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Abstract

In this letter we show that the behaviour of F2, at very small xB , agrees with the

behaviour expected from the BFKL evolution equation, when screening corrections

are included. We obtain a description which is consistent with the data, however,

we require the screening corrections to be relatively large (about a quarter of the

total DIS cross section). The relation between the screening corrections and the

diffractive DIS cross section is discussed.
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In this letter we discuss the dependence of F2, the proton structure function, on W,

the γ∗p c.m. energy, at very small xB. We are motivated by the recently published data

taken at HERA by the ZEUS [1] and H1 [2] collaborations which are shown in Fig.1.

Our goal is to extract new information from the experimental data on the deep inelastic

scattering (DIS) process, in the region of very small xB. We will show that the BFKL evo-

lution equation (the BFKL Pomeron) [3], including screening (shadowing) corrections[4],

provides a good reproduction of the observed data.

We list Þrst the main qualitative properties of the behaviour of F2(W,Q
2), as observed

by the two experimental groups at HERA and shown in Fig.1.

1) For W values below 130-150 GeV, the measured data points cluster in a narrow linear

band. i.e. F2(W,Q
2) is approximately linear in W and has a weak dependence on Q2.

2) For higher values of W, F2(W,Q
2) is dependent on Q2. The high Q2 data differs from

the lower Q2 data which seems to reach a local plateau, resulting in a F2 which is almost

constant as a function of W.

The features of the data at low W are compatible with a dominance of the BFKL

Pomeron[3] in the small xB domain of F2(xB, Q
2). This is readily seen when we write [5]

the BFKL generated structure function

FBFKL2 (xB, Q
2) = Σfe
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where G0 denotes the unknown normalization of the gluon distribution at xB ∼ 1. The

value of ω0 is given by[3] ω0 = Ncαs
π
4 ln 2 . In the following we assume that ω0 = 0.5,

which corresponds to a resonable value of αs. At small values of xB, W
2 = Q2

xB
, so we can

rewrite Eq.(1) in the form
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The above expression reproduces the qualitative F2 features listed for the lower W, but

fails to reproduce the required high energy characteristics. To improve the �theoretical�
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behaviour of F2 at higher values of W, we introduce the shadowing correction[4], illustrated

in Fig.2. The DIS structure function can be represented as

F2(xB, Q
2) = FBFKL2 (xB, Q

2) + ∆F2(xB, Q
2) (3)

where ∆F2 represents the changes in the BFKL structure function which result from

screening.

We shall elaborate on the details of the screened diagram calculation, shown in Fig.2,

later. Our discussion is based on the main results of Ref.[6] which are summarized as

follows: The dominant contribution of interest comes from the exchange of two BFKL

ladders (Pomerons), while the upper blob of Fig.2 is suitably given by the GLAP[7]

DIS structure function. The integration over xP (see notations in Fig.2) results in the

contribution

∆F2(xB, Q
2) = − Σfe2
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where we have absorbed all nonperturbative QCD contributions in the phenomenological

triple �ladder� vertex γ. The minus sign in Eq.(4) reßects the shadowing origin of this

contribution. Eq.(4) can also be derived from the calculation of the diffraction dissociation

cross section using the AGK cutting rules [8], which lead to the relation [9]

∆F2 = − FD2 (5)

We note that FD2 , in the above equation, is related to the total integrated diffractive DIS

cross section. Namely, to the two DIS single diffraction channels, as well as the DIS double

and central diffraction. It has recently been suggested that these are quite large[10][11].

The restriction implied by Eq.(5) hinders our ability to reconstruct �theoretically�, the

experimental high energy behaviour of F2(W,Q
2). The BFKL approach, which qualita-

tively reproduces the low energy features, fails to do so at high energies. We conclude

from this that the necessary corrections, and therefore the diffractive component, must

be quite large. As we shall see, when discussing the results of our calculation, we require

that
FD2
F2
≥ 0.25. This requirement is not in contradiction to the meagre DIS experimental
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information presently available, allowing one to check
FD2
F2
. Both ZEUS[12] and H1[13] col-

laborations Þnd a sizeable diffractive component in their Q2 & 0 photoproduction studies.
In DIS, only single diffraction at the γ∗ vertex has been measured[14][15], and the ratio of

the measured diffraction to the total DIS cross section is about 0.15. Estimates of the non

measured diffractive channels are model dependent. Irrespective of our detailed estimate

of the unmeasured channels, the overall ratio obtained, is sufficiently large to justify our

approach.

