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A Deformed Bose-Einstein Gas Near q = 1
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Abstract

We show that the Bose-Einstein condensation occurs, on the region near q = 1, for a

modi�ed ideal deformed gas.
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Recently, a great deal of interest has been devoted to the study of quantum groups

[1{4] and deformed quantum q-gases. Chaichian et al [5] investigated the deformed Bose-

Einstein gas near q = 1 and found that in this limit some divergencies appear in the

series expansion of the thermodynamic functions. This fact did not allow the study of

the Bose-Einstein condensation (BEC). Later on, R-Monteiro et al [6, 7] showed that, for

highly deformed q-gases, BEC is present and the speci�c heat has a �-point transition

behavior.

We propose here a new type of deformed system in which the parameter q is a function

of the momentum, p. This procedure is implemented by means of a system where each

oscillator is attached to a di�erent value of q, and for particular choices it is possible to

regulate the thermodynamic functions. When the Bose-Einstein gas is deformed this way,

we show that it is possible to approach the region near q = 1 and BEC occurs on this

system.

The Hamiltonian for an ideal q-gas is taken as [5, 6]

H =
X
i

�h!ia
y
i ai =

X
i

�h!i[Ni]; (1)

where ai, a
y
i , Ni are anihilation, creation and occupation operators, respectively, of par-

ticles in the state i. These operators have the following commutation relations:

aia
y
j � ((qi � 1)�ij + 1)a

y
j ai = �ijq

�Ni; [Ni; aj] = ��ijaj; [Ni; aj] = �ija
y
j : (2)

We also have

[Ni] = (qNi

i � q�Ni

i )=(qi � q�1i ): (3)

As in the non-deformed case, the total energy can be written as a sum of single-particle

energies :

E =
X
i

Ei(ni) =
X
i

�h!i[n]: (4)

For real qi = exp(ti) we have for the state i

Ei(n) = �h!i
sinh(nti)

sinh(ti)
: (5)

The grand canonical partition function of the system is

Z(z; V; T ) = Trfexp[��(H � �N)]g =
1X

N=0

zNZN (V; T ); (6)

where z = exp(��) is the fugacity, � is the chemical potential, N is the total number

operator and ZN is the canonical partition function :

ZN =
X
ni

exp(���hX
i

!i[ni]) (7)
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Further calculations provide that

Z =
Y
i

1X
n=0

znexp(���h!i[n]) (8)

So, the grand canonical potential is given by


 = � 1

�
lnZ = � 1

�

X
i

ln

 1X
n=0

znexp(���h!i[n])
!

(9)

Making the assumption that all ti are small enough, and then expanding equation (5)

to order t2i , we have :

Ei = �h!i(n +
1

6
n(n+ 1)(n � 1)t2i + � � �): (10)

The substitution of this in (8) gives

znZN (V; T ) '
1X
n=0

e�(���h!)n
�
1� 1

6
n(n+ 1)(n � 1)��h!t2i

�
; (11)

and makes it possible to perform the sum over n :

znZN (V; T ) ' Z0(1� xiz
2e�2xiZ3

0 t
2
i ); (12)

where xi = ��h!i and Z0 = 1=(1 � ze�xi). Finally, the grand canonical potential is, to

second order in ti,

�
 ' �X
i

lnZ0 + z2
X
i

t2ixie
�2xiZ3

0 (13)

The next step is to enclose the system in a 3-dimensional volume V and replace the

sum over levels by an integral over ~p-space:

X
i

! 4�V

h3

Z 1
0

p2dp; (14)

and make t a function of p by choosing

t(p; �) =

s
�
p�

(�)�
e��p2=2m; (15)

where � = (2m=�)1=2, � is an integer,� << 1 and �h! = p2=2m de�nes the dispersion law

for non-relativistic particles.

Remembering that p = �
=V , we have

�p = ��3(g5=2(z)� �G5=2(�; z)); (16)

where � = h=
p
2�mkT , and the g� and G functions are integrals of the form [8]

I(r; �; �) =
Z 1
0

dxzr
x��1

(ex � z)�
=

�(�)

(� � 1)!

