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I. INTRODUCTION

It has been known for a long time that one-dimensional spin models can present an

ordered state at low temperatures if the microscopic interactions fall off slowly enough

with the distance [1]− [4]. Moreover, the thermodynamic properties of this kind of systems

near the critical point present frequently new behaviours, which are absent in short-range

(SR) models. Hence, it is of interest the study of such properties in order to gain a deeper

comprehension of the general theory of critical phenomena.

Besides their fundamental theoretical interest in physics, microscopic models with

long-range (LR) interactions are of interest nowadays in view of their relationship with

neural systems modeling [5], where far away localized neurons interact through an action

potential which decays slowly along the axon. Other related problems are, for example,

spin systems with RKKY like interactions (1/rαij cos(arij)) which are present in spin

glasses [6], critical phenomena in highly ionic systems [7], Casimir forces between inert

uncharged particles immersed in a fluid near the critical point [8] and the kinetic Ising

model with random spin exchanges (Lévy flights) [9].

In this paper we address the q-state Potts model [10] with LR interactions, i.e., we

consider the Hamiltonian:

H = −J
∑
(i,j)

1

rαij
δ(σiσj) (σi = 1, 2, . . . , q, ∀ i; J > 0; α > 0) (1)

where rij is the distance (in crystal units) between sites i and j (i.e., rij =| i − j |=
1, 2, 3 · · ·), and where the sum

∑
(i,j) runs over all distinct pairs of sites of a one-

dimensional lattice of N sites. The α → ∞ limit corresponds to the first-neighbor

model,while the α = 0 limit corresponds to the infinite range ferromagnet which, after a

rescaling J → J/N , yields basically the Mean Field Approach.

This model, in its plain formulation (α→ ∞ of Eq.(1)) or in a more general one with

many-body interactions, is at the heart of a complex network of relations between geo-

metrical and/or thermal statistical models, like for example various types of percolation,

vertex models, generalized resistor and diode network problems, classical spin models, etc

(see [11] and references therein).

On the other hand, the one-dimensional Potts model with LR interactions has been

much less studied. In particular, very few rigorous results for general q are known. Let

us summarize some of the most relevant results up to the present: i) this model exhibits

long-range order at finite temperatures [12] T ≤ Tc(q, α) for 1 < α ≤ 2; for α → 1 the

critical temperature diverges and for α ≤ 1 the thermodynamic limit is not defined and
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the system becomes non-extensive; ii) for α > 2 (short-range interactions) it has no phase

transition at finite temperatures [12] for all q ≥ 1, more precisely, Tc = 0; iii) it has been

proved that for α = 2 the order parameter is discontinuous at T = Tc 
= 0 for any q [12];
iv) for q = 1 the percolation threshold satisfies 1/pc ≤ 2ζ(α) for 1 < α ≤ 2, where ζ(α) is

the Riemann Zeta function [13].

The following additional results correspond all to the q = 2 case, which is, up to

now, the best studied one: v) for 1 < α < 1.5 the critical exponents are classical [14];

vi) the region 1.5 < α < 2 shows non-trivial critical exponents, which are not known

exactly. Approximate results in the latter region were obtained by different methods

such as (among others): series expansions [15], finite range scaling approximations [16],

coherent anomaly method [17], real-space renormalization group [18], ε-expansions [2,4]

around α = 1.5 and α = 2 where the critical behaviour is of essential singularity type

[19].

Some approximate results for the critical temperature and the correlation length crit-

ical exponent ν were obtained for a wide range of values of q using finite-range-scaling

calculations [20].

The α = 2 (i.e., the 1/r2 potential) case is of particular interest because for q = 2

it can be mapped into the spin 1/2-Kondo problem [21] (which is related with recent

developments in high temperature superconductivity [22]) and for a general value of q > 2

it may be related to higher spin generalizations of the Kondo problem [19].

In order to calculate the critical temperature and the critical exponent ν of the q-state

LR Potts model in the extensive region 1 < α ≤ 2 we use a real-space renormalization

group method (RG), based on a construction of Kadanoff-blocks using the majority-rule.

