
Notas Técnicas CBPF-NT-004/16

maio 2016

Texture Classification based on Spectral Analysis

and Haralick Features

Manuel Blanco Valent́ın, Clécio Roque de Bom, Márcio P. de Albuquerque,

Marcelo P. de Albuquerque, Elisângela L. Faria e Maury D. Correia

dx.doi.org/10.7437/NT2236-7640/2016.01.004
Notas Técnicas,v. 6, n. 1, p. 28–51, 2016

Texture Classification based on Spectral Analysis and Haralick Features
Classificação de Texturas mediante análise espectral e Parâmetros de Haralick

Manuel Blanco Valentı́n∗
Coordenação de Atividades Técnicas (CAT/CBPF),

Centro Brasileiro de Pesquisas Fı́sicas
Rua Dr. Xavier Sigaud, 150, Ed. César Lattes,

Urca, Rio de Janeiro, RJ. CEP 22290-180, Brasil

Clécio Roque de Bom†

Centro Federal de Educação Tecnológica Celso Suckow da Fonseca,
Rodovia Mário Covas, lote J2, quadra J

Distrito Industrial de Itaguaı́,
Itaguaı́ - RJ. CEP: 23810-000, Brasil

Márcio P. de Albuquerque,‡ Marcelo P. de Albuquerque,§ e Elisângela L. Faria¶

Coordenação de Atividades Técnicas (CAT/CBPF),
Centro Brasileiro de Pesquisas Fı́sicas

Rua Dr. Xavier Sigaud, 150, Ed. César Lattes,
Urca, Rio de Janeiro, RJ. CEP: 22290-180, Brasil

Maury D. Correia∗∗
Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello – CENPES

PETROBRAS, Av. Horácio Macedo,
950, Cidade Universitária,

Rio de Janeiro, RJ. CEP 21941-915, Brasil
Submetido: 01/01/2016 Aceito: 16/05/2106

Abstract: In this work we discuss a method to classify a set of texturized images based on the extraction of
their Haralick Features. This kind of Classification is capable of providing texture-based measurements (such as
contrast or correlation) and use them as main parameters to classify the same type of patterns in other images.
In order to improve the classification success ratio a spectral analysis of the textures and, therefore, the use of
filters, before the classification step, is proposed here. In this work the classification success has been evaluated
using Mean and Canny filters. On the other hand, the Principal Component Analysis is used to optimize the
features extracted for the patterns on each image, before introduced into the classifier. With this method the
classifying success ratio for the KTH-TIPS subset and 10,000 different permutations was increased –in average–
from 72.28% to 84.25%.

Keywords: Haralick Features, Texture Classification, Image Processing, Spectrum Analysis, Principal Compo-
nent Analysis.

Resumo: Neste trabalho é discutido um método de classificação de Texturas baseado na extração de parâmetros
de Haralick. Este tipo de classificação é capaz de fornecer medidas de texturas (como por exemplo contraste
ou correlação) em padrões presentes em imagens e usá-las para classificar o mesmo tipo de padrões em outras
imagens. Com o objetivo de melhorar a taxa de sucesso na classificação foi proposto realizar uma análise
espectral e, por tanto, o uso de filtros em passo prévio ao processo de classificação. Este trabalho apresenta
uma avaliação do desempenho da classificação por meio do uso dos filtros Média e Canny. Por outro lado, a
Análise de Componentes Principais foi usada para otimizar os parâmetros extraı́dos dos padrões nas imagens,
antes destas serem introduzidas no classificador. Com este método o sucesso na taxa de classificação para
a biblioteca de imagens KTH-TIPS e um conjunto de 10.000 permutações diferentes foi incrementado –em
média– de 72.28% para 84.25%.

Palavras chave: Parâmetros de Haralick, Classificação de Texturas, Processamento de Imagens, Análise espec-
tral, PCA.

∗Electronic address: mbvalentin@cbpf.br
†Electronic address: debom@cbpf.br

‡Electronic address: mpa@cbpf.br

CBPF-NT-004/16 29

1. INTRODUCTION

Images carry a lot of information about the system rep-
resented on them. A part of all this information is di-
rectly visible to a person –for instance, colors or grayscale
tones–, and it is this part that allow us to understand what we
are seeing on that image, and ergo the system that is repre-
sented on them. This part of information directly visible to
us is, sometimes, only a little slice of the total amount of in-
formation contained in the image. For example, it is easy for
a person to see shapes, objects, regions, spatial arrangements
and differentiate colors or grayscale values on the captured
scene. However, another part of the total information may
not be visible directly, and so the use of texture algorithms
help to extract, from any image, information that may be hid-
den to the naked eye.

The extraction of texture information has shown positive
results when used for characterizing and estimate parameters
of any image [1], [2], [3], [4], [5], [6] and [7]. Each param-
eter will depend strongly on the type of image to be pro-
cessed (i.e. color-images and grayscale-images will demand
a different kind of feature extractors), and so the feature-
extraction method will have to fit every case requirements.

In some applications [8], [9], [10] and [11] colored im-
ages have too much information that may not be very rel-
evant for the desired application, so grayscale images can
be used instead, reducing the amount of information to be
processed and, by doing this, simplifying the following pro-
cessing steps. For both colored and grayscale images, Haral-
ick features –as will be shown later in this work- represent a
good choice for texture extraction.

Even though some of these features share some similari-
ties, each one of them will provide information about a very
specific property of the image. When it comes to classi-
fication, it is expected that each analyzed class –group of
images– will have similar textural patterns, while these pat-
terns should be different from a different class. When this is
true classes are distinguishable for the used textural extrac-
tion method and so the classification process of new images
that belong to an unknown class relies on the comparison of
these features and the average features for each one of the
classes.

This process of classification has, obviously, a strong cor-
relation with the features used. One might think, wrongly,
that the more features used, the more information can be ex-
tracted from the image and, therefore, the better the clas-
sification process may be. Some of these features may be
very similar in some cases for images that represent differ-
ent objects. This similarity of features between two differ-
ent groups may lead to misclassifications when using auto-
mated algorithms and, therefore, to increase the error. Find-
ing the group of features that, for a given group of images
and classes, allow to obtain the best performance in classi-

§Electronic address: marcelo@cbpf.br
¶Electronic address: elisangela@cbpf.br
∗∗Electronic address: maury.duarte@petrobras.com.br

fication (the lowest number of misclassifications) can be a
deeply time-consuming and inefficient task, considering that
the number of possible combinations of features increases,
usually, by a power-law.

In this work we aim to describe a complete workflow
for texture features and classification for a set of previously
known textures. We review some usual techniques in image
and texture processing and introduce nontraditional features
for the classification problem. We discuss the choice and the
motivation for the features, evaluating them using the Princi-
pal Component Analysis method.

2. HARALICK TEXTURE FEATURES

Since these features were proposed on 1973 by R. M. Har-
alick, K. Shanmugam and I. Dinstein [12], several articles
have been published using them for image-processing tech-
niques. From breast cancer detection [13], subcellular struc-
tures detection [14], to Grain food detection [15], Haralick
Features –also called Haralick Parameters- have been used
widely for pattern recognition, properties detection, images
analyzing and image classification.

On his original paper, Haralick described a set of 14 fea-
tures that may extract different properties from an image,
which could be then used as input parameters for a classi-
fier. Some of these features are related to intuitive properties
of the image, such as contrast or homogeneity, which can
be intuitively interpreted. However, others have no obvious
interpretation.

In any case, Haralick Features calculations are based on a
probability 2D matrix called co-occurrence matrix1, instead
of the image itself. This matrix is defined over an image as
the distribution of co-occurring values at a given offset. For a
given I image with n,m dimensions and ∆x and ∆y (horizontal
and vertical offsets, respectively) values, this matrix can be
obtained by (1), being, by definition, a square matrix.

C∆x,∆y(i, j) =
n

∑
p=1

m

∑
q=1

{
1 I(p,q)=i AND I(p+∆x,q+∆y)= j

0 otherwise
(1)

In a more simple way, this matrix is a measure of how
many times a certain pair of pixels appears on the image at
a given distance (offsets) one from each other. It represents
a distribution of co-occurrence events of repetition, meaning
that every cell of this matrix represents how many times in
the original image a pixel with value i (vertical index of co-
occurrence matrix of the cell) was next to a pixel with value j
(horizontal index of co-occurrence matrix of the cell), being
both of them separated a distance of ∆x pixels in the vertical
direction of the image and ∆y pixels in the horizontal direc-
tion.

In order to understand this matrix, imagine a 6x6 example
binary image I6x6 shown at (2). In this case, non-zero val-

1 The co-occurrence matrix for grayscale images is usually called Gray
Level Co-occurrence Matrix, or GLCM

30
Manuel B. Valentı́n, Clécio Roque de Bom, Márcio P. de Albuquerque, Marcelo P. de Albuquerque, Elisângela L. Faria,

Maury D. Correia

ues mean high intensity values, while zero values could be
understood as low intensity pixels.

I6x6 =

1 1 1 1 1 1
0 0 0 0 0 0
1 1 1 0 1 1
1 1 0 1 1 1
0 1 1 1 0 0
0 0 0 1 0 0

 (2)

Now, if we wanted to know the co-occurrence of values for
horizontal 0◦ pairs (in other words, for a pixel to be followed
in the horizontal direction by another pixel), the offset values
should be given by (3).

{
∆x = 0
∆y = 1

}
(3)

Obtaining the co-occurrence matrix for this example im-
age would be as simple as applying (2) and (3) on (1). In this
case the result would led to the distribution of 0◦ horizontal
combinations of pairs in the image (2). Being this image bi-
nary, there are only two possible values that each pixel can
assume: 0 or 1. Therefore, there only exist four possibilities
of pair-combination in this case, which are: a 0 value fol-
lowed by another 0 value, a 0 value followed by a 1 value,
a 1 value followed by a 0 value and a 1 value followed by
another 1 value. The number of times that each one of these
events happen over the image will be represented by each
cell in the co-occurrence matrix. The co-occurrence matrix
for I6x6 image would be given by (4).

C0,1 =

[
9 4
4 13

]
(4)

Analyzing the previous matrix it is possible to see that,
for instance, there are 9 occurrences of a 0 value pixel be
followed by another 0 value pixel in the original image, while
there are only 4 occurrences of a 1 value pixel be followed by
a 0 value pixel or vice-versa. From this matrix it can deduced
that, in the example image used in this case, it is more likely
to find a 1 value pixel followed by another 1 value pixel than
any other combination of pixels.

On the other hand, binary images usually contain less
information than grayscale ones –and even less than color
images–. The Gray Level of a grayscale picture is a source
of a great amount of information that could be interesting to
extract from the image. Now let us imagine that it is neces-
sary to process an 8-bit image, which gray-tone ranges be-
tween a minimum value of 0 for low-intensity pixels, and a
maximum value of 255 for high-intensity pixels.

