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A. B. Pinheiro® and I. Roditi®

Centro Brasileiro de Pesquisas Fisicas - CBPF
Rua Dr. Xavier Sigaud, 150
22290-180 — Rio de Janeiro, RJ — Brazil

ABSTRACT

We show that the Bose-Einstein condensation occurs, on the region near ¢ = 1, for a

modified ideal deformed gas.
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Recently, a great deal of interest has been devoted to the study of quantum groups
[1-4] and deformed quantum g¢-gases. Chaichian et al [5] investigated the deformed Bose-
Einstein gas near ¢ = 1 and found that in this limit some divergencies appear in the
series expansion of the thermodynamic functions. This fact did not allow the study of
the Bose-Einstein condensation (BEC). Later on, R-Monteiro et al [6, 7] showed that, for
highly deformed g-gases, BEC is present and the specific heat has a A-point transition
behavior.

We propose here a new type of deformed system in which the parameter ¢ is a function
of the momentum, p. This procedure is implemented by means of a system where each
oscillator is attached to a different value of ¢, and for particular choices it is possible to
regulate the thermodynamic functions. When the Bose-Einstein gas is deformed this way,
we show that it is possible to approach the region near ¢ = 1 and BEC occurs on this
system.

The Hamiltonian for an ideal ¢-gas is taken as [5, 6]

H= Zﬁwiajai = Zﬁwz[NZ], (1)

where a;, a;, N; are anihilation, creation and occupation operators, respectively, of par-

7

ticles in the state . These operators have the following commutation relations:
.J[_ 1)+ 1 J[,:(g,, “Ni IN. al=—6-a:. [N ,:5.,J[ )
a;a; ((QZ ) ij T )a] a; iid [ 27“]] ij 45, [ 27“]] ijly ( )

We also have
[N = (¢ = a7™)/(a: = ai7")- (3)
Asin the non-deformed case, the total energy can be written as a sum of single-particle

energies :

For real ¢; = exp(t;) we have for the state 1

sinh(nt;)
E; = hw,————=.
() w sinh(t;) (5)
The grand canonical partition function of the system is
Z(2,V,T) = Tr{eap-B(H — uN)|} = > " Zn(V.T), (6)
N=0

where z = exp(fBp) is the fugacity, g is the chemical potential, N is the total number

operator and Zy is the canonical partition function :

Zn = Y cap(~Bh Y i) M)

g
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Further calculations provide that
2 =TI+ cap(—Bhes[n]) )
1 n=0
So, the grand canonical potential is given by

1

1 = ., n
Q= 5an = —E;ln (HZ:%Z exp(—Fhw;| ])) 9)

Making the assumption that all #; are small enough, and then expanding equation (5)

to order ¢?, we have :

1
E; = hwi(n + gn(n—l—l)(n— 1)t?—|—---). (10)
The substitution of this in (8) gives
SNV, T) = 3 Pl (1 _ %n(n F1)(n — 1)%@5) , (11)
n=0

and makes it possible to perform the sum over n :
SINVLT) ~ Zo(1 — w;2%e 2 2317, (12)

where x; = fhw; and Zy = 1/(1 — ze=*). Finally, the grand canonical potential is, to
second order in t;,

B~ = "InZo+2°> a7 (13)

The next step is to enclose the system in a 3-dimensional volume V' and replace the

sum over levels by an integral over p-space:

AnV oo

and make t a function of p by choosing

t(p,€) = /€ P e—Bp?/2m
p7 - (A)” 9

(15)

where A = (2m/3)Y/2, 5 is an integer,e << 1 and hw = p?/2m defines the dispersion law
for non-relativistic particles.

Remembering that p = —Q/V, we have

Bp = A" (gs/2(2) — €Gispa(n, 2)), (16)
where A\ = h/v2xmkT, and the g, and G functions are integrals of the form [§]
o0 xo1 INa) & (B+v-—1) P
I = [ daxr =
(nav)=J & e T o 2 (k +v)°

* k=0
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For ¢, we have

1
o= —I1(1,a,1). 1
These functions have the following property:
dg.(z)
2 = ga1(2). 1
A e) (19)

The G functions do not have the above property, as a = (n + 5)/2 always. However,
we can, for the sake of simplicity, give them the same subscript of the g functions. Then,

the (¢ functions obey (18) in a formal manner, and are defined by

G5/2(7772) = %](27 73)7
Gapaln, 2) = =[21(2, %5 3)+31(3, 72, 4)], (20)
Grya(n, 2) = [A1(2, 752, 3) +151(3, 132, 4) + 121 (4, 77, 5)]

Chaichian et al [5] showed that the expansion in t, eq.(12), suffers a breakdown when
z — 1 and 2 — 0, as the effective expansion parameter, ¢* times a positive power of
Zo, grows large. It is not the case if we use eq.(15), making ¢ a function of p, or, in
terms of x, t> = ex"?¢~". Doing so, we have a modified deformed system where the
effective expansion parameter has a finite value when z — 1 and = — 0, if n > 4. In our
calculations, we used n = 4.