As stated, we take ω0 = 0.5. Seemingly, with value of ω0 we reach the unitarity limit[4],

and expect the diffractive channel to vanish. As s-channel unitarity is not built into this

formalism, we can take ω0 values even larger than 0.5, provided that unitarity corrections,

such as screening, are incorporated in the calculation. Absorbing all the unknown factors

in a new phenomenological constant �G0 we obtain
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We have added a (small) constant C to account for the remnant non BFKL contributions.

We now turn to a more detailed discussion of the diagram shown in Fig.2. Our moti-

vation is three fold:

1) We wish to better comprehend the complicated calculation of Bartels, Lotter and

Wuesthoff[6] and its consequences.

2) We need to clarify how trustworthy our perturbative QCD calculation is.

3) We need to adjust the results to the relevant kinematic domain at HERA.

We use the expression given for our diagram in Ref.[9]

∆F2 = −γ
$ ln 1
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0
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The integration over k2 in the above expression leads to an infrared divergency as k2 → 0.

However, the BFKL Pomeron is associated with an anomalous dimension γ(ω) = 1
2
, and
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thus we get Eq.(1) for which the BFKL gluon distribution is given by
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Substituting Eq.(8) in Eq.(7), we rewrite Eq.(7) in a more compact form using new vari-

ables yP = ln 1
xP
, yB = ln 1

xB
, rQ = ln Q2

Q20
and r = ln k2

Q20
. This yields

∆F2 = − γ

Q2
0

$ yB

0

dyP

$ rQ

0

drFGLAP2 (
xB
xP
,
Q2

k2
) · π

∆yP
· e2ω0 yP− 2r2

∆yP (9)

where ∆ = 56ζ(3)ᾱs and ᾱs =
Ncαs
π
.

We wish to stress that the infrared divergence of the above integral should be studied

in more detail. To this end we consider the situation where rQ and yB are sufficiently

large so that we can use the solution of the GLAP evolution equation in the region of

small xB to assess F
GLAP
2 in Eq.(9). We obtain

FGLAP2 = Ae2
√
ᾱs(yB−yP )(rQ−r) (10)

We Þx αs so as to perform our calculations in a way consistent with the BFKL equation.

There is no danger in doing so, as the Q2 variation in the small xB HERA kinematic

region is negligible, allowing us to use this approach for the analysis of the HERA data.

We absorb all irrelevant factors appearing before the exponential in a constant factor A,

which appears in front of the expression.

Substituting FGLAP2 in Eq.(9) we reduce the equation to the form

∆F2 = − γA

Q2
0
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0

dyP

$ rQ

0

dr e2
√
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It is easy to see that there is no saddle point in the integration with respect to r. Indeed,

the equation for the saddle point is

∂Ψ

∂r
= 0 (12)
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where

Ψ = 2
#
ᾱs(yB − yP )(rQ − r) + 2ω0 yP − 2r2

∆yP
(13)

Eqs.(12,13) give

−
"
ᾱs(yB − yP )
rQ − r − 4r

∆yP
= 0 (14)

The saddle point can only be at negative values of r, but one cannot trust the BFKL

equation in this domain, where the virtuality k2 is less than Q2
0. At such small values of

virtualities there are certainly large corrections, and it does not seem reasonable to expect

the BFKL Pomeron description to be valid in this region 4.

We note that the most important region of integration is still r → 0, or in other

words, the dominant value of k2 remains k2 ∼ Q2
0. This leads us to conclude that the

BFKL contribution is questionable and one needs to study the integral of Eq.(11) in more

detail, so as to be sure of the domain where it is valid. To this end, we observe that our

integral over yP has a very good saddle point. Indeed, the equation for this saddle point

is

∂Ψ

∂yP
= 0 = −

"
ᾱs(rQ − r)
yB − yP + 2ω0 +

2r2

∆y2
P

(15)

Neglecting the last term, we have the saddle point value for yP

ySPP = yB − ᾱs(rQ − r)
4ω2

0

(16)

We now check the reliability of the GLAP approach for the calculation of FGLAP2 . We

recall that the typical value of ω, the argument of the anomalous dimension of the GLAP

equation5, is given by

ω =

"
ᾱs(rQ − r)
yB − yP (17)

Substituting yP = ySPP , we have ω = 2ω0.

The BFKL anomalous dimension is given by the series[16]

γ(ω) =
ᾱs
ω
+ 2ζ(3) (

ᾱs
ω
)4 + O(

(ᾱs)
5

ω5
) (18)

4The position of the saddle point in the region of small virtualities has been studied in all details in

Ref.[5].