For most image applications from which all these features
are going to be calculated, it can be imagined that it is much
more likely to find a pixel with a certain grayscale value fol-
lowed by another pixel with, approximately, the same value.
So if, for instance, a pixel has a value of 234, it is much more
probable to find a pixel with a value between 230 and 240 on
its side, than one with a 0 value.

Analyzed images are often representations of physical

phenomena, and so the calculation of the GLCM for all 255
possible values could be considered unnecessary. In fact, for
any grayscale image, with any dimensions, the total number
of possible combinations of pixel pairs is 65536. Following
the reasoning exposed before, in most applications it is no
necessary, for instance, to distinguish between the number
of pixels with a 234 value followed by a 235 value, and the
number of pixels with 233 value followed by a 234 value.
In many cases these small variations may represent noise, so
different pixel levels could be added into one. By doing this,
the total amount of possible combinations is reduced, opti-
mizing the calculation of Haralick Parameters and, so, min-
imizing the time needed to process the images. The number
of grayscale groups, which are called gray levels, is a very
important parameter that may have a major impact on the fi-
nal result of subsequent processes and therefore should be
selected carefully.

To fully understand the process of resizing the original im-
age with the user-defined gray levels consider a grayscale
image IGS given by (5).

IGS =

254 232 251 210 205 248
10 50 90 66 16 2

208 131 120 4 251 66
141 232 9 205 210 227
60 135 90 189 23 27
5 48 84 210 98 0

 (5)

Now, assuming that 3-gray levels2 –which here have been
called “A”, “B” and “C”– are defined a new image IK can be
described by (6). Thus, the original image can be rewritten,
considering (6), as shown in (7).

IK(i, j) =

A 0≤ IGS(i, j)≤ 85
B 86≤ IGS(i, j)≤ 170
C 171≤ IGS(i, j)≤ 255

(6)

IGS =

C C C C C C
A A B A A A
C B B A C A
B C A C C C
A B B C A A
A A A C B A

 (7)

This new labeled image (7) allows to calculate the GLCM
in a faster and more efficient way, considering that for an
image with 3 gray levels (7) the total amount of possibilities
of pairs in a grayscale image is only 9, much less than the
original 65536 total possibilities for the original 255 gray
level image (5). The GLCM for the 3 gray level image, for
the same 0◦ horizontal offset considered in the binary image
example, is shown in (8).

2 There are several ways to obtain these levels, however the one used in
this paper and the example shown above is to simply divide the total gray
range in as many groups as new gray levels are desired.

CBPF-NT-004/16 31

C
′
0,1 =

 6 2 3
3 2 2
3 2 7

 (8)

It is possible to notice that, in this case (8), if a random
horizontal pair is picked, it is highly likely that the first pixel
will have a value between 171 and 255 (“C”) and will be
followed by a pixel with the same value, or that it will have a
value between 0 and 85 (“A”) and will be followed by a pixel
with the same value.

It is very important to understand how the Offset param-
eters introduced earlier (∆x and ∆y) influence on the calcu-
lation of the GLCM. As mentioned earlier in this section,
these parameters describe the distance between the two pix-
els compared to form the GLCM. The relation between these
two parameters describes the direction angle θ of an imag-
inary vector that joins that pair of pixels. Considering that
an image is usually represented as a matrix which rows are
indicated by index i –which grows downwards– and which
columns are indicated by index j –which grows rightwards–,
the direction angle for a given pair of Offset parameters can
be obtained by (9). This angle between a specific pair of
pixels in the image is illustrated in Fig. 1.

θ = tan
(

∆x
∆y

)
(9)

Figure 1: Representation of a discrete image and direction angle
between a given pair of pixels.

It is possible to calculate an image GLCM for any pair
of offset values desired. Usually, it is more interesting to
analyze pairs of pixels at short distance in an image, rather
than pairs of pixels which are very far one from each other.
In general terms, the smaller the offset values are, the more
precise the GLCM will be.

As the images used in this work have reduced size
(200x200 pixels), offset parameters will have a maximum
value of 1. Taking this into account, only 8 direction angles
are possible. These angles are shown in Fig. 2.

As it can be seen in Fig.2, only 4 of these directions are
worth to consider, while the other 4 are redundant. For in-
stance, the co-occurrences that a 0◦ offset will obtain will be
the same that a 180◦ offset might obtain. This same prin-

Figure 2: Illustration of possible direction angles for the GLCM
when offset parameters are set between 0 and 1.

ciple can be applied to the other 6 directions, so opposite
angles (rotated 180◦ one from each other) generate the same
co-occurence matrices. Due to notation and simplicity the
only direction angles considered in this paper are 0◦, 45◦,
90◦ and 135◦. The relation of these 4 angles and the Offset
parameters, for a sample Image, considering 8 graylevels, is
shown in Fig. 3.

Figure 3: Illustration of 4 Direction used for the calculation of co-
occurrence matrices for a given sample image.

From equation (1) it can be easily deduced that each
one of these 4 angle directions will produce a different co-
occurrence matrix. Rather than studying which direction
is better to consider for every given image, Haralick et al.
themselves exposed on their paper that 4 co-occurrence ma-
trices should be calculated, each one of them for each pos-
sible direction considered before. Then all features could be
extracted for each one of these co-occurrence matrices, gen-
erating a total of 4 different sets of features. At the end, the
value of a single feature could be calculated as the average
of all 4 co-occurrence matrices values for that feature.

In order to illustrate this process, the very well-known and
used image of Lenna Söderberg has been processed in order

32
Manuel B. Valentı́n, Clécio Roque de Bom, Márcio P. de Albuquerque, Marcelo P. de Albuquerque, Elisângela L. Faria,

Maury D. Correia

to obtain all 4 GLCM matrices for the 4 directions consid-
ered, using 64 gray levels, shown in Fig. 3. It is possible
to observe on Fig. 4 how similar all four GLCMs actually
are. It is also interesting to know that the more the GLCM
has a standing-out diagonal –like in Fig. 4 case– the more
correlated the image is. This means, basically, that the origi-
nal image was not a random set of values, but an image with
slowly changes in its grayscale values.

Figure 4: Calculation of GLCM matrices for all 4 main directions
(0◦, 45◦, 90◦ and 135◦) for a sample grayscale picture of Lenna
Söderberg.

GLCM matrices can lead to a probability distribution
function by the process of normalizing. A GLCM can be
understood as the pairs co-occurrence histogram. Thus, in
order to obtain the probability distribution function of pairs
it is necessary to divide each cell value by the total sum of
all values, according to (10). The total sum of all values is a
constant and does not depend on the GLCM itself, but only
on the size of the original image (m and n).

p(i, j) =
(

1
∑

m
k=1 ∑

n
l=1 C∆x,∆y(k, l)

)
C∆x,∆y(i, j) (10)

After this normalization is complete, a set of 4 different
probability distributions is generated, one for each GLCM
calculated previously. These probability distributions p(i,j)
are the basis for the calculation of the image Haralick Fea-
tures.

Haralick et al. defined a total of 14 different features
which were proposed to characterize textures. From these
original 14 features 13 of them have been used in this work3.
These 13 Haralick features –whose equations can be found
in Appendix A– are:

1. Energy (Angular Second Moment).

2. Contrast.

3. Correlation.

3 The 14th feature, Maximal Correlation Coefficient, was not used in this
work, due to its computational cost, so the algorithm used for the classi-
fication process could be faster

4. Sum of Squares: Variance.

5. Local Homogeneity (Inverse Difference Moment).

6. Sum Average.

7. Sum Variance.

8. Sum Entropy.

9. Boltzmann Entropy.

10. Difference Variance.

11. Difference Entropy.

12. Information of Correlation 1.

13. Information of Correlation 2.

As mentioned before in this work, Haralick suggested to
obtain 4 different GLCMs, each one of them for each direc-
tion considered, and therefore calculate all desired features
for each one of these GLCMs. Haralick et al. themselves
explained in their original paper that in order to avoid co-
occurrence matrices anisotropy the average values as well
as the range (difference between maximum and minimum)
values per feature for all 4 GLCMs. In other words, they
proposed that, for any given image, GLCMs should be cal-
culated for each direction. These 4 GLCMs would allow
to obtain all features introduced before (Energy, Contrast,
etc.), for each one of these directions. After that, all values
could be averaged in order to obtain the average and range
values of each feature for all 4 directions, aiming to break
anisotropy of features. This leads to 6 different groups of
features, shown in Fig. 5, which were used on this work.
Considering that, a total of 78 Haralick parameters are ex-
tracted from every input image.

Figure 5: Different types of GLCMs and GLCM-related values con-
sidered in this work for extracting Haralick features.

3. OTHER TEXTURAL FEATURES

Several parameters have been proposed since Haralick et
al. proposed their original features. In June 2007, M. Linek
et al. used some Haralick-based features to find patterns in
resistivity borehole images in order to classify the rocks in
the wall of the drilled borehole [16]. An application of these
parameters can be seen in [17]. Some of these features can
extract very interesting information about the images, and
the following ones were also considered in this work –see
equations in Appendix B–:

14. Max. Probability

CBPF-NT-004/16 33

15. Cluster Shade

16. Cluster Prominence

Apart from these features, in 2004 M. Albuquerque et al.
showed that Tsallis Entropy can be used instead of com-
monly used Boltzmann Entropy in thresholding segmenta-
tion techniques, getting more accurate results [18]. Thus, it
was considered that the use of Tsallis Entropy might help to
improve the success of the classifier.

Tsallis Statistics, also known as q-Statistics, is a type of
Thermodynamics Statistics based on non-Extensive Entropy
–Tsallis Entropy–. Several systems in physics cannot be
correctly or precisely described by the classical Boltzmann-
Gibbs Statistics due to non-extensivity or non-additivity of
themselves. In these cases, Tsallis Statistics may provide
better results than Boltzmann-Gibbs Statistics.

As C. Tsallis proposed in 2000, Entropic Non-extensivity
may be a good parameter in order to quantify the complex-
ity of a system [19]. Even non-extensivity being a property
strongly related with entropy, there are some methods to es-
timate whether a system may be complex or simple.

Among all parameters used to consider the complexity of a
system, two of them have been used in image processing be-
fore: the fractal dimension [20], [21], [22] and the Lyapunov
Exponent [23].

The fractal dimension of an image and its validity were
studied by P. Soille [24] in 1996. In this work, the fractal
dimension of the image corresponds to the Hausdorff dimen-
sion MATLAB code implemented by A. Costa [25]. This
dimension is a measure of how similar an image is to subdi-
visions of itself, for a given scale factor or, roughly speaking,
it is a measure of how an image is composed by scaled ver-
sions of itself.