The density of the system is
(8p)
= 21
- K (21)

n = A(gaya(2) — Clapaln, 2)). (22)

The internal energy U and (0z/JT)y are, respectively, equal to
31 (gs2(2) — €Gspa(n, 2))

and we get

23
2 g32(2) — €Gpa(n, 2) (23)
and
3 2gs(s) | 3 exGipan, ) "
2 Tgl/Q(Z) 2 Tgl/Q(Z) '
Using these equations, we find the specific heat of the system, for T' > T.:
Cv B Gis/a(n, 2) 9 €g3/2(2)G3/2(n, )
Nk 4 g3ja(2) — €Gspa(n, z) - 2 g172(2)(g3/2(2) — €Glapaln, 2))
9 ¢g5/2(2)G1y2(n, 2)
4 9172(2)(9/2(2) — €Gapa(n, 2))
1 2

4 93/2(2) - 6G3/2(7772) - 491/2(2)(93/2(2) - 6G3/2(7772))
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For z=1or T'<T,, we have

Cv  15g5p2(1) — eGspa(n, 1) (T)3/2 (26)

Nk - 4 g3/2(1) — 6G3/2(77,1) i

We note that, as € — 0, we recover the ideal Bose-Einstein gas specific heat. In figure 1 we
see that, as z — 0 or T' — o0, the specific heat limit is also 3/2. The critical temperature,
T., is
L2 2/3
= ( " ) . (27)
2rmk \ g3/2(2) — €Gsja(n, 2)

When € — 0, we recover the critical temperature of the Bose-Einstein ideal gas.

C

Although our system dynamics is different from the ones in [5] and [7], there are some
similarities. For example, our T is higher than that of the ideal Bose-Einstein gas, as in
[7]. However, our specific heat does not show any discontinuity at 7' = T, as we see in
the figure. The reason to that is the fact that our system averages the thermodynamic
functions for values of ¢ such that 1 < ¢ < 1 4 €. Notice, however, that for increasing
¢, the trend of the curves is compatible with the appearence of a A - point transition
at large ¢. Finally, we point out that the type of deformation proposed here makes the
deformation parameter continuous. This fact enabled us to study BEC near ¢ = 1, which

has not been achieved for the usual deformed Bose-Einstein gas previously investigated.

Acknowledgements - The authors thank M.R-Monteiro for suggesting the present sub-
ject and for permanent interest. This work was supported by CNPq - Conselho Nacional

de Desenvolvimento Cientifico e Tecnologico.



Cv/ Nk

1.5+

CBPF-NF-057/96

I
- - - 0g=1 + t(p,0.12)

T/ Tc

FIG.1. Specific heat of the ideal (q = 1) and deformed (q=1+4t(p,0.1))Bose - Einstein gas.



-6 - CBPF-NF-057/96

References

[1] V.G.Drinfel’d, in Proc. of the Int. Congress of Math., Berkeley, 1986, reprinted in
”Yang-Baxter Equation in Integrable Systems”, Ed. Michio Jimbo, World Scientific,
Singapore, 1989.

[2] M.Jimbo, Lett.Math.Phys. 10, 63 (1985); 11,247 (1986).

[3] A.J.MacFarlane, J.Phys.A 22, 4581 (1989).

[4] L.C.Biedenharn, J.Phys. A 22, 1.873 (1989).

[5] M.Chaichian, R.Gonzalez Felipe and C.Montonen, J.Phys.A 26, 4017 (1993).

[6] M.R-Monteiro, [.Roditi and L.M.C.S.Rodrigues, Mod.Phys.Lett.B 7, 1897 (1993).

[7] M.R-Monteiro, I.Roditi and L.M.C.S.Rodrigues, Int.J.Mod.Phys.B 8, 3281 (1994),

and references therein.

[8] A.P.Prudnikov, Yu.A.Brychkov, and O.[.Marichev, "Integrals and Series”, vol.1, Gor-
don and Breach Science Publishers, New York, 1988.