In a recent work [18] , one of us adapted the well known Niemeijer-van Leeuwen’s RG

recipes [23] to the one-dimensional LR Ising model. In the case of q = 2 states the tie-

breaking problem in the majority rule can be easily avoided by considering only blocks

with an odd number of sites; for q ≥ 3 this ansatz does not work. Hence, in this paper we

generalize the above technique by introducing an equally-probable tie-breaking majority

rule. We expect that this method gives good results for the Potts model, as far as the

phase transition is a second order one [11]. The outline of this paper is as follows. The

general RG formalism is described in Sec.II. In Sec.III we present our results, which

recover those of Ref.[18] for q = 2. Finally, the conclusions are given in Sec.IV.
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II. THE RG FORMALISM

We start by constructing Kadanoff-blocks of length b > 1, as shown in Fig. 1 for the

particular case b = 3; we will consider, for simplicity, only odd values of b herein. The

parameter b characterizes the rescaling length of the RG transformation. The blocks will

be numbered by capital letters. We will assign a block-spin variable σ′I = 1, 2, . . . , q to

every block I. Let us denote by σI
i = 1, 2, . . . , q (i = 1, 2, · · · , b; I = 1, 2, · · · , N/b) the

spin state at the ith site of the block I. Then, defining the dimensionless Hamiltonian

H ≡ −K
N/b∑
I=1

N/b∑
J=1

∑
i∈I

∑
j∈J

1

rαij
δ(σI

i , σ
J
j ) (i 
= j) (2)

with K ≡ βJ (β = 1/kBT ; hereafter we take kB = 1), a renormalized (block) Hamiltonian

is determined by the following RG transformation:

e−(H′+C) = Tr{σI
i }
{
P
({σI

i }, {σ′I}
)
e−H} . (3)

The symbol Tr{σI
i } denotes a sum over all the configurations of site-spins σI

i , C is a
spin independent constant and

P
({σI

i }, {σ′I}
)
=

N/b∏
I=1

PI

({σI
i }, σ′I

)
(4)

is a weight function which characterizes the majority-rule with equally probable tie-

breaking, that means:

PI =

{
1/m if one of the m major subgroups of

{
σI

i

}
is in the state σ′I

0 otherwise
. (5)

For instance, in the case b = 5, q = 4 with
{
σI

i

}
= {1, 1, 4, 4, 3} and σ′I = 4 then PI = 1/2.

The Hamiltonian H can be divided into two parts: H = H0 + V , where H0 =
∑

I HI
0

and V =
∑

(I,J) VIJ ; HI
0 includes only the interactions between spins inside the block I,

whereas VIJ includes the interactions between spins belonging to different blocks I and

J . Introducing the intra-block expectation values:

〈O〉0 ≡
1

Z0
Tr{σI

i }
{
P
({σI

i }, {σ′I}
)
exp
[−H0

({σI
i }
)]O} (6)

with

Z0 ≡ Tr{σI
i } P

({σI
i }, {σ′I}

)
exp
[−H0

({σI
i }
)]

(7)
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we can rewrite Eq.(3) as:

e−(H′+C) = Z0

〈
e−V
〉
0
. (8)

Using a cumulant expansion of
〈
e−V
〉
0
, a first order approximation of H′ can be

obtained through:

H′ ≈ 〈V 〉0|sdp =
∑
(I,J)

〈VIJ〉0|sdp (9)

where sdp refers to the spin dependent part on {σ′I} of the resulted average.
Let rIJ be the distance between the center sites of the blocks I and J (see Fig. 1),

measured in units of the rescaling length b. For rIJ >> 1 we can approximate [18]

rij ≈ b rIJ . (10)

Then

〈VIJ〉0|sdp ≈ − K

bα rαIJ

∑
i∈I

∑
j∈J

〈
δ(σI

i , σ
J
j )
〉
0

∣∣∣
sdp

(11)

Since the expectation value (6) is carried out with a block-independent probability

distribution it follows that

〈
δ(σI

i , σ
J
j )
〉
0
=

q∑
l=1

〈
δ(σI

i , l)δ(σ
J
j , l)
〉
0

(12)

=

q∑
l=1

〈
δ(σI

i , l)
〉
0

〈
δ(σJ

j , l)
〉
0

(13)

.