On the other hand, A. Wolf et al. proposed a method for
calculating the Lyapunov Exponent for time-series data, on
1985 [26], and so did H. D. I. Abarbanel et al. in 1992 for ob-
served data [27]. This exponent is a measure of the ergodic-
ity of a physical system [28]. A system with a positive value
of the Lyapunov Maximum exponent for a given dimension
will cause that system not to converge (for an infinite time),
and so it could be defined as a complex and sometimes ran-
dom system; on the other hand, a null value for this exponent
for a given dimension indicates that the system, for that di-
mension, has a tendency to converge in a closed orbit4.

The purpose of this work is not to quantify the complexity
of an image by this parameters, nor the ergodicity or chaotic
behaviour. Thus, the features extracted here are not suitable
for calculating the complexity of the image, neither the re-
sults shown in this work may be interpreted as a measure of
these properties. The method proposed by A. Wolf for cal-
culating the Lyapunov Exponent was modified in order to fit
the classification requirements that a textural feature should
have. Therefore, these parameters –Fractal Dimension and

4 For instance, a system with a closed orbit must have null values for,
at least, some of their maximum lyapunov exponents, meaning that its
movement is not chaotic, but defined and not ergodic –If the system is
left even for infinite time not all possible locations will be covered, but
only those positions contained on its orbit–.

the Modified Lyapunov Exponent– are used here only as tex-
tural parameters due to the divergent values that they might
have for different images, allowing to use them as classify-
ing parameters and not, again, as a true measure of image
complexity. These extra parameters are:

17. Tsallis Entropy (defined in Appendix C)

18. Fractal Dimension

19. Modified Lyapunov Exponent.

Parameters #14, #15 and #16 depend on the probability
distribution, therefore will be calculated for each one of the
6 different GLCMs configurations explained before. On the
other hand, features #18 and #19 are meant to be extracted
from the original image, so they will not depend on the
GLCM configurations.

Thus, considering all 19 parameters shown in this section,
a total of 104 parameters (features #1 to #17 per 6 GLCM
configurations plus features #18 and #19) will be obtained
for each image. These parameters, after extracted from the
original images, will be used as input data for the classifier.

An illustration of the configuration of all the features ob-
tained for a given image is shown in Fig. 6.

Figure 6: Illustration of all 104 parameters extracted from each pro-
cessed image.

4. NAIVE BAYES CLASSIFICATION METHOD

When it comes to classifying data, several methods and
techniques can be used. Some of them might be more so-
phisticate –such as Neural Networks–, while others may be
based on simpler algorithms –like the one used in this work–.
In that context, Naive Bayes classifiers are a group of simple
probabilistic classifiers based on the bayesian Theorem.

These classifiers assume that all features –properties that
define the class of each classification– are independent one
from each other and do not interfere between them. Even
though this assertion may not be precise for several cases
where properties such as volume, contrast or homogeneity
do actually depend one from each other for the studied ob-
ject, several authors have shown that Naive Bayes is, after
all, more robust and efficient that they were supposed to be,
even when the used features do have strong dependence and
correlation one with each other [29], [30].

For this reason, along with their simplicity, this kind of
classifiers is one of the most popular ones [31], [32], [33],
[34].

34
Manuel B. Valentı́n, Clécio Roque de Bom, Márcio P. de Albuquerque, Marcelo P. de Albuquerque, Elisângela L. Faria,

Maury D. Correia

In order to describe how Naive Bayes classifiers work, let
us define a set of features extracted from an object which
class is unknown X = (x1,x2, . . . ,xn). Each one of these
features define one specific property of the object (for in-
stance, one might represent its contrast, other one its entropy,
etc.). On the other hand, let us assume that there exist two
previously-defined classes, which will be referred as “A” and
“B” in this example. It is possible to define the probability
that the unclassified vector X belongs to any class Ck is given
by (11).

p(Ck|X) = p(x1,x2, . . . ,xn) =
p(Ck) p(X |Ck)

p(X)
(11)

Now, as introduced before, the key assumption that
bayesian classifiers make is that all features are independent
one from each other and, so, they do not interfere between
them. This assumption allow us to redefine the joint proba-
bility between p(X |Ck) as (12), and so the joint probability
for the unclassified vector X to belong to an specific class as
(13).

p(X |Ck) = p(x1|Ck) p(x2|Ck) . . . p(xn|Ck) (12)

p(Ck|X) = p(Ck)
n

∏
i=1

p(xi|Ck) (13)

Following equation (13) we can see that, basically, the to-
tal probability of X data to belong to each class Ck is pro-
portional to the product of individual probabilities for each
feature to belong to that certain class. The decision rule,
most times, is to simply assign the data X to the class that
obtained the greatest probability or, in other words, the class
which had the highest value for the product of individual fea-
tures probabilities. This decision rule –which has also been
used in this work– is shown in (14).

CLASS = argmax
k∃ 1,...,K

p(Ck)
n

∏
i=1

p(xi|Ck) (14)

Now, there exists as many kinds of bayesian classifiers as
ways there exists of calculating the joint probability p(xi|Ck)
. In this work the bayesian classifier used assumes that the
probability distribution of samples –features extracted from
the images– follows a gaussian distribution. For this kind of
distribution the joint probability can be calculated as shown
in (15)

p(xi|Ck) =
1√

2πσk,i
e

−(xi−µk,i)
2

2σ2
k,i (15)

As it can be seen in equation (15), it is necessary to know
the mean and standard deviation for each feature and each
class –independently– in order to calculate the joint proba-
bility. Coming back to the previous example of groups “A”

and “B”, the statistical parameters that should be extracted
from all features and classes in order to be able to calculate
the joint probabilities using (15) would be: the mean value of
group “A” for each feature in X , µA = (µA1,µA2, . . .µAn); the
standard deviation for group “A” for each feature in X , σA =
(σA1,σA2, . . .σAn); the mean value of group “B” for each fea-
ture in X , µB = (µB1,µB2, . . .µBn); and the standard deviation
for group “B”’ for each feature in X , σB = (σB1,σB2, . . .σBn).
With these values, the joint probability of each feature to be-
long to a certain class can be evaluated and, therefore, the
product of all of them will give a measure of the fitness of
unclassified data for that certain class.

These statistical parameters can be obtained only from
data that has been already classified. In other words, the clas-
sification process relies on the incorporation of previously
classified data. For instance, it is impossible to classify or-
anges and apples if somebody has never seen or heard about
apples or oranges at all.

Thus, the first step in the classification process must be to
train the classifier. Data has to be collected and manually
classified. Once all these measurements are introduced into
the classifier, all statistical parameters of each feature are cal-
culated and so new data can be classified according to these
measurements. As the statistical parameters depend on the
number of measurements, it is important to see that Bayesian
classifiers can only be constructed if the initial training data
has, at least, two measurements for each group.

The training step represents the most vital part of the pro-
cess and initial data has to be used for the training pro-
cess very carefully. The classification groups will depend
strongly on the parameters measured and so the classifica-
tion data should be reviewed and examined in order to de-
termine its fitness in that particular case. For example, both
oranges and apples can be round and have a similar diame-
ter, so these features by themselves will not allow to build
a robust and consistent ‘apple-orange’ classifier; instead, it
would be more useful to use other features which are signif-
icantly different one from each other for every group, such
as, in this case, color.

5. IMAGE FILTERING AND SPECTRAL ANALYSIS

Misclassifications, in bayesian classifiers, are often due to
similarities between features of two different classes. The
values of these features between classes might be very close
one to each other, or similar in average or deviation values,
confusing the classifier and generating errors on the classifi-
cation process. In order to increase the classification success
for this dataset and the set of features introduced in the previ-
ous sections a filtering process over original images has been
proposed.

According to Signal Processing Theory [35], all the infor-
mation of a discrete signal can be reproduced and extracted
if the Shannon-Nyquist Theorem of minimum sample fre-
quency is obeyed. For any image this theorem accomplish-
ment is ensured by the company that manufactured the cam-
era (in this case, an Olympus C-3030ZOOM Camera). The
observation of the image spectrum is a good way to under-
stand the grayscale (or color, if dealing with colored images)

CBPF-NT-004/16 35

information contained on that image.
As any other kind of spectrum, information contained in-

side an image spectrum can be divided, roughly, into three
categories: High frequency, Mid frequency and Low Fre-
quency. For a grayscaled image, high frequencies on the
spectrum are usually interpreted as noise or big variances in
the image grayscale, which usually means that the image has
borders or edges. In the other hand, low frequencies indi-
cate low variances in the image, which usually means that
the image has areas without borders.

When a filter is applied to an image, its spectrum is modi-
fied in a way that some of its properties are attenuated, lead-
ing to a magnification of the rest of the properties –when
compared to the ones attenuated-. For instance, edge detec-
tion filters can be understood, basically, as high-pass filters
that only allow high frequencies –edges and borders– to re-
main on the image, erasing or attenuating low frequencies,
and obtaining a processed image where only edges are con-
served. This behavior is illustrated in Fig. 7, where an orig-
inal image from the KTH-TIPS dataset –Aluminum Foil 1–
has been processed first by the edge-detector Canny filter and
by a 5x5 Box Normalized Mean filter (18) –separately–, and
their respective spectra have been obtained.

Figure 7: Different filtered images and their respective spectrum.
(Left Top) Original Image without filters and (Left Bottom) its spec-
trum. (Mid Top) Original image with Canny –edge detection– filter
and (Mid Bottom) its spectrum. (Right Top) Original image with
mean filter and (Right Bottom) its spectrum.

Now, we could consider that edge detection filters magnify
high frequencies –edges and borders– of any image, while
average filters magnify low frequencies. Any textural fea-
ture extracted from an image processed by these two filters
separately is expected to be very different.

On the other hand, even a filtered image –like the case
shown in Fig. 7– represents the same physical object –in the
case of the previous image, an Aluminum Foil–. The extrac-
tion of texture features for all three cases –original image,
high-frequency filtered image and low-frequency filtered
image– would increase the number of features extracted for
each image, while these features may differ strongly between
classes. If original images between two classes differ, it is
expected that filtered images between these two same classes
will clearly differ even more.

With this hypothesis in mind, the classification method has

been repeated extracting all 104 features for three different
images representing the same object: original image, original
image filtered with an edge-detector filter and original image
filtered with a Mean filter5.

This configuration results in the extraction of a total
amount of 312 features and is illustrated in Fig. 8.

Figure 8: Illustration of the configuration used for extracting 104
features for each type of processed image (Original, Edge-filtered
image and Mean-filtered image).

