and X; ==x + Xi is the point where it crosses 
the approximately plane equatorial surface. Thus, the cosine term exhibits a small correction with 
respect to the Berry theory [ 141. Even so the general agreement with that result is emphasised by 
recalling that 23j is the symmetric matrix that parametrizes the symplectic matrix mj according to 
(1.20) and that XxX=X AX. 

The essential improvement of the present theory involves the subtle exchange of 

x+x;=x+3’23,x; (7.28) 

in the argument of the Hamiltonian in the Airy function. Because of this difference, the movement 
of x away from the periodic orbit will lead it through a caustic even if it remains within the energy 
shell. Beyond the caustic the contribution of this pair of chords becomes evanescent. 

Thus, we find that there are both important similarities and differences between the contributions 
of short orbits and pairs of orbits close to periodic orbits. In both cases, a fold caustic separates 
oscillatory contributions to the Wigner function from evanescent regions, obtaining maximum am- 
plitude close to the caustic. However, the caustic for the short orbits is identified with the energy 
shell and there are no phase oscillations along the caustic. In contrast, the periodic orbit caustic only 
touches the shell along the orbit itself, then it receeds into the shell, widening smoothly according 
to (3.21). Moroever, the cosine term in (7.27) leads to phase oscillations along the caustic. 

Let us now consider the spectral Husimi function. Taking the view that this is just the Gaussian 
smoothing of the spectral Wigner function, we see that the oscillations inside the shell will be 
cancelled even along the caustic, but not the scars of the periodic orbits, very near the shell. Indeed, 
we have seen that the Husimi propagator will be a path integral only over small chords. In the 
semiclassical limit of the spectral Husimi function, these small chords must connect the tips of 
trajectories on the same energy shell. No matter how much we reduce the energy smoothing, we 
never obtain an appreciable amplitude far from the energy shell. We can thus justify a weakened 
version of the hypothesis of Voros and Berry [41, 421. In its original form it amounted to the 
conjecture that the Wigner function would be uniformly peaked along the energy shell. Now we 
understand that it is the Husimi function which should be so peaked. However, the amplitude is not 
uniform because of the contributions of the periodic orbits. 

Returning to the density of states, we can now deduce the oscillatory corrections to (7.23) by 
integrating over the contributions of the scars in the energy shell. Of course, these scar amplitudes 
are only evaluated locally and we have seen that they become exponentially damped rather than 
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oscillatory far from the periodic orbit. However, in both cases we only obtain an appreciable con- 
tribution to the integral close to the periodic orbit, so we shall extrapolate the validity of these 
amplitudes for all x. 

By reverting to the special coordinates such that x = (x’, t,E) and taking X’ as the difference in 
coordinates with respect to the periodic orbit, we obtain the contribution of each scar to the trace 
of the spectral operator as approximately 

pi = .I dx 
(2~n)L I+; E> s) 

2L --ETI’fiZjp 

= (7cn)L ]det;l + mj]]1’2 
(7.29) 

Here we have used the fact that the Airy function integrates to unity and we neglected the energy 
dependence of all the other terms. The integral over t is just rip, the period of the primitive periodic 

orbit, no matter how many windings we may attribute to the jth periodic orbit. This is because 
we are performing a spatial integral in which we have merely used the time along the orbit as 
an useful coordinate; integrating over all the phase space requires only a single winding around 
the orbit. To complete the evaluation of the periodic orbit contribution, we have merely to evaluate 
the Gaussian integral. Recalling from Section 1 the Cayley parametrization of symplectic matrices, 
we obtain immediately 

det 23j = det[mj - l]/det[m, + l] , 

so that 

(7.30) 

=ipe -6x,/R 

‘j’ de-[1 _ mj]li2 ‘OS 
(7.31) 

Adding the contributions of all the periodic orbits to the smooth Weyl term, we obtain the 
celebrated Cutzwiller trace formula [34,43] 

(7.32) 

where the sum over the periodic orbits includes all the repetitions of all the primitive periodic orbits 
in the energy shell Y of energy E. There is no problem in using (7.3 1) to obtain accurate estimates 
of the smoothed density of states if the damping factor excludes all but a few periodic orbits with 
short periods. In this limit the density will be a smooth function which does not allow us to sample 
individual states. 