On the other hand, by symmetry, one has that:

〈
δ(σI

i , l)
〉
0
= ai(K,α, q)δ(σ

′
I, l) + bi(K,α) (14)

where ai and bi are block-independent functions of K,α, q and the site i. Com-

bining Eq.(14) with Eqs.(9), (11) and (13), and using that
∑q

l=1 δ(σ
′
I , l) = 1 and∑q

l=1 δ(σ
′
I , l)δ(σ

′
J , l) = δ(σ

′
I , σ

′
J) one gets that:

H′ = −K ′
b(K, q, α)

∑
(I,J)

1

rαIJ

δ(σ′I , σ
′
J) (15)

where
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K ′
b(K, q, α) =

K

bα

[
b∑

i=1

ai(K,α, q)

]2

(16)

is our RG recurrence equation. Using Eq.(14) we can express ai(K,α, q) as:

ai(K,α, q) =
1

q − 1
[
q
〈
δ(σI

i , 1)
〉
0

∣∣
σ′

I=1
− 1
]
. (17)

Since the nth cumulant of 〈exp(−V )〉 is of order 1/bnα, the approximation (9) can be

seen as the leading term in a series expansion [18] of Eq.(3) in powers of 1/bα. Therefore,

it is expected that the results will be systematically improved for increasingly high values

of b.

III. RESULTS

A. Analysis of the recurrence equation

We now analyze the recurrence equation (16) and its fixed points K∗ = K ′
b(K

∗, q, α) as

a function of α for different values of q ≥ 2. The typical structure of Eq.(16) is as follows.

It always shows two trivial fixed points: K = 0 (T = ∞) and K = ∞ (T = 0). From

Eq.(17) we found that ai(K,α, q) ∼ 1 ∀i, q, α for K >> 1 (T → 0); hence, from Eq.(16)

we obtain the asymptotic behaviour K ′
b(K, q, α) ∼ b2−αK ∀q. For low values of α the

slope of K ′
b(K, q, α) at K = 0 is greater than one and it does not present a (non-trivial)

fixed point for finite values of K. In this case the fixed point K = 0 is repulsive and

therefore Tc = ∞. For intermediate values of α, K ′
b(K, q, α) possess a non-trivial fixed

point at finite K = Kc(b, q, α) ≡ J/Tc(b, q, α). For α > 2 the slope of K
′
b(K, q, α) is less

than one and there is again no fixed point at finite K. In this case, however, the fixed

point K = 0 is attractive and therefore Tc = 0 for all values of b, recovering the exact

result. Summarizing: there exists some value α1(b, q) such that i) Tc =∞ for α ≤ α1(b, q);

ii) there is a phase transition at finite temperature Tc(b, q, α) for α1(b, q) < α < 2 and iii)

Tc = 0 for α > 2.

The borderline value α1(b, q) is determined by the condition dK
′
b/dK |K=0= 1. This

equation can be solved by noting that

ai(0, α, q) = γ(b, q) ≡ 1

q − 1

[
q2−b

mmax∑
m=1

Am(b, q)

m
− 1
]

(∀i). (18)

The coefficient Am gives the number of configurations of b spins (where each one can

be in the states σI
i = 1, 2, . . . , q) of a block where one of the m major subgroups of {σI

i }
is in a fixed state, say 1, and σI

1 = 1.
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From Eq.(16) we obtain that dK ′
b/dK |K=0= b

2−αγ(b, q)2 and therefore

α1(b, q) = 2

[
1 +

ln γ(b, q)

ln b

]
.

For q = 2 we have that [18]

γ(b, 2) =
(b− 1)!

2b−1
(

b−1
2
!
)2

which for b >> 1 behaves as γ(b, 2) ∼ 2
√
2/π b−1/2 and we recover the exact result

α1(b, 2)→ 1 in the limit b→ ∞.
For higher values of q the calculation of the quantities Am involves a lot of combina-

torial analysis. For q = 3 we found the following expression:

γ(b, 3) =
1

2


32−b


 X∑

l=0

(
b− 1
l

)
2l +

Int(X/3)∑
j=1

X−j∑
j1=2j

(
b− 1
X + j

)(
X + j

j1

)

+

Int(X−2
3

)∑
l=0

(
b− 1

X + l + 1

)(
X + l + 1

X − l

)
+
1

3

(
b− 1
2b/3

)(
2b/3

b/3

)
δ(b, 3n)


− 1


 (19)

where n = 1, 2, . . ., X ≡ (b−1)/2 and Int(. . . ) represents the integer part of its argument.