Obtaining the mean-filtered image can be achieved by
convoluting the original image and the average filter5 [21].

h =
1
52

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 (16)

There exist plenty filters that allow to detect edges of any
image. However, Canny filters have proved to be, over the
last thirty years, one of the most suitable and effective when
it comes to finding edges in images [36], [37], [38]. In this
work this filter has been used for obtaining the edge-detected
images. A more precise definition and explanation about the
Canny filter can be read in John Canny′s original article [39]
and also in a later review [40].

5 The mean filter used on this illustration is the same used on the classifi-
cation algorithm: a 5x5 Box normalized Mean Filter

36
Manuel B. Valentı́n, Clécio Roque de Bom, Márcio P. de Albuquerque, Marcelo P. de Albuquerque, Elisângela L. Faria,

Maury D. Correia

6. TEXTURE CLASSIFICATION

6.1. Texture Classification Algorithm

The algorithm used for the classification process used in
this work is illustrated on Fig. 9 and Fig. 10. All codes have
been implemented in MATLAB. First of all the 810 images
are imported, along with their correspondent class. Then, all
images are filtered with the Canny and Mean filters, inde-
pendently. After the filtering process, the texture features are
extracted for each image (original and filtered ones), obtain-
ing a matrix of 810 rows (original images) and 312 columns
(104 features per type of image).

Once all textures have been extracted it is defined which
filters will be considered. As there are 3 different images
(original, canny-filtered and mean-filtered) there are 7 valid
possibles, depending on the combination and use of these 3
kinds of images.

When the kind of images to be used in the classification
process has been selected, all selected images are processed
through a Principal Component Analysis (PCA) of the fea-
tures. A PCA is a type of computational procedure that cal-
culates a set of parameters for each input variable in a way
that, when multiplied by the original data, all input features
will become uncorrelated one from each other [41], [42]. As
the extracted features proposed by Haralick et al. might be
very correlated one with each other, this procedure is essen-
tial to guarantee the classification success. In this work the
MATLAB default PCA function has been used.

After the Features matrix are processed with the PCA
–becoming more uncorrelated than the original features–
the dataset is randomly rearranged and then split into two
groups: a training subset –which will train the classifier– and
a testing subset –which will allow us to validate the classi-
fication process–. In this work the size used for the training
subset was 40% of the original set of images –324 images–,
while, obviously, the 60% left was used for testing the clas-
sifier.

As mentioned in section 4, the bayesian classifier used in
this work is the gaussian one. In this case, when all 324
images with their respective features are obtained after the
PCA, they should be introduced into the classifier, in order
to train it. There is one point, however, worth mentioning:
Naive Bayes classifiers only work properly if all features
variance within any given class is greater than 0. If a class
has zero variance for a certain feature all measurements are
identical and, therefore, the standard deviation of the sam-
ple data is also zero. When calculating the joint probability
for a certain feature and a certain class, the gaussian naive
bayes assumes that the standard deviation of the sample will
be greater than zero (See 15). Thus, all features with zero
variance have to be ignored in order to be able to classify
images with this method.

Once non-positive variance features have been suppressed,
the features matrix can be introduced into the classifier and
train in. After this, the features extracted from the testing
subset can be introduced into the classifier, obtaining a pre-
diction of class for each set of features. The calculation of
the classification success can be achieved by simply compar-
ing these predicted classes with the original ones from the

imported set of images.
In this work this procedure has been repeated for a total of

10,000 different permutations for each different combination
of filtering processes used.

6.2. About the KTH-TIPS Dataset

As mentioned before, the process of creation and configu-
ration of classifiers depends on the essence of the system to
be classified itself, and so all the features and training data
should be suitable for that specific case.

The images used as samples for training and testing our
classifier are part of dataset called KTH-TIPS that were
firstly used by E. Hayman in 2004 [43] and shortly after that
became available for public use. Since then this library of
images has been widely used, as long as others, as examples
of textures for image processing, analyzing, filtering and, of
course, classification[44], [45], [46].

This dataset provides a total of 810 images, divided in 10
different classes, each one of them for a different material,
with 81 pictures for each class. The materials, and therefore
the classes –with their abbreviations–, found in this dataset
are:

1. Sandpaper (SD)

2. Aluminum Foil (AL)

3. Styrofoam (SY)

4. Sponge (SP)

5. Corduroy (CY)

6. Linen (LI)

7. Cotton (CT)

8. Brown Bread (BB)

9. Orange Peel (OP)

10. Cracker Biscuit (CR)

For each class a total of 81 pictures were taken using 9 dif-
ferent scales (close or far to the object), 3 different angles in
reference to the object (left, frontal and right) and 3 different
illumination directions (frontal, from top and from aside). A
sample of these textures can be seen in Fig. 11.

This group of unique combinations of illuminations, di-
rections and scales increases the reliability of the dataset. As
they were mainly thought to be used as training data for clas-
sifiers, the most different cases these pictures contemplate,
the most reliable the classifier would get and so, theoreti-
cally, the better its predictions would be.

All the data and images used in this work for training the
classifier and testing it came from this database. In order
to remove the possible dependence and correlation between
one picture and the one that was taken in sequence, they all
have been mixed randomly, so when the dataset is divided
into a training subset and a testing subset all possible cases
are contemplated.

CBPF-NT-004/16 37

Figure 9: Organigram of the algorithm used in this work.

A more precise and extensive description of this database
was written by its creators themselves and can be found at
the website of the Royal Institute of Technology of Sweden
(KTH) [47].

7. CLASSIFICATION RESULTS

Using the concepts explained on the previous sections, the
classification success variation due to the use of filters on
the images has been quantified. In order to do that, a set of
40% of the KTH-TIPS images have been used for training
the Naive Bayes Classifier while the remaining 60% have
been used for testing its success.

The classification process has been evaluated for both
filtering methods separately in order to quantify the increase
of classification for each kind of filter. On the other hand,
the effect of PCA in the classification success was also
evaluated and quantified. All different cases tested in the
following points are shown in Table I.

Table I: Tested cases depending on the use of filters and PCA.

Original Images Canny Filtered Mean Filtered PCA
Case 1 Yes No No No
Case 2 No Yes No No
Case 3 Yes Yes No No
Case 4 No No Yes No
Case 5 Yes No Yes No
Case 6 No Yes Yes No
Case 7 Yes Yes Yes No
Case 8 Yes No No Yes
Case 9 No Yes No Yes

Case 10 Yes Yes No Yes
Case 11 No No Yes Yes
Case 12 Yes No Yes Yes
Case 13 No Yes Yes Yes
Case 14 Yes Yes Yes Yes

7.0.1. Case 1

First of all, when the Naive Bayes classifier is trained with
40% of the original textures, using all 104 features proposed
in section 2 and section 3, without any filter nor PCA pro-
cess, the mean success of the classifier in a total of 10,000
tests6 is 72.28%, with a maximum value of 78.60% and a
standard deviation of 1.97%. This result, for all the tested
permutations, can be seen in Fig. 12.

The previous result means that, in average, about 30% of
the classifier predicted classes are wrong. The average num-

6 In each test a different and random permutation of images has been used,
in order to avoid any possible correlation between the classification suc-
cess and the order in which the images were used in the algorithm.

38
Manuel B. Valentı́n, Clécio Roque de Bom, Márcio P. de Albuquerque, Marcelo P. de Albuquerque, Elisângela L. Faria,

Maury D. Correia

Figure 10: Illustration of the classification algorithm used in this work.

Figure 11: Sample images from all 10 different classes in the KTH-
TIPS dataset. This image was extracted from [47] and all rights
belong to the authors.

ber of misclassifications in this case is 135. The relation be-
tween misclassifications and classes can be seen in Table II.7

As shown on Table II, the classifier has problems when it

7 On this table permutations have been considered as equal cases, so for
example, Aluminum Foil being misclassified as Cracker has been consid-
ered equivalent to Cracker being misclassified as Aluminum Foil.

Figure 12: Classification success for 10,000 different permutations
for Case 1, a training subset of 40% and a testing subset of 60%.

Table II: Misclassifications (in percent) for Case 1.
BB CY CT CR LI OP SD SP SY

AL 0,0 0,4 0,9 0,4 0,0 0,3 0,0 0,0 0,0
BB 1,3 0,4 12,7 1,2 2,8 0,6 0,2 0,0
CY 2,5 4,5 11,7 0,6 0,3 0,0 0,0
CT 0,8 19,3 1,5 0,5 0,0 0,0
CR 5,8 4,3 3,9 0,1 0,0
LI 0,0 3,5 0,0 0,0
OP 2,1 2,8 5,2
SD 7,1 1,8
SP 0,1

comes to distinguish between Cotton and Linen and between
Brown Bread and Cracker Biscuits These results are easy to
understand, as each one of the components of each pair of
misclassifications is actually very similar to each other (Cot-
ton and Linen are actually similar, and so are Brown Bread
and Cracker Biscuits), even to our eyes.

CBPF-NT-004/16 39

7.1. Quantification of the Effect of Filtering on Classification

7.1.1. Case 2

When the Naive Bayes classifier is trained with 40% of the
original textures, using all 104 features proposed in section
2 and section 3, without the PCA process, using only the
canny-filtered images the mean success of the classifier in a
total of 10,000 tests 6 is 52.07%, with a maximum value of
58.44% and a standard deviation of 1.63%. This result, for
all the tested permutations, can be seen in Fig. 13.

Figure 13: Classification success for 10,000 different permutations
for Case 2, a training subset of 40% and a testing subset of 60%.

The previous result means that, in average, almost 50%
of the classifier predicted classes are wrong. The average
number of misclassifications in this case is 233. The relation
between misclassifications and classes can be seen in Table
III7.

Table III: Misclassifications (in percent) for Case 2.
BB CY CT CR LI OP SD SP SY

AL 3,9 0,9 0,0 3,8 0,0 7,5 1,7 4,3 2,2
BB 0,5 0,4 3,2 0,9 10,2 0,5 3,7 0,1
CY 3,4 0,9 1,0 1,2 1,6 0,3 0,4
CT 0,5 7,7 0,0 2,9 1,1 0,1
CR 0,1 0,5 0,8 6,9 7,2
LI 0,4 1,9 0,1 0,2
OP 0,1 0,2 0,1
SD 0,6 12,0
SP 3,8

7.1.2. Case 3

When the Naive Bayes classifier is trained with 40% of the
original textures, using all 104 features proposed in section 2
and section 3, without the PCA process, using both original
and the canny-filtered images the mean success of the clas-
sifier in a total of 10,000 tests 6 is 77.01%, with a maximum

value of 83.33% and a standard deviation of 1.79%. This
result, for all the tested permutations, can be seen in Fig. 14.

Figure 14: Classification success for 10,000 different permutations
for Case 3, a training subset of 40% and a testing subset of 60%.