The problem with attempting to go beyond this is that we must then reduce the smoothing to allow 
many periodic orbits. For chaotic systems the number of periodic orbits increases exponentially with 
period, whereas the amplitudes of the contributions decrease exponentially with period. Therefore, 
(7.32) is divergent, or at best conditionally convergent in the limit E + 0. 

There are many ways that we can deal with this difficulty of obtaining individual energy levels. 
The simplest is to use Gaussian smoothing as in (7.20), which will override any exponential diver- 
gence in (7.32) for arbitrarily small E. Berry and Keating [44] have advanced more sophisticated 
resummation methods which allow us to obtain good estimates of individual levels from finite sums 
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of periodic orbits. The number of terms increases in the semiclassical limit, because the average 
spacing of levels (the inverse of (7.23)) decreases as h + 0. (The energy width, E, for the cutoff 
needs to be of the order of the average spacing 6E). It is natural to interpret these results as meaning 
that the periodic orbits up to the time h/s contain the information that is necessary to determine the 
individual energy level. 

It is tempting to extrapolate these results so as to resum the periodic orbit contributions for the 
individual Wigner functions, Wn(x), in (7.4). This is more problematic, because we do not know 
a priori the energy E,,. Indeed, we should obtain a sharp peak in W(x; E, E) whenever E = E, for all 
X! Evidently, it will be very difficult for our semiclassical theory to achieve this result for points 
that are outside of the energy shell, YEn, since the contributions of the Weyl term (short orbits) 
and the periodic orbits are all exponentially damped. But even inside and close to the energy shell, 
the great majority of the periodic orbits will also be exponentially damped. It is only the subset 
of periodic orbits that penetrate the small centre section that will make undamped contributions. If 
we allow the period of these orbits to be arbitrarily large, it is possible that they will behave like 
a typical sample, providing an energy peak at exactly the same energy as the full set of periodic 
orbits, but this places a new restriction on the relation between the value of fi and the minimum 
volume of the centre section that we can allow. Hence, it is not possible to resum the orbits that 
are not part of the local subset within the present theory as attempted by Agam and Fishman [45]. 
It would be necessary to restrict the sum to those orbits that penetrate the centre section, though it 
is hard to verify that this produces the same poles. 

We could try to avoid this problem by moving the evaluation point x well into the energy shell. 
Certainly, we will then have a much more representative subset of periodic orbits intersecting the 
centre section. However, we then have to face a new problem since the orbits that contribute with 
sizeable chords to (7.13) will no longer be periodic. It is true that we obtain each of the contributions 
as continuous families that include periodic orbits or short orbits as we bring x onto different points of 
the shell (as explained in Section 3) but the actions of each contribution will differ by many multiples 
of r? from that of YE,. It would then be necessary to show that the sum (7.13), over contributions 
with very different phases from those of the periodic orbit sum, have dominant contributions when 
the energy shell has the correct eigenenergy. Though this is not impossible and indeed it was shown 
to be true by Berry for the case of a single freedom [7], it is hard to demonstrate when L > 2. 

It may seem that we cannot use the existing semiclassical theory as a basis for obtaining local 
knowledge of individual eigenstates. We have seen that there is an exact path integral for the 
trace of the propagator and that its semiclassical limit depends on all the periodic orbits with the 
same period. Thus we could obtain the Gutzwiller trace formula by taking the transform of this 
semiclassical trace, even if we could not define the semiclassical limit of the propagator itself. 
Ozorio de Almeida and da Luz [46] have produced an example where the operations of taking the 
trace and taking the semiclassical limit do not commute for the baker’s map. The present analysis 
of the semiclassical limit of the spectral operator and its trace suggests that commutativity could 
break down for features that depend on a sufficiently long time of propagation. 