This form can be easily evaluated numerically for values up to b ∼ 200. An analysis of

the log-log plot of γ vs b shows that the asymptotic regime is attained for low values of

b ∼ 7 and clearly γ(b, 3) ∼ b−1/2 for b→ ∞. Therefore, α1(b, 3) also reproduces the exact

result in such a limit. For values of q ≥ 4 the combinatorial problem becomes very hard.

However, we performed a numerical calculation of γ(b, q) for q = 4, 5 and b = 3, 5, 7, 9,

finding again γ(b, q) ∼ b−1/2. All these results suggest that α1(b, q) → 1 for b → ∞ for

all values of q ≥ 2.

Closed forms of the function K ′
b(K, q, α) can be obtained analytically for low values

of q and b with the aid of symbolic computer languages. With these expressions the

critical temperature Tc(b, q, α) can be calculated numerically as a function of α for fixed

values of q and b. The correlation length critical exponent can also be calculated from

the expression

ν(b, q, α) =
ln b

ln
(

dK ′
b

dK
(K, q, α) |Kc

) . (20)

In Fig.2 we show our results for different values of q and b = 3 fixed, while in Fig.3

we kept q = 3 fixed and varied b. The corresponding curves for other values of q are

qualitatively similar.
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B. α → 2− asymptotic results

For α → 2− we see that Kc → ∞ (Tc → 0). The asymptotic behaviour of the

recurrence equation (16) in such limit can be obtained by adding an external field h into

the Hamiltonian (2), i.e., HI
0 → HI

0+h
∑b

i=1 δ(σ
I
i , 1). Then, in the h→ 0 limit, it is easy

to prove that

b∑
i=1

〈
δ(σI

i , 1)
〉
0
=
∂ln ZI

0

∂h

∣∣∣∣
h=0

(21)

For K → ∞ we can expand

ZI
0 (K, h) ∼ eB1(b,α)K+bh

[
1 + 2(q − 1)e−B(b,α)K−h + · · ·] (22)

where KB1(b, α) and KB(b, α) are the respective energy of the ground state and the

energy difference between the ground state and the first excited state of HI
0. These are

given by

B1(b, α) =
∑
(k,j)

1

rαkj

=
b−1∑
n=1

b− n
nα

(23)

B(b, α) =

b−1∑
n=1

1

nα
(24)

Then, from Eqs.(21) and (22) we obtain in the K → ∞ limit, that

b∑
i=1

〈
δ(σI

i , 1)
〉
0
≈ b− 2(q − 1)e−B(b,α)K (25)

which combined with Eqs.(16) and (17) leads to

K ′
b(K, q, α) ∼

K

bα
[
b− 2q e−B(b,α) K

]2
(K → ∞). (26)

Therefore, for α→ 2− the asymptotic behaviour of Tc(b, q, α) is given by the Cauchy

function:

2− α ∼ D(q, b) e−B(b,2) J/Tc (27)

with D(q, b) = 4q/(b ln b). In the b → ∞ limit we have B(b, 2) → ζ(2) = π2/6 and

D(q, b) → 0. Since D(q, b) determines the region around α = 2 in which the asymptotic

regime (27) holds, the shrinking of such a region in the b → ∞ limit suggests a non-

uniform convergence to a finite value Tc(α = 2) 
= 0, consistently with the exact result for
q = 1, 2.
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Such value can be estimated, for fixed q, as the value of Tc(b, q, α) at the inflection

point of the Cauchy function (27) for finite b and then taking the b → ∞ limit. This

procedure gives the value

Tc(q, α = 2)/J = B(∞, 2)/2 = π2/12 (28)

for all values of q ≥ 2. It is worth noting that there exists some degree of arbitrari-

ness in the choice of the inflection point for the estimation of Tc(q, α = 2). Actually, the

present procedure is almost the same as the one introduced in Ref.[18] for the Ising model,

the only difference being such a criterium. A careful comparison between (28) and the

corresponding values obtained by others methods showed that the choice of the inflection

point is better than the previous one [24]. In particular, for the Ising model q = 2 (remem-

ber that (Tc/J)
Ising = 2 (Tc/J)

Potts
∣∣∣
q=2
) we have Tc(2, α = 2)/J = π2/6 ≈ 1.64, which

compares well with other results (renormalization group [21]: 1.57; series expansions [15]:

1.63; finite range scaling [16]: 1.68; ζ function [25]: 1.69).