The previous result means that, in average, more than 25%
of the classifier predicted classes are wrong. The average
number of misclassifications in this case is 111. The relation
between misclassifications and classes can be seen in Table
IV7.

Table IV: Misclassifications (in percent) for Case 3.
BB CY CT CR LI OP SD SP SY

AL 0,0 0,3 1,8 2,4 0,0 0,6 0,0 0,0 0,0
BB 1,4 0,3 9,4 1,7 9,1 0,7 3,4 0,0
CY 5,6 4,0 7,4 1,3 0,1 0,0 0,0
CT 0,8 17,1 2,0 0,8 0,0 0,0
CR 0,6 3,5 5,8 0,6 0,0
LI 0,6 2,5 0,0 0,0
OP 2,4 3,3 2,8
SD 2,5 4,7
SP 0,4

7.1.3. Case 4

When the Naive Bayes classifier is trained with 40% of the
original textures, using all 104 features proposed in section
2 and section 3, without the PCA process, using only the
mean-filtered images the mean success of the classifier in a
total of 10,000 tests 6 is 80.14%, with a maximum value of
85.60% and a standard deviation of 1.47%. This result, for
all the tested permutations, can be seen in Fig. 15.

The previous result means that, in average, almost 20%
of the classifier predicted classes are wrong. The average
number of misclassifications in this case is 97. The relation
between misclassifications and classes can be seen in Table
V7.

40
Manuel B. Valentı́n, Clécio Roque de Bom, Márcio P. de Albuquerque, Marcelo P. de Albuquerque, Elisângela L. Faria,

Maury D. Correia

Figure 15: Classification success for 10,000 different permutations
for Case 4, a training subset of 40% and a testing subset of 60%.

Table V: Misclassifications (in percent) for Case 4.
BB CY CT CR LI OP SD SP SY

AL 0,0 0,0 0,0 0,1 0,0 0,3 0,0 0,0 0,0
BB 3,7 0,7 5,9 3,9 1,2 0,0 1,8 0,0
CY 4,0 0,6 12,1 0,0 0,0 0,4 0,0
CT 0,1 17,1 2,2 6,8 0,3 0,2
CR 0,0 1,0 3,8 1,4 0,8
LI 0,0 8,4 0,0 0,0
OP 2,6 3,6 4,1
SD 9,3 1,9
SP 1,5

7.1.4. Case 5

When the Naive Bayes classifier is trained with 40% of the
original textures, using all 104 features proposed in section 2
and section 3, without the PCA process, using both original
and mean-filtered images the mean success of the classifier
in a total of 10,000 tests 6 is 81.70%, with a maximum value
of 86.63% and a standard deviation of 1.48%. This result,
for all the tested permutations, can be seen in Fig. 16.

The previous result means that, in average, almost 18%
of the classifier predicted classes are wrong. The average
number of misclassifications in this case is 89. The relation
between misclassifications and classes can be seen in Table
VI7.

7.1.5. Case 6

When the Naive Bayes classifier is trained with 40% of the
original textures, using all 104 features proposed in section
2 and section 3, without the PCA process, using both canny
and mean filtered images the mean success of the classifier
in a total of 10,000 tests 6 is 82.33%, with a maximum value
of 87.04% and a standard deviation of 1.48%. This result,
for all the tested permutations, can be seen in Fig. 17.

The previous result means that, in average, more than 15%

Figure 16: Classification success for 10,000 different permutations
for Case 5, a training subset of 40% and a testing subset of 60%.

Table VI: Misclassifications (in percent) for Case 5.
BB CY CT CR LI OP SD SP SY

AL 0,0 0,0 0,1 0,8 0,0 0,2 0,0 0,0 0,0
BB 3,4 0,9 5,0 3,6 2,0 0,3 0,5 0,0
CY 3,2 1,2 16,4 0,2 0,0 0,3 0,0
CT 0,1 22,8 2,5 2,9 0,3 0,0
CR 0,1 1,4 5,6 0,4 0,7
LI 0,0 2,6 0,0 0,0
OP 3,6 3,9 5,2
SD 6,5 2,1
SP 1,0

Figure 17: Classification success for 10,000 different permutations
for Case 6, a training subset of 40% and a testing subset of 60%.

of the classifier predicted classes are wrong. The average
number of misclassifications in this case is 86. The relation
between misclassifications and classes can be seen in Table
VII7.

CBPF-NT-004/16 41

Table VII: Misclassifications (in percent) for Case 6.
BB CY CT CR LI OP SD SP SY

AL 0,5 0,4 0,0 1,7 0,0 1,7 0,0 0,0 0,1
BB 6,6 1,1 5,6 4,3 2,1 0,6 3,3 0,0
CY 6,8 0,7 8,8 0,2 0,1 0,0 0,0
CT 0,2 16,0 2,7 6,4 0,0 0,3
CR 0,0 1,4 4,7 0,1 0,7
LI 0,0 4,6 0,0 0,0
OP 2,7 4,2 3,3
SD 2,3 5,1
SP 0,3

7.1.6. Case 7

When the Naive Bayes classifier is trained with 40% of
the original textures, using all 104 features proposed in sec-
tion 2 and section 3, without the PCA process, using original
images and both canny and mean filtered images the mean
success of the classifier in a total of 10,000 tests 6 is 83.22%,
with a maximum value of 87.65% and a standard deviation
of 1.30%. This result, for all the tested permutations, can be
seen in Fig. 18.

Figure 18: Classification success for 10,000 different permutations
for Case 7, a training subset of 40% and a testing subset of 60%.

The previous result means that, in average, more than 15%
of the classifier predicted classes are wrong. The average
number of misclassifications in this case is 81. The relation
between misclassifications and classes can be seen in Table
VIII7.

7.2. Quantification of the Effect of PCA on Classification

7.2.1. Case 8

When the Naive Bayes classifier is trained with 40% of
the original textures, using all 104 features proposed in sec-
tion 2 and section 3, processing the features with the PCA
algorithm, using only the original images, without any filter,

Table VIII: Misclassifications (in percent) for Case 7.
BB CY CT CR LI OP SD SP SY

AL 0,0 0,2 0,2 1,6 0,0 0,2 0,0 0,0 0,0
BB 5,1 1,1 5,5 4,2 3,7 0,7 2,1 0,0
CY 6,0 1,8 12,7 0,2 0,0 0,0 0,0
CT 0,3 19,4 2,9 2,7 0,0 0,0
CR 0,0 2,5 5,9 0,1 0,7
LI 0,0 2,2 0,0 0,0
OP 3,2 4,2 3,8
SD 2,5 3,7
SP 0,2

the mean success of the classifier in a total of 10,000 tests 6

is 82.35%, with a maximum value of 89.09% and a standard
deviation of 1.90%. After the PCA it was found that the to-
tal number of suitable uncorrelated features for this case was
87. This result, for all the tested permutations, can be seen in
Fig. 19.

Figure 19: Classification success for 10,000 different permutations
for Case 8, a training subset of 40% and a testing subset of 60%.

The previous result means that, in average, more than 15%
of the classifier predicted classes are wrong. The average
number of misclassifications in this case is 87. The relation
between misclassifications and classes can be seen in Table
IX7.

Table IX: Misclassifications (in percent) for Case 8.
BB CY CT CR LI OP SD SP SY

AL 0,2 0,1 1,0 0,0 0,1 3,0 0,0 0,0 0,0
BB 0,4 3,0 5,0 0,1 3,0 0,2 4,0 0,0
CY 7,1 2,6 5,1 0,6 1,2 1,2 0,0
CT 4,7 17,0 1,7 1,5 0,9 0,1
CR 0,7 2,4 8,9 2,9 0,3
LI 0,8 0,0 0,0 0,6
OP 3,3 3,5 5,1
SD 3,7 3,4
SP 0,4

42
Manuel B. Valentı́n, Clécio Roque de Bom, Márcio P. de Albuquerque, Marcelo P. de Albuquerque, Elisângela L. Faria,

Maury D. Correia

7.2.2. Case 9

When the Naive Bayes classifier is trained with 40% of
the original textures, using all 104 features proposed in sec-
tion 2 and section 3, processing the features with the PCA
algorithm, using only the canny-filtered images, the mean
success of the classifier in a total of 10,000 tests 6 is 58.90%,
with a maximum value of 65.43% and a standard deviation
of 1.88%. After the PCA it was found that the total number
of suitable uncorrelated features for this case was 70. This
result, for all the tested permutations, can be seen in Fig. 20.

Figure 20: Classification success for 10,000 different permutations
for Case 9, a training subset of 40% and a testing subset of 60%.

The previous result means that, in average, more than 40%
of the classifier predicted classes are wrong. The average
number of misclassifications in this case is 200. The relation
between misclassifications and classes can be seen in Table
X7.

Table X: Misclassifications (in percent) for Case 9.
BB CY CT CR LI OP SD SP SY

AL 4,5 2,0 1,4 4,4 0,6 8,0 2,8 3,0 2,6
BB 0,1 0,1 1,8 0,0 5,7 0,3 4,1 0,1
CY 4,1 0,2 3,7 2,9 0,1 0,0 0,1
CT 0,9 7,8 1,3 4,3 0,0 0,2
CR 0,0 0,4 0,3 6,3 5,0
LI 1,5 0,0 0,0 0,0
OP 0,9 0,8 0,1
SD 1,0 10,2
SP 6,6

7.2.3. Case 10

When the Naive Bayes classifier is trained with 40% of
the original textures, using all 104 features proposed in sec-
tion 2 and section 3, processing the features with the PCA
algorithm, using both original and canny-filtered images, the
mean success of the classifier in a total of 10,000 tests 6 is

83.28%, with a maximum value of 89.71% and a standard
deviation of 1.80%. After the PCA it was found that the to-
tal number of suitable uncorrelated features for this case was
157. This result, for all the tested permutations, can be seen
in Fig. 21.

Figure 21: Classification success for 10,000 different permutations
for Case 10, a training subset of 40% and a testing subset of 60%.

The previous result means that, in average, more than 15%
of the classifier predicted classes are wrong. The average
number of misclassifications in this case is 81. The relation
between misclassifications and classes can be seen in Table
XI7.

Table XI: Misclassifications (in percent) for Case 10.
BB CY CT CR LI OP SD SP SY

AL 0,0 0,0 1,0 0,0 0,1 2,8 0,0 0,0 0,0
BB 1,7 2,5 5,2 0,1 3,9 1,1 5,8 0,1
CY 10,3 4,2 5,1 0,6 0,5 0,4 0,0
CT 2,6 16,2 2,3 0,4 0,0 0,1
CR 0,6 1,7 7,6 1,8 0,5
LI 1,7 0,0 0,0 0,5
OP 4,4 3,3 5,7
SD 1,1 4,1
SP 0,0

7.2.4. Case 11

When the Naive Bayes classifier is trained with 40% of the
original textures, using all 104 features proposed in section
2 and section 3, processing the features with the PCA algo-
rithm, using only the mean-filtered images, the mean suc-
cess of the classifier in a total of 10,000 tests 6 is 79.63%,
with a maximum value of 86.01% and a standard deviation
of 1.60%. After the PCA it was found that the total number
of suitable uncorrelated features for this case was 86. This
result, for all the tested permutations, can be seen in Fig. 22.