Alternatively, it may turn out that the program of orbit resummation does indeed overcome the 
challenge of providing the same poles for the Green’s function at all points inside the energy shell. 
In so doing it should reveal a few of the secrets of its subtle nature. Present work indicates that the 
Fredholm method [53] can be adapted so as to encompass, the intricate geometrical constructions 
of the centre section, providing a resummed theory for the scars of individual Wigner functions. 
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Appendix A. Polygons in phase space 
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A sequence of n translations in phase space Tt, , Tt,, . . . , Ts_~ define an (n + 1 )-sided polygon. Its 
symplectic area is obtained from Fig. A.1 as 

Dn+l((l,. . . ,5,)=~[(~1r\~2)+(~1+52)/\r3+...(51+...+5n-,)A5nl, (A.1) 

a bilinear quadratic form involving all the components of each of the chords tj. As usual, we can 
define this in terms of a symmetric matrix acting on the (2L)“-dimensional vectors (rl, c2,. . . , &). 

To this end, we construct the matrix with n diagonal blocks of J: 

3 0 o... 
0 J o... 

8= @if: 

0 0 3 
. . . . . . 

and another L” x L” matrix 

Ir, = 

0 -1 _I... 

1 0 -l... vi3 11 0’ 
. . . . . . 

so that 

h 
x2 \------‘\l 

$ x2 ‘1 . 

ti 

\ \ 
5 

\ 
3 

\,‘\ ,’ 
, -?, 

/ ts 

(a) 

(b) 

(A.21 

(A.3) 

(A.4) 

Fig. A.1 A set of n vectors 51,. , tn determines an unique (n + 1 )-sided polygon. (a) Its symplectic area is obtained by 
adding the successive triangles as each new vector is added to the sequence. (b) An alternative tecelation of the polygon 
into triangles with the common vertex x leads to the expression (A.8) for the symplectic area, where the Xi are the 
positions of the centres x,, taking n as the origin. 
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Since 3 and ZZn are antisymmetric matrices, 

(A.5) 

is a symmetric matrix. 
The matrix ZI, is easily seen to specify the positions of the centres of a polygon, xj =x + x,, as 

a function of the sides. 

(xl,...,x,)=~11,(5,,...,4n>, (A.6) 

as can be seen in Fig. A.l(b). Hence, according to the discussion at the end of Section 2, II, can 
only be inverted for even n, i.e. in the case of an odd-sided polygon. Using (2.10) for each of the 
sides, while remembering that the special side r has the opposite orientation to all the others, yields 

(A.7) 

Combining now (A.4) with (A.6), we have 

D n+1=~(5,,...,~n)~(x,,...,xn), (A.81 

which has the obvious interpretation as the sum of the triangles that each of the sides ~j determines 
with x, as shown in Fig. A.l(b). Finally, by eliminating the (j’s in (A.7), we obtain 

D ,+1=~.+,(o,~,,...,x,)=(~,,...,x,)~~,-'(~,,...,~,), (A.9) 

where 

(A. 10) 

Therefore, in the case of odd-sided polygons, their area is a bilinear quadratic form of the centres 
of their sides, as of the vectors that make up the sides themselves. Though the simplest formula is 
(A.8), it is redundant to determine both the <j/s and Xj =xj - x. 

Adding arbitrary displacements to xi, we will alter the area of the polygon: 

d,+,(O,Xr + 6x1,. . ,& + AK>= d,+1(O,X1,. ..,x,) + 2(6X ,,.. .,sX)~rI3Y,,.. .,X,) 

+(6x,,..., sX,)~,rr,-‘(sX,,. . .)SX,) . (A.ll) 

By inspection of (A.lO), we find that the coefficient of each term that is linear in SXj does not 
dependent on Xj itself. This is also true of <,, i.e. we found in (2.10) that, if we determine a polygon 
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(b) 

(cl 

Fig. A.2. Decompositions of a hexagon: (a) Subtracting the inscribed hexagon SC,, the remaining symplectic area is 
subdivided into six triangles, (b) and (c) represent both alternative ways of subtracting an inner triangle. The three 

remaining triangles have four times the symplectic area of those in (a). 