C. High temperature asymptotic results

For α → α+
1 (b, q) we see that Kc → 0. Then, expanding the fixed point equation

Kc = K
′
b(Kc, q, α) around Kc = 0 and α = α1 up to first order in Kc and in (α− α1) we

find after some algebra:

α − α1 ∼ C(b, q) Kc

where

C(b, q) =
2 B1(b, α1)

b lnb

G(b, q) q2−b − b
q
[1 + (q − 1)γ(b, q)]

(q − 1)γ(b, q) (29)

and

G(b, q) = Tr{σI
i } PI

({σI
i }, 1)

)
δ(σI

k, σ
I
j )

b∑
i=1

δ(σI
i , 1). (30)

For q = 2 the above expression reduces to

C(b, 2) =
B1(b, α1)

b ln b

(
b− 2

b−3
2

)

γ(b, 2) 2b−2
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Since B1(b, α1) ∼ b lnb for b→ ∞, we obtain that limb→∞C(b, 2) = 1. Therefore, we find

in the limit b→ ∞ that

Tc(2, α)/J ∼ 1

α− 1 (31)

which reproduces known results(see Ref.[18] and references therein). It is worth stressing

that expression (31) recovers asymptotically the mean field one [26].

For q = 3 a closed form of G(b, q) (and therefore of C(b, q)) can also be analytically

obtained. The detailed form of it can be seen in the Appendix. We found numerically that

C(b, 3)→ constant ≈ 0.67 ≈ 2/3 for b→ ∞. All these results suggest that C(∞, q) = 2/q
and that the asymptotic behaviour

Tc(q, α)/J ∼ 2/q

α− 1 (32)

for α → 1 holds for all values of q ≥ 2, provided that the phase transition is a

second order one. Eventually it might hold also for q = 1, which would be consistent with

Schulman’s bound [13] 1/pc ≤ 2ζ(α) (ζ(α) ∼ 1/(α − 1) for α → 1). It is interesting to

compare this result with the mean field one, which predicts a first order phase transition

for q ≥ 3. We calculated the corresponding critical temperature following along the lines

of Mittag and Stephen [27], namely

TMF
c /J =

q − 2
q − 1

1

ln(q − 1)ζ(α)
which for q � 1 and α→ 1 behaves as

TMF
c /J ∼ 1

ln(q)

1

α− 1
which differs from expression (32).

It is worth stressing that the asymptotic behaviour (32) agrees with Tsallis’ proposal

[28] for unifying in a single picture both short- and long-range interaction systems. This

proposal has been recently verified for Lennard-Jones like potential systems [29,30] as well

as for ferromagnetic Ising models [26].

Finally, using the same expansion of Kc = K
′
b(Kc, q, α) around Kc = 0 and α = α1,

and combining it with Eq.(20) we find that

ν(b, q, α) ∼ 1

α− α1
, (∀b, q). (33)

For q = 2 the mean field behaviour ν = 1/(α− 1) holds for 1 < α < 1.5 exactly [4,14].
Our results suggest that such behaviour holds, at least asymptotically for α→ 1, for all

values of q ≥ 2. The results of Glumac and Uzelac [20] also suggests such a behaviour

for all q ≤ 1 and 1 < α ≤ 4/3. So, eventually this asymptotic behaviour for α→ 1 might

be true for all q, provided the phase transition is a continuous one.
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D. b → ∞ extrapolations

Now, we can use the asymptotic behaviours derived in the preceeding section to ex-

trapolate the full curves Tc(b, q, α) vs α for b → ∞ as follows [18]. First, we define the

rescaled variables xq ≡ (2− α)/(2− α1(b, q)) and yq ≡ Tc(b, q, α) (2− α1(b, q))/J C(b, q),

so that yq(xq) ∼ 1/(1− xq) for xq → 1 ∀ b, q. In Fig. 4 we plotted, for q = 3, yq(xq) vs xq

for different values of b. This figure shows clearly data collapse for b > 5 (represented by

a solid line in Fig. 4). This fact appears also for other values of q. Hence, such curves are

expected to be good estimates of the b = ∞ ones. Using the results C(∞, q) = 2/q and

α1(∞, q) = 1 (which are exact at least for q = 2, 3), we transform back such curves into

the (Tc, α) variables. The results, which are expected to be good estimates of the exact

critical temperatures Tc(q, α) for α ∈ (1, 2), are shown in Fig.5a. In table I we compare
our results with those obtained by Glumac and Uzelac [20] using Finite Range Scaling

(FRS) for some typical values of α and q (as far as we know, these are the only results

available for q > 2 in the literature). We see that both results show a good agreement for

values of α ∼ 1 (the percentual discrepancy is below 11% for α < 1.4), but the difference

increases for α→ 2.