The previous result means that, in average, about 20%
of the classifier predicted classes are wrong. The average

CBPF-NT-004/16 43

Figure 22: Classification success for 10,000 different permutations
for Case 11, a training subset of 40% and a testing subset of 60%.

number of misclassifications in this case is 99. The relation
between misclassifications and classes can be seen in Table
XII7.

Table XII: Misclassifications (in percent) for Case 11.
BB CY CT CR LI OP SD SP SY

AL 2,6 1,6 0,5 3,2 1,5 4,5 0,0 0,9 0,0
BB 1,6 0,1 3,5 0,3 0,8 0,9 2,8 0,1
CY 4,5 2,6 8,3 0,8 2,6 0,9 0,0
CT 0,5 8,9 2,1 11,5 1,2 2,9
CR 0,0 2,2 2,6 1,4 0,4
LI 1,4 4,7 0,1 0,0
OP 2,0 3,6 2,1
SD 4,2 2,9
SP 0,9

7.2.5. Case 12

When the Naive Bayes classifier is trained with 40% of
the original textures, using all 104 features proposed in sec-
tion 2 and section 3, processing the features with the PCA
algorithm, using both original and mean-filtered images, the
mean success of the classifier in a total of 10,000 tests 6 is
84.15%, with a maximum value of 90.95% and a standard
deviation of 1.77%. After the PCA it was found that the to-
tal number of suitable uncorrelated features for this case was
173. This result, for all the tested permutations, can be seen
in Fig. 23.

The previous result means that, in average, about 15%
of the classifier predicted classes are wrong. The average
number of misclassifications in this case is 77. The relation
between misclassifications and classes can be seen in Table
XIII7.

Figure 23: Classification success for 10,000 different permutations
for Case 12, a training subset of 40% and a testing subset of 60%.

Table XIII: Misclassifications (in percent) for Case 12.
BB CY CT CR LI OP SD SP SY

AL 1,6 1,8 0,1 3,9 0,4 6,3 0,0 0,3 0,4
BB 1,3 3,0 4,8 1,1 4,0 0,6 2,5 0,3
CY 7,7 2,4 4,7 0,5 0,9 0,4 0,0
CT 1,0 17,2 3,2 2,1 0,7 0,3
CR 0,1 0,9 6,7 0,2 0,1
LI 0,2 0,0 0,8 0,7
OP 2,6 3,6 6,3
SD 1,1 2,9
SP 0,2

7.2.6. Case 13

When the Naive Bayes classifier is trained with 40% of
the original textures, using all 104 features proposed in sec-
tion 2 and section 3, processing the features with the PCA
algorithm, using only the canny and mean-filtered images,
the mean success of the classifier in a total of 10,000 tests 6

is 81.91%, with a maximum value of 88.68% and a standard
deviation of 1.73%. After the PCA it was found that the to-
tal number of suitable uncorrelated features for this case was
156. This result, for all the tested permutations, can be seen
in Fig. 24.

The previous result means that, in average, almost 20%
of the classifier predicted classes are wrong. The average
number of misclassifications in this case is 88. The relation
between misclassifications and classes can be seen in Table
XIV7.

7.2.7. Case 14

Lastly, when the Naive Bayes classifier is trained with
40% of the original textures, using all 104 features proposed
in section 2 and section 3, processing the features with the
PCA algorithm, using original images along with the canny
and mean-filtered ones, the mean success of the classifier in

44
Manuel B. Valentı́n, Clécio Roque de Bom, Márcio P. de Albuquerque, Marcelo P. de Albuquerque, Elisângela L. Faria,

Maury D. Correia

Figure 24: Classification success for 10,000 different permutations
for Case 13, a training subset of 40% and a testing subset of 60%.

Table XIV: Misclassifications (in percent) for Case 13.
BB CY CT CR LI OP SD SP SY

AL 3,5 0,7 0,0 4,1 0,0 5,1 0,9 1,5 0,8
BB 0,9 0,1 5,5 0,0 1,0 1,0 4,0 0,0
CY 6,7 1,5 7,6 2,9 0,2 0,6 0,0
CT 0,1 12,7 2,3 7,4 0,2 0,6
CR 0,5 2,9 4,7 0,4 0,1
LI 1,9 1,4 0,0 0,0
OP 3,6 3,2 3,5
SD 2,1 3,2
SP 0,3

a total of 10,000 tests 6 is 84.24%, with a maximum value of
90.12% and a standard deviation of 1.78%. After the PCA
it was found that the total number of suitable uncorrelated
features for this case was 243. This result, for all the tested
permutations, can be seen in Fig. 25.

Figure 25: Classification success for 10,000 different permutations
for Case 14, a training subset of 40% and a testing subset of 60%.

The previous result means that, in average, about 15%
of the classifier predicted classes are wrong. The average
number of misclassifications in this case is 88. The relation
between misclassifications and classes can be seen in Table
XVI7.

Table XV: Misclassifications (in percent) for Case 14.
BB CY CT CR LI OP SD SP SY

AL 1,8 0,3 1,0 4,5 0,0 4,6 0,0 1,7 0,5
BB 1,0 1,4 6,1 0,1 2,9 0,4 2,3 0,4
CY 8,7 2,0 6,2 1,2 1,4 0,6 0,4
CT 0,2 17,2 5,9 1,2 0,1 0,0
CR 1,1 2,4 4,6 0,5 0,1
LI 0,5 0,1 0,3 0,3
OP 2,9 2,3 6,3
SD 1,6 2,7
SP 0,1

7.3. Comparison of Results

Finally, Table XV compares the classification results for
all cases while Fig. 26 shows the different success in clas-
sifying for each case (blue and green bars), along with the
number of features used (yellow area).

Figure 26: Comparison Chart between Misclassification for Origi-
nal Images only (blue bars) and filtered images (red bars).

When analyzing the classification success results in Table
XV and Fig. 40 it is possible to notice that:

1. The Canny filter, when used combined with the origi-
nal images, without PCA, increased the classification
success in about 5% –in comparison to the classifica-
tion success for the original images–; and less than 1%
when the features were processed by the PCA. On the
other hand, when the canny filter images were used on
their own, without the original images, they decreased
the classification success in almost 20% for both cases
–with and without PCA–.

2. The Mean filter, when used on its own, without the
original images, increased the classification success in
about 8% –in comparison to the classification success
for the original images–; but decreased that success

CBPF-NT-004/16 45

Table XVI: Comparison of the classification success for all cases.

µa σb Max. Success N.F.c Misc.d P.Me

Case 1 72.28 1.97 78.60 104 135 31
Case 2 52.07 1.63 58.44 104 233 42
Case 3 77.01 1.79 83.33 208 111 32
Case 4 80.14 1.47 85.60 104 97 29
Case 5 81.70 1.48 86.63 208 89 32
Case 6 82.33 1.48 87.04 208 86 33
Case 7 83.22 1.30 87.65 312 81 30
Case 8 82.35 1.90 89.09 87 86 37
Case 9 58.90 1.88 65.43 70 200 38

Case 10 83.28 1.80 89.71 157 81 34
Case 11 79.63 1.60 86.01 86 99 40
Case 12 84.15 1.77 90.95 173 77 42
Case 13 81.91 1.73 88.68 156 88 38
Case 14 84.24 1.78 90.12 243 76 42

aAverage Success.
bSuccess Standard Deviation.
cNumber of Features (after PCA, if used).
dAverage number of misclassifications.
eNumber of Misclassified Pairs. This is a measure of the dispersion of

errors among the different classes during classification.

in about 3% when the features were processed by the
PCA. Additionally, when the mean filter images were
used along with the original images, they increased
the classification success in almost 10%, without PCA,
and almost 2%, with PCA.

3. When both Mean and Canny filters were combined,
without the original images, the classification success
was increased in about 10% –in comparison to the
classification success for the original images–, without
PCA; however, it was decreased in almost 1% when
the features were processed by the PCA. Finally, when
the both filters were used along with the original im-
ages, the classification success was increased in almost
11%, without PCA, and about 2%, with PCA.

4. The PCA process increased significantly the classifica-
tion success for all cases except two: Case 4 and Case
6. The average increase in this success due to PCA
was 5.5%.

Analyzing Table XV it is also possible to notice that:

1. 8 combinations of classes (among all 45 possible)
cause 50% of the total misclassifications committed in
the process, on their own.

2. 2 combinations of classes (among all 45 possible)
cause almost 25% of the total misclassifications com-
mited in the process, on their own. These combina-
tions are: Cotton and Linen, and Corduroy and Linen.

8. CONCLUSIONS

We presented in this work a work-flow for increasing the
classification success for bayesian classifiers by using image
filters and Principal Component Analysis for optimizing the

number and values of textural features. The results shown in
the previous sections allow us to conclude that:

1. The best results were obtained when using both Canny
and Mean filtered images along with the original im-
ages and processing the features using the PCA (Case
14). In this case the classification success achieved al-
most 85%, in average, and more than 90% for certain
permutations.

2. The use of PCA increased –in average– the classifica-
tion success in almost all cases, reducing the number
of features for each analyzed case, and therefore re-
ducing the total computational cost of obtaining these
parameters.

3. When used on their own, the Canny filtered images
decreased dramatically the classification result (Case
2 and Case 9). Thus, this filter should not be consid-
ered for image classification when used alone. This
result may be result of the images noise. The presence
of high-frequency noise modifies the information con-
tained in an image [48]. High-pass filters, like Canny
filters, may magnify the effect of this noise and, there-
fore, decrease the classification success. In further
studies a reduction of this noise in the original images
is expected to improve these results.

4. The use of the Mean filter along with the original
images, with or without PCA (Case 5 and Case 12),
also increased the classification result. Even though
this increase was lower than the increased produced
for Case 14, in further applications it should be taken
into account the computational cost due to the Canny-
filtering process and compared to the classification
success. The number of features in Case 12, after
the PCA process, was reduced to 173, while in Case
14 the number of these features was 243. The differ-
ence in classification success between these two cases
was only 0.09%. Thus, Case 13 could be considered a
lower-cost higher-performance method than Case 14.