by its centres, the side with a given centre actually does not depend on this particular centre. We 
can thus use (A.6) to reduce (A.1 1) to 

&I+,(O,Z + ax, ,...,x,+~x,)=~,+l(O,~l,...,x,)+ (6~,,...,6x,)~(5l,...,r,) 

+&+,(O,~x,,...@Gl), (A.12) 

which generalizes (2.11) for arbitrary changes of all the sides. For a polygon where x # 0, we obtain 

&+1(x1 + 6x1,. . .,X,+~xX,)=~,+,(X,X,,...,X,)+(~xXI,...,~xX,)~n(~l,...r~n) 

+d,+1(0,6x,,...,6x,). (A.13) 

To prove that the area of a circumscribed even polygon depends only on the midpoints of its 
sides, even though the overall shape is not unique, we first express this area as the sum of the 
area of the inscribed polygon 6 2n with that of the 212 triangles at the comers of the circumscribed 

polygon 

AZn = & + A; + A; + . . . + A;” . (A. 14) 

This is the subdivision in Fig. A.2(a). However, we note that the two other adjoining subdivisions 
are also possible. The sides of AL and A: are obtained by doubling alternate sides of &, so that 
their area is independent of the arbitrary shape of the circumscribed polygon. Adding the areas in 
the second and third figures determines 

2A2, = Al, + A; + 4(A; + A; + . . . + A;), (A.15) 
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which, combined with (A.14), yields 

& = 2& - +ll, + di) ) (A.16) 

which is invariant with respect to the arbitrary corner of the circumscribed polygon. 
The reader is reminded that the plane figures used to illustrate each result may be considered 

as projections of polygons in a phase space of arbitrary even dimension onto one of the conjugate 
planes. 

Appendix B. Centre generating function for short times 

The approximation (1.30) for the centre function only holds for times that are short enough for us 
to approximate the trajectory by a straight segment. To extend the approximation, we must include 
the curvature which depends on the quadratic part of the Hamiltonian, so that locally, near the 
arbitrary point 0, 

H(x)=h.x+ ;xy%x, (B.1) 

to third order in x. A change of origin to “J= -X-‘h (the “centre of curvature”) turns the Hamiltonian 

into an homogeneous quadratic 

H(x) = ; (x - y)y%(x - y) + c , 03.2) 

corresponding to the linear flow 

(x+ - Y) = J&(X- - Y) > (B.3) 

where 

JYt = et3% = 1 + tJS$ + it2 (3y%)2 + it3 (JXO)~ + . . . . (B-4) 

To derive the function that generates (B.3) we merely determine the coefficients in the expansion 

J~+=blt+b*t2+b3t3+...) (B.5) 

from the Cayley parametrization 

J& = [l - J&][l + J&?J’ = 1 - 2!& + 2(JL8t)2 - 2(J@)3 +. . . . 

The result is 

&$=-+L#0+ +/&&&+O(t5), 

so that the quadratic approximation to the centre function becomes 

S,(x) = -it (x - y),y%(x - y) + = $13(X - y)y%Jti0SJZ$(x - y) . 

If we now notice that 

x = 3 aHlax N ~.~oo(x - y) , 

(B-6) 

(B.7) 

v3.8) 

(B.9) 
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we obtain the short time approximation to the centre function as 

S,(x) = -tH(x) - &&ZXX + 0(t5) ) (B.lO) 

where XX is the Hessian matrix for the Hamiltonian evaluated at the point x. 
Evidently, we can continue this expansion for arbitrarily long times in the case of quadratic 

Hamiltonians. This can be obtained explicitly by expanding tan and tanh in the simple examples of 
Section 1. 

We can now express S, in terms of the energy of the orbit by noting that, to lowest order in 
time, 

E=H(x*)PH(xf $x)=H(x)f ;(;t)‘M& (B.ll) 

so that 

S,(x) = -tE(t) + jyizxX. (B. 12) 

Thus, the energy action can be identified as 

SE(X) = $3 x24$x . (B.13) 

This is generally a better approximation than (2.16), being the exact third-order expansion in the 
case of quadratic Hamiltonians. 
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