The same extrapolation procedure can be applied to the critical exponent ν, using the

asymptotic behaviour (33). The numerical results are depicted in Fig. 5b for q = 2, 3 and

4; the exact value [14] for q = 2 and 1 < α < 1.5 (ν2 = 1/(α − 1)) and the asymptotic

result from Kosterlitz [2] (νK ∼ (2(2 − α))−1/2) for α → 2 and q = 2 are also shown

by dashed lines. For q > 2 all numerical curves are quite indistinguishable within the

resolution of the plot and with a little departure from the q = 2 case, suggesting that the

critical exponent may be independent of q for all 1 < α < 2. In table II we compare our

results for ν with the corresponding ones obtained by FRS [20] for q = 2 (our results for

q > 2 show a little difference with ours for q = 2). Although both results also compare

well only for α ∼ 1, the main departure occurs for q > 2, where the FRS results show a

strong dependency on q.

IV. CONCLUSIONS

The approach adopted here gives an estimate of some critical properties of the LR

Potts model as a function of α for different values of q ≥ 2, based on an extrapolation

of a systematic series of RG calculations. This method allows us to obtain analytically

several important quantities as a function of the rescaling parameter b. This fact, in turn,
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permits to take the b→ ∞ limit, where the results are expected to be highly accurate and

perhaps reproduce the exact ones. This last assumption is supported by the recovering

of several known results for q = 2 and some of the very few rigorous results available for

general q, giving confidence in the validity of the method. Therefore, we believe that the

obtained curves for the critical temperatures Tc(q, α) approximate with high precision the

exact ones. In particular, the new result predicted by our method, namely that the critical

temperature at α = 2 is discontinuous with the same value for all q ≥ 2 is remarkable.

We also believe that the asymptotic functional form Tc(q, α)/J ∝ (α − 1)−1 for α → 1

might be exact. Notice that this is consistent with the recent conjectured scalings for

generalized thermodynamics which allow for an unification of extensive (α > 1) and

non-extensive (0 ≤ α ≤ 1) regimes [28].

Some other predictions for arbitrary q and continuous phase transitions, such as the

asymptotic behaviour ν(α, q) for α→ 1 and its possible q-independence for all 1 < α < 2,

are also of interest. It would be worth testing our conjectures and predictions by other

techniques, such as the recent Monte Carlo method for long-range spin models [31].

Finally, one point which requires some discussion is the possible appearance of a first-

order transition for some finite q > qc (for the two dimensional SR case it is known exactly

[32] that qc = 4). For the LR (as well as for the SR) case it was proved [33] that the

mean field theory becomes exact (and therefore the transition is of first order) in the

limit q → ∞. We have not found any evidence of a first-order transition, but it is also
known that the present kind of RG approach does not detect this type of transition in

the 2D SR Potts model [34]. As far as we know, this question remains open since the

FRS results [20] are also inconclusive with this respect. However, this problem could be

solved by introducing appropriately some dilution in the RG formalism [34] and it would

be interesting to apply this ansatz to the present case. Other possible extensions of the

present paper concern higher dimensional systems, where the crossover between short and

long-range regimes could be of interest for some real problems [7]. It could also be used

to treat more complex interactions like the RKKY one. Some calculations along these

lines are in progress and will be published elsewhere.
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APPENDIX A: Derivation of G(b, 3)

Since the expression (30) is independent of the pair of sites k, j it can be written as:

G(b, q) = 2G1(b, q) + (b− 2)G2(b, q) (A1)

where

G1(b, q) ≡ Tr{σI
i } PI

({σI
i }, 1)

)
δ(σI

1 , σ
I
2), δ(σ

I
1 , 1) (A2a)

G2(b, q) ≡ Tr{σI
i } PI

({σI
i }, 1)

)
δ(σI

2 , σ
I
3)δ(σ

I
1 , 1) (A2b)

which can be written as:

Gi(b, q) =
mmax∑
m=1

Gi
m(b, q)

m
(i = 1, 2). (A3)

where

• G1
m ≡ number of configurations of b spins (σI

i = 1, 2, . . . , q) of a block where one of

the m major subgroups of {σI
i } is in the state 1, and the spins σI

1 = σ
I
2 = 1.