1X
k=0

(k + � � 1)!

k!

zk

(k + �)�
(17)
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For g�, we have

g� =
1

�(�)
I(1; �; 1): (18)

These functions have the following property:

z
dg�(z)

dz
= g��1(z): (19)

The G functions do not have the above property, as � = (� + 5)=2 always. However,

we can, for the sake of simplicity, give them the same subscript of the g functions. Then,

the G functions obey (18) in a formal manner, and are de�ned by

G5=2(�; z) =
2p
�
I(2; �+52 ; 3);

G3=2(�; z) =
2p
�
[2I(2; �+52 ; 3) + 3I(3; �+52 ; 4)];

G1=2(�; z) =
2p
�
[4I(2; �+52 ; 3) + 15I(3; �+52 ; 4) + 12I(4; �+52 ; 5)]

(20)

Chaichian et al [5] showed that the expansion in t, eq.(12), su�ers a breakdown when

z ! 1 and x ! 0, as the e�ective expansion parameter, t2 times a positive power of

Z0, grows large. It is not the case if we use eq.(15), making t a function of p, or, in

terms of x, t2 = �x�=2e�x. Doing so, we have a modi�ed deformed system where the

e�ective expansion parameter has a �nite value when z ! 1 and x! 0, if � � 4. In our

calculations, we used � = 4.

The density of the system is

n = z

 
@(�p)

@z

!
�

; (21)

and we get

n = ��3(g3=2(z)� �G3=2(�; z)): (22)

The internal energy U and (@z=@T )V are, respectively, equal to

3

2

T (g5=2(z)� �G5=2(�; z))

g3=2(z)� �G3=2(�; z)
(23)

and

�3

2

zg3=2(z)

Tg1=2(z)
+

3

2

�zG3=2(�; z)

Tg1=2(z)
: (24)

Using these equations, we �nd the speci�c heat of the system, for T � Tc:

CV

Nk
= �15

4

�G5=2(�; z)

g3=2(z)� �G3=2(�; z)
+

9

2

�g3=2(z)G3=2(�; z)

g1=2(z)(g3=2(z)� �G3=2(�; z))

�9

4

�g5=2(z)G1=2(�; z)

g1=2(z)(g3=2(z)� �G3=2(�; z))

+
15

4

g5=2(z)

g3=2(z)� �G3=2(�; z)
� 9

4

g3=2(z)
2

g1=2(z)(g3=2(z)� �G3=2(�; z))
(25)
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For z = 1 or T � Tc, we have

CV

Nk
=

15

4

g5=2(1)� �G5=2(�; 1)

g3=2(1)� �G3=2(�; 1)

�
T

Tc

�3=2
(26)

We note that, as �! 0, we recover the ideal Bose-Einstein gas speci�c heat. In �gure 1 we

see that, as z ! 0 or T !1, the speci�c heat limit is also 3=2. The critical temperature,

Tc, is

Tc =
h2

2�mk

 
n

g3=2(z)� �G3=2(�; z)

!2=3

: (27)

When �! 0, we recover the critical temperature of the Bose-Einstein ideal gas.

Although our system dynamics is di�erent from the ones in [5] and [7], there are some

similarities. For example, our Tc is higher than that of the ideal Bose-Einstein gas, as in

[7]. However, our speci�c heat does not show any discontinuity at T = Tc, as we see in

the �gure. The reason to that is the fact that our system averages the thermodynamic

functions for values of q such that 1 � q � 1 + �. Notice, however, that for increasing

�, the trend of the curves is compatible with the appearence of a � - point transition

at large q. Finally, we point out that the type of deformation proposed here makes the

deformation parameter continuous. This fact enabled us to study BEC near q = 1, which

has not been achieved for the usual deformed Bose-Einstein gas previously investigated.

Acknowledgements - The authors thank M.R-Monteiro for suggesting the present sub-

ject and for permanent interest. This work was supported by CNPq - Conselho Nacional

de Desenvolvimento Cient���co e Tecnol�ogico.



{ 5 { CBPF-NF-057/96

2 4 6 8
T/Tc

0.5

1

1.5

2

Cv/Nk

_____ q=1

- - - q=1 + t(p,0.1)

fig.1. Speci�c heat of the ideal (q = 1) and deformed (q=1+t(p,0.1))Bose - Einstein gas.
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