5. The use of simple filters –like the ones used in this
work– increased the performance of the classifier in
average and maximum values for cases (Case 3, Case
5, Case 7, Case 10, Case 12 and Case 14), although
the performance increase when combining original im-
ages and filtered lays inside one sigma. It could be in-
teresting to study the effect of different filters on this
performance. For instance, more sophisticate mean fil-
ters, like gaussian filters, may lead to better results.

6. For certain permutations, the maximum classification
success by using methods in Cases 12 and 14 reached
almost 91%.

On the other hand, the implementation of these methods
with more advanced types of classifiers, like Neural Net-
works, has not been tested. However, it is also expected that
these methods may increase the classification success rates
and performance, allowing to reach higher levels of success
than the ones showed in this paper.

46
Manuel B. Valentı́n, Clécio Roque de Bom, Márcio P. de Albuquerque, Marcelo P. de Albuquerque, Elisângela L. Faria,

Maury D. Correia

Acknowledgement

This work was made possible by cooperation agreement
between CENPES/PETROBRÁS and CPBF and was sup-
ported by CARMOD thematic funding for Researches in
Carbonates.

Bibliography

[1] Marcos William da Silva Oliveira, Nubia Rosa da Silva, An-
toine Manzanera, and Odemir Martinez Bruno. Feature ex-
traction on local jet space for texture classification. Physica
A: Statistical Mechanics and its Applications, 439:160 – 170,
2015.

[2] Degang Xu, Xiao Chen, Yongfang Xie, Chunhua Yang, and
Weihua Gui. Complex networks-based texture extraction and
classification method for mineral flotation froth images. Min-
erals Engineering, 83:105 – 116, 2015.

[3] Arvind R. Yadav, R.S. Anand, M.L. Dewal, and Sangeeta
Gupta. Multiresolution local binary pattern variants based tex-
ture feature extraction techniques for efficient classification of
microscopic images of hardwood species. Applied Soft Com-
puting, 32:101 – 112, 2015.

[4] Suganya Ramamoorthy, R. Kirubakaran, and Rajaram Siva
Subramanian. Texture Feature Extraction Using MGRLBP
Method for Medical Image Classification. In Suresh, LP and
Dash, SS and Panigrahi, BK, editor, ARTIFICIAL INTEL-
LIGENCE AND EVOLUTIONARY ALGORITHMS IN ENGI-
NEERING SYSTEMS, VOL 1, volume 324 of Advances in In-
telligent Systems and Computing, pages 747–753, 2015. Inter-
national Conference on Artificial Intelligence and Evolution-
ary Algorithms in Engineering Systems (ICAEES), Noorul Is-
lam Univ, Noorul Islam Ctr Higher Educ, Kumaracoil, INDIA,
APR 22-23, 2014.

[5] Hong Li, Xieping Xu, Buer Qi, Nan Bao, Yaonan Zhang,
Hang Sun, Liwei Yu, and Yan Kang. An Effective Feature
Extraction Method on Mammograms: A Band Shaped Tex-
ture Analysis Based on Iris Filter. JOURNAL OF MED-
ICAL IMAGING AND HEALTH INFORMATICS, 4(5):787–
792, OCT 2014.

[6] D. Abraham Chandy, J. Stanly Johnson, and S. Easter Selvan.
Texture feature extraction using gray level statistical matrix for
content-based mammogram retrieval. MULTIMEDIA TOOLS
AND APPLICATIONS, 72(2):2011–2024, SEP 2014.

[7] Chao Peng, Jian-Ming Zheng, Xu-Bo Li, Yan-Chao Song,
and Jiao-Jiao Shi. Feature extraction on machined surface
texture image of tool wear based on fractional brown mo-
tion. In Shahhosseini, AM, editor, DESIGN, MANUFACTUR-
ING AND MECHATRONICS (ICDMM 2015), pages 706–
714. Hebei Univ; Beijing Technol & Business Univ; Chengdu
Univ, 2015. International Conference on Design, Manufactur-
ing and Mechatronics (ICDMM), Adv Sci Technol & Ind Res
Ctr, Wuhan, PEOPLES R CHINA, APR 17-18, 2015.

[8] Satrajit Mukherjee, Bodhisattwa Prasad Majumder, Aritran
Piplai, and Swagatam Das. An Adaptive Differential Evolu-
tion Based Fuzzy Approach for Edge Detection in Color and
Grayscale Images. In Panigrahi, BK and Suganthan, PN and
Das, S and Dash, SS, editor, SWARM, EVOLUTIONARY, AND
MEMETIC COMPUTING, PT I (SEMCCO 2013), volume
8297 of Lecture Notes in Computer Science, pages 260–273,
2013. 4th International Conference on Swarm, Evolutionary,
and Memetic Computing (SEMCCO), SRM Univ, Chennai,
INDIA, DEC 19-21, 2013.

[9] Daniel Merkel, Eckard Brinkmann, Joerg C. Kaemmer,
Miriam Koehler, Daniel Wiens, and Karl-Michael Derwahl.
Comparison Between Various Color Spectra and Conventional
Grayscale Imaging for Detection of Parenchymal Liver Le-
sions With B-Mode Sonography. JOURNAL OF ULTRA-
SOUND IN MEDICINE, 34(9):1529–1534, SEP 2015.

[10] Jing Hu, Daoliang Li, Qingling Duan, Guifen Chen, and Yeiqi
Han. Texture Extraction and Analysis by Statistical Methods
for Fish Species Classification. SENSOR LETTERS, 11(6-7,
SI):1110–1114, JUN-JUL 2013.

[11] Harun Gunes, Elif Nisa Unlu, and Ayhan Saritas. CT
versus grayscale rib series for the detection of rib frac-
ture. AMERICAN JOURNAL OF EMERGENCY MEDICINE,
33(10):1515–1516, OCT 2015.

[12] R.M. Haralick, K. Shanmugam, and Its’Hak Dinstein. Textu-
ral features for image classification. Systems, Man and Cyber-
netics, IEEE Transactions on, SMC-3(6):610–621, Nov 1973.

[13] BlairD. Fleet, Jinyao Yan, DavidB. Knoester, Meng Yao, Jr.
Deller, JohnR., and ErikD. Goodman. Breast cancer detec-
tion using haralick features of images reconstructed from ul-
tra wideband microwave scans. In Marius George Lingu-
raru, Cristina Oyarzun Laura, Raj Shekhar, Stefan Wesarg,
Miguel Angel Gonzalez Ballester, Klaus Drechsler, Yoshi-
nobu Sato, and Marius Erdt, editors, Clinical Image-Based
Procedures. Translational Research in Medical Imaging, vol-
ume 8680 of Lecture Notes in Computer Science, pages 9–16.
Springer International Publishing, 2014.

[14] Michael V Boland, Mia K Markey, Robert F Murphy, et al.
Automated recognition of patterns characteristic of subcellu-
lar structures in fluorescence microscopy images. Cytometry,
33(3):366–375, 1998.

[15] Neelamma K Patil, Virendra S Malemath, and Ravi M Yada-
halli. Color and texture based identification and classification
of food grains using different color models and haralick fea-
tures. International Journal on Computer Science and Engi-
neering, 3(12):3669, 2011.

[16] Margarete Linek, Matthias Jungmann, Thomas Berlage, Re-
nate Pechnig, and Christoph Clauser. Rock classification
based on resistivity patterns in electrical borehole wall images.
Journal of Geophysics and Engineering, 4(2):171, 2007.

[17] Xiaofeng Yang, Srini Tridandapani, Jonathan J Beitler, S Yu
David, Emi J Yoshida, Walter J Curran, and Tian Liu. Ul-
trasound glcm texture analysis of radiation-induced parotid-
gland injury in head-and-neck cancer radiotherapy: an in vivo
study of late toxicity. Medical physics, 39(9):5732–5739,
2012.

[18] M Portes de Albuquerque, IA Esquef, and AR Gesualdi Mello.
Image thresholding using tsallis entropy. Pattern Recognition
Letters, 25(9):1059–1065, 2004.

[19] Constantino Tsallis. Entropic nonextensivity: a possible mea-
sure of complexity. Chaos, Solitons & Fractals, 13(3):371–
391, 2002.

[20] Lucas Correia Ribas, Diogo Nunes Goncalves, Jonatan Patrick
Margarido Orue, and Wesley Nunes Goncalves. Fractal di-
mension of maximum response filters applied to texture analy-
sis. PATTERN RECOGNITION LETTERS, 65:116–123, NOV
1 2015.

[21] Igor Pantic, Sanja Dacic, Predrag Brkic, Irena Lavrnja, Tomis-
lav Jovanovic, Senka Pantic, and Sanja Pekovic. Discrimi-
natory ability of fractal and grey level co-occurrence matrix
methods in structural analysis of hippocampus layers. JOUR-
NAL OF THEORETICAL BIOLOGY, 370:151–156, APR 7
2015.

[22] Alvaro G. Zuniga, Joao B. Florindo, and Odemir M. Bruno.
Gabor wavelets combined with volumetric fractal dimension
applied to texture analysis. PATTERN RECOGNITION LET-

CBPF-NT-004/16 47

TERS, 36:135–143, JAN 15 2014.
[23] Xiuling Liu, Haiman Du, Guanglei Wang, Suiping Zhou, and

Hong Zhang. Automatic diagnosis of premature ventricu-
lar contraction based on Lyapunov exponents and LVQ neu-
ral network. COMPUTER METHODS AND PROGRAMS IN
BIOMEDICINE, 122(1):47–55, OCT 2015.

[24] Pierre Soille and Jean-F Rivest. On the validity of fractal
dimension measurements in image analysis. Journal of vi-
sual communication and image representation, 7(3):217–229,
1996.

[25] Alceu Costa. Hausdorff fractal dimension calculation using
the box-counting method code for matlab. 2013.

[26] Alan Wolf, Jack B Swift, Harry L Swinney, and John A Vas-
tano. Determining lyapunov exponents from a time series.
Physica D: Nonlinear Phenomena, 16(3):285–317, 1985.

[27] Henry DI Abarbanel, Reggie Brown, and Matthew B Ken-
nel. Local lyapunov exponents computed from observed data.
Journal of Nonlinear Science, 2(3):343–365, 1992.

[28] C. Varsakelis and P. Anagnostidis. On the susceptibility of
numerical methods to computational chaos and superstability.
Communications in Nonlinear Science and Numerical Simu-
lation, 33:118 – 132, 2016.

[29] Harry Zhang. The optimality of naive bayes. AA, 1(2):3, 2004.
[30] David J Hand and Keming Yu. Idiot’s bayesânot so stupid after

all? International statistical review, 69(3):385–398, 2001.
[31] Alper Kursat Uysal. An improved global feature selection

scheme for text classification. Expert Systems with Applica-
tions, 43:82 – 92, 2016.