• G2
m ≡ number of configurations of b spins (σI

i = 1, 2, . . . , q) of a block where one of

the m major subgroups of {σI
i } is in the state 1, and the spins σI

1 = 1 and σ
I
2 = σ

I
3 .

We found that
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G1
1(b, 3) =

X∑
l=0

(
b− 2
l

)
2l +

Int(X/3)∑
j=1

X−j∑
j1=2j

(
b− 2
X + j

)(
X + j

j1

)
(A4a)

G1
2(b, 3) = 2

Int(X−2
3

)∑
l=0

(
b− 2

X + l + 1

)(
X + l + 1

X − l

)
(A4b)

G1
3(b, 3) =

(
b− 2
2b/3

)(
2b/3

b/3

)
δ(b, 3n) (A4c)

G2
1(b, 3) =

X∑
l=0

(
b− 3
l

)
2l +

Int(X/3)∑
j=1

X−j∑
j1=2j

(
b− 3
X + j

)(
X + j

j1

)

+2

X∑
l=2

(
b− 3
l − 2

)
2l−2 + 2

Int(X/3)∑
j=1

X−j∑
j1=2j

(
b− 3

X + j − 2

)(
X + j − 2

j1

)
(A4d)

G2
2(b, 3) = 2

Int(X−2
3

)∑
l=0

(
b− 3

X + l + 1

)(
X + l + 1

X − l

)
+ 2

Int(X−2
3

)∑
l=0

(
b− 3

X + l − 1

)(
X + l − 1
X − l − 2

)

+2

Int(X−2
3

)∑
l=1

(
b− 3

X + l − 2

)(
X + l − 2
X − l − 1

)
(A4e)

G2
3(b, 3) =

[(
b− 3
2b/3

)(
2b/3

b/3

)
+ 2

(
b− 3

2b/3− 2

)(
2b/3− 2
b/3− 2

)]
δ(b, 3n) (A4f)

where n = 1, 2, . . . and X ≡ (b− 1)/2. Combination of expressions (A1), (A3) and (A4)

lead to G(b, 3).
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FIGURES

FIG. 1. Renormalization group transformation using Kadanoff-blocks of length b = 3 in the

one dimensional lattice; rIJ is the distance between the blocks I and J .

FIG. 2. Numerical calculations for b = 3 and different values of q. (a) Critical temperature

Tc(b, q, α)/J vs α; (b) correlation length critical exponent ν(b, q, α) vs α.

FIG. 3. Numerical calculations for q = 3 and different values of the rescaling length b. (a)

Critical temperature Tc(b, q, α)/J vs α; (b) correlation lenght critical exponent ν(b, q, α) vs α.

FIG. 4. Rescaled critical temperature yq ≡ Tc(b, q, α) (2 − α1(b, q))/J C(b, q) vs

xq ≡ (2−α)/(2−α1(b, q)) for q = 3. All curves with b > 5 coincide, within the used scale, with

the solid line.

FIG. 5. b → ∞ extrapolations for different values of q. (a) Critical temperature Tc/J vs α;

(b) critical exponent ν vs α. Dashed lines correspond to the exact result ν2 for 1 < α < 1.5 and

to the Kosterlitz’s asymptotic result νK for α → 2, both for q = 2.
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TABLE I. Comparison between our RG (b → ∞) extrapolated values and Glumac and Uzelac

FRS calculations of the critical temperature Tc/J for different values of q and α.

q=2 q=3 q=4

α RG FRS RG FRS RG FRS

1.1 10.40 10.787 6.72 7.353 5.16 4.926

1.3 3.48 3.680 2.33 2.589 1.89 2.045

1.5 2.00 2.179 1.41 1.663 1.14 1.402

1.7 1.28 1.463 0.95 1.194 0.78 1.048

1.9 0.77 1.003 0.61 0.874 0.51 0.797

TABLE II. Comparison between our RG b → ∞ extrapolation and Glumac and Uzelac FRS

calculations of the critical exponent ν for q = 2 and some typical values of α.

α RG FRS

1.1 10.48 9.901

1.3 3.90 3.322

1.5 2.81 2.325

1.7 2.66 1.930

1.9 3.90 2.469

2.0 ∞ (exact) 3.236
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