[32] Xiang Ji, Soon Ae Chun, Zhi Wei, and James Geller. Twit-
ter sentiment classification for measuring public health con-
cerns. SOCIAL NETWORK ANALYSIS AND MINING, 5(1),
DEC 2015.

[33] Jie Lu, Khondaker A. Mamun, and Tom Chau. Pattern classi-
fication to optimize the performance of Transcranial Doppler
Ultrasonography-based brain machine interface. PATTERN
RECOGNITION LETTERS, 66:135–143, NOV 15 2015.

[34] Guozhong Feng, Jianhua Guo, Bing-Yi Jing, and Tieli Sun.
Feature subset selection using naive Bayes for text classifi-
cation. PATTERN RECOGNITION LETTERS, 65:109–115,
NOV 1 2015.

[35] Paulo SR Diniz, Eduardo AB Da Silva, and Sergio L Netto.
Digital signal processing: system analysis and design. Cam-
bridge University Press, 2010.

[36] Ya-Hui Xiu and Wen-Qing Wu. A novel edge detection al-
gorithm. In Shahhosseini, AM, editor, DESIGN, MANU-
FACTURING AND MECHATRONICS (ICDMM 2015), pages
635–640. Hebei Univ; Beijing Technol & Business Univ;
Chengdu Univ, 2016. International Conference on Design,
Manufacturing and Mechatronics (ICDMM), Adv Sci Tech-
nol & Ind Res Ctr, Wuhan, PEOPLES R CHINA, APR 17-18,
2015.

[37] Daniel Tchiotsop, Beaudelaire Saha Tchinda, Rene Tchinda,
and Godpromesse Kenne. Edge detection of intestinal par-
asites in stool microscopic images using multi-scale wavelet
transform. SIGNAL IMAGE AND VIDEO PROCESSING, 9(1,
SI):121–134, DEC 2015.

[38] Jaseema Yasmin and Mohamed Sathik. An Improved It-
erative Segmentation Algorithm using Canny Edge Detector
for Skin Lesion Border Detection. INTERNATIONAL ARAB
JOURNAL OF INFORMATION TECHNOLOGY, 12(4):325–
332, JUL 2015.

[39] John Canny. A computational approach to edge detection. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions
on, (6):679–698, 1986.

[40] Thomas Moeslund. Canny edge detection. Lab-
oratory of Computer Vision and Media Technol-

ogy, Aalborg University, Denmark, http://www. cvmt.
dk/education/teaching/f09/VGIS8/AIP/canny 09gr820. pdf,
2009.

[41] Svante Wold, Kim Esbensen, and Paul Geladi. Proceedings of
the multivariate statistical workshop for geologists and geo-
chemists principal component analysis. Chemometrics and
Intelligent Laboratory Systems, 2(1):37 – 52, 1987.

[42] Hervé Abdi and Lynne J Williams. Principal component anal-
ysis. Wiley Interdisciplinary Reviews: Computational Statis-
tics, 2(4):433–459, 2010.

[43] Eric Hayman, Barbara Caputo, Mario Fritz, and Jan-Olof Ek-
lundh. On the significance of real-world conditions for ma-
terial classification. In Computer Vision-ECCV 2004, pages
253–266. Springer, 2004.

[44] Jin Xie, Lei Zhang, Jane You, and Simon Shiu. Effective tex-
ture classification by texton encoding induced statistical fea-
tures. PATTERN RECOGNITION, 48(2):447–457, FEB 2015.

[45] Rakesh Mehta and Karen Egiazarian. Texture Classification
Using Dense Micro-block Difference (DMD). In Cremers, D
and Reid, I and Saito, H and Yang, MH, editor, COMPUTER
VISION - ACCV 2014, PT II, volume 9004 of Lecture Notes in
Computer Science, pages 643–658. Singapore Tourism Board;
Omron; Nvidia; Garena; Samsung; Adobe; ViSenze; Lee Fdn;
Morpx; Microsoft Res; NICTA, 2015. 12th Asian Conference
on Computer Vision (ACCV), Singapore, SINGAPORE, NOV
01-05, 2014.

[46] Rouzbeh Maani, Sanjay Kalra, and Yee-Hong Yang. Noise ro-
bust rotation invariant features for texture classification. PAT-
TERN RECOGNITION, 46(8):2103–2116, AUG 2013.

[47] Mario Fritz, Eric Hayman, Barbara Caputo, and Jan-Olof Ek-
lundh. The kth-tips database, 2004.

[48] Rafael C Gonzalez and Richard E Woods. Digital image pro-
cessing 3rd edition, 2007.

48
Manuel B. Valentı́n, Clécio Roque de Bom, Márcio P. de Albuquerque, Marcelo P. de Albuquerque, Elisângela L. Faria,

Maury D. Correia

Appendix A: Haralick Features equations

All 13 original Haralick Features considered on this work can be calculated by the following equations:

1. Energy (Angular Second Moment), where Ng is the number of gray-levels:

f1 =
Ng

∑
i=1

Ng

∑
j=1

p(i, j)2 (17)

2. Contrast:

f2 =
Ng−1

∑
n=0

n2

(
Ng

∑
i=1

Ng

∑
j=1

p(i, j)

)
|i− j|=n

(18)

3. Correlation, where µx, µy, σx and σy are the mean and standard deviation for px and py, respectively:

f3 =

(
Ng

∑
i=1

Ng

∑
j=1

(i j)p(i, j)−µxµy)

)(
1

σxσy

)
(19)

where px and py are defined by:

px(i) =
Ng

∑
j=1

p(i, j) (20)

py(j) =
Ng

∑
i=1

p(i, j) (21)

4. Sum of Squares: Variance, where µ is the average value of the probability function p(i, j):

f4 =
Ng

∑
i=1

Ng

∑
j=1

(i−µ)2 p(i, j) (22)

5. Local Homogeneity (Inverse Difference Moment):

f5 =
Ng

∑
i=1

Ng

∑
j=1

1
1+(i− j)2 p(i, j) (23)

6. Sum Average:

f6 =
2Ng

∑
i=2

[i · px+y(i)] (24)

where px+y is defined by:

px+y(k) =

(
Ng

∑
i=1

Ng

∑
j=1

p(i, j)

)
i+ j=k

(25)

7. Sum Variance:

f7 =
2Ng

∑
i=2

(i− f8)
2 px+y(i) (26)

CBPF-NT-004/16 49

8. Sum Boltzmann Entropy (Sum Entropy):

f8 =
2Ng

∑
i=2

px+y(i) · log px+y(i) (27)

9. Boltzmann Entropy (Entropy):

f9 =−

(
Ng

∑
i=1

Ng

∑
j=1

p(i, j) · log p(i, j)

)
(28)

10. Difference Variance:

f10 =Var (px−y) (29)

where px−y is given by:

px−y(k) =

(
Ng

∑
i=1

Ng

∑
j=1

p(i, j)

)
|i− j|=k

(30)

11. Difference Entropy:

f11 =−
Ng−1

∑
i=0

px−y(i) · log [px−y(i)] (31)

12. Information of Correlation 1:

f12 =

(
HXY −HXY 1
maxHX ,HY

)
(32)

where HXY, HXY1, HX and HY are given by:

HXY = f9 (33)

HXY 1 =−
Ng

∑
i=1

Ng

∑
j=1

p(i, j) · log px(i) · py(j) (34)

HX =
Ng

∑
i=1

px(i) · log px(i) (35)

HY =
Ng

∑
j=1

py(j) · log py(j) (36)

13. Information of Correlation 2:

f13 =
√

1− e−2·(HXY 2−HXY) (37)

where HXY2 is given by:

HXY 2 =−
Ng

∑
i=1

Ng

∑
j=1

[px(i) · py(j)] · log px(i) · py(j) (38)

50
Manuel B. Valentı́n, Clécio Roque de Bom, Márcio P. de Albuquerque, Marcelo P. de Albuquerque, Elisângela L. Faria,

Maury D. Correia

Appendix B: Haralick-based features proposed by M. Linek et al.

All 3 Haralick-based Features proposed by M. Linek et al. which were considered on this work can be calculated by the
following equations:

14. Max Probability (Mode):

f14 = max p(i, j) (39)

15. Cluster Shade, where Ng is the number of gray-levels:

f15 =
Ng

∑
i=1

Ng

∑
j=1

(i−Mx + j−My)
3 · p(i, j) (40)

where Mx and My are given by:

Mx =
Ng

∑
i=1

Ng

∑
j=1

i · p(i, j) (41)

My =
Ng

∑
i=1

Ng

∑
j=1

j · p(i, j) (42)

16. Cluster Prominence:

f16 =
Ng

∑
i=1

Ng

∑
j=1

(i−Mx + j−My)
4 · p(i, j) (43)

CBPF-NT-004/16 51

Appendix C: Extra Features.

The Tsallis Entropy for a given probability distribution function and a q-value can be calculated as follows. Some values
of q may maximize little differences between pictures, in comparison to Boltzmann Entropy. Therefore, for this value of q,
differences in Entropy for different images that for Boltzmann Entropy would not be detectable, may be magnified, leading to a
more precise classification. In this work the value that maximizes the Entropy differences between images (for the KTH-TIPS
dataset) has been found to be q = 0.1:

17. Tsallis Entropy:

f17 =−
Ng

∑
i=1

Ng

∑
j=1

1
q−1

· p(i, j)q (44)

Notas Técnicas é uma publicação de trabalhos técnicos relevantes, das dife-
rentes áreas da f́ısica e afins, e áreas interdisciplinares tais como: Qúımica,
Computação, Matemática Aplicada, Biblioteconomia, Eletrônica e Mecânica
entre outras.

Cópias desta publicação podem ser obtidas diretamente na página web
http://revistas.cbpf.br/index.php/nt ou por correspondência ao:

Centro Brasileiro de Pesquisas F́ısicas
Área de Publicações
Rua Dr. Xavier Sigaud, 150 – 4o

¯ andar
22290-180 – Rio de Janeiro, RJ
Brasil
E-mail: alinecd@cbpf.br/valeria@cbpf.br
http://portal.cbpf.br/publicacoes-do-cbpf

Notas Técnicas is a publication of relevant technical papers, from different
areas of physics and related fields, and interdisciplinary areas such as Chem-
istry, Computer Science, Applied Mathematics, Library Science, Electronics
and Mechanical Engineering among others.

Copies of these reports can be downloaded directly from the website
http://notastecnicas.cbpf.br or requested by regular mail to:

Centro Brasileiro de Pesquisas F́ısicas
Área de Publicações
Rua Dr. Xavier Sigaud, 150 – 4o

¯ andar
22290-180 – Rio de Janeiro, RJ
Brazil
E-mail: alinecd@cbpf.br/valeria@cbpf.br
http://portal.cbpf.br/publicacoes-do-cbpf