5We denote ω = N - 1, where N is the moment variable.
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Substituting ω = 2ω0, we see that the BFKL corrections are very small. This does not

mean that we do not need the normal GLAP corrections, which are essential (see ref.[17]),

but they cannot change the main result of the present problem.

Substituting yP = y
SP
P in Eq.(10), we end up with the following integral over r to be

inserted in Eq.(9) $ rQ

0

dr e
2ω0yB + ᾱs

2ω0
(rQ−r)− 2r2

∆yB (19)

for yB ( ᾱs(rQ−r)
4ω20

. This is the kinematic region which is most interesting both from

the theoretical and experimental points of view. One can see that the integral over r in

Eq.(19) is concentrated at small r ∼ ω0
ᾱs
∝ 0(αs) and at large rQ and yB. We face the

dilemma of how much trust one can put on the perturbative calculation which estimates

the behaviour of the deep inelastic gluon distribution, with virtualities of the order of Q2
0.

Apparently, this calculation is not reliable as the problem reduces to that of the energy

behaviour of the typical hadron - hadron interaction at high energy, which is described

by the �soft� Pomeron[18][19].

Despite this reservation, the above statement is certainly correct if we consider only

small αs and/or large Q
2, the ln(1/xB) parameters in our calculation. Numerically, the

situation is more promising. Indeed, as we shall show, the HERA data on F2 [1][2] con-

Þrm the theoretical expectation that the BFKL Pomeron with ω0 = 0.5 contributes at

low xB. Substituting ω0 = 0.5 we obtain a typical value of r & 2ω0
ᾱs

≈ 6, in the integral
of Eq.(19). This value is sufficiently large to justify our using pQCD, to evaluate the

diagram of Fig.2. Moreover, r ≈ 6 is larger than the value of rQ in HERA kinematic

region, so we can estimate the value of the integral in Eq.(19) as rQ. Collecting all factors

together, we obtain Eq.(4), which was used in our description of the HERA data.

Detailed comparisons of our calculations with the data[1][2] are displayed in Fig.3

where we present F2(W,Q
2) and F2(xB, Q

2). We did not attempt a �best Þt�, never-

theless, our ability to reproduce the gross features of the data is evident. The following

comments relate to the data choice and detailed features of our Þt:

1) The data considered are bounded by xB ≤ 10−2 and W ≥ 50GeV .
2) The following parameters were used in the numerical Þt: �G0 = 0.024,
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γ = 0.015 GeV 2, Q0 = 1 GeV and C = -0.025. With these parameters we get that
FD2
F2

≈ 0.30 at Q2 = 8.5 GeV 2 and W ≈ 250 GeV . We can reproduce the data with a
FD2
F2
which is smaller, but, clearly, our requirement for a relatively large DIS diffractive

component is essential for this approach.

3) As can be readily seen from Fig.3, we obtain a reasonable description of the data down

to values of Q2 ≈ 3GeV 2. At smaller values of Q2 we require larger SC to reproduce the

data.

Our inability to reproduce the lowest Q2 data is not surprising. Clearly, the present

approach is over simpliÞed, as we fail to take into account the different effects of the SC on

the diffractive and the total DIS cross sections. We call attention to the observation[11][19]

that in soft hadron interactions σdiff (with SC) ≈ 0.3σdiff (without SC) whereas σt(with SC) ≈
0.75σt(without SC). As we have shown[20] the strength of the SC in pQCD is determined

by a parameter κ = 3αsπ
2BQ2

[xG(x,Q2)], where B is the elastic slope. At low Q2, κ ≈ 1,

and we doubt the validity of Eq.(5), which is at the core of our calculation. Nevertheless,

even when κ ≈ 1, one can still use Eq.(3) with ∆F2 as deÞned in Eq.(4), and obtain a

better assessment of F2 at low Q
2 than the one we have presented here. The reason for

this is, that the SC to the total DIS cross section turns out to be smaller than the SC to

diffraction dissociation. This problem is connected to the broader issue of the transition

between the (hard) pQCD and the (soft) non perturbative domain, which we plan to

discuss in a forthcoming publication.
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Figure Captions

Fig.1: W dependance of F2(W,Q
2). Data is taken from ZEUS[1] and H1[2] with Q2 ≥

8.5GeV 2.

Fig.2: Diffraction dissociation in perturbative QCD.

Fig.3: Comparison of F2(W,Q
2) and F2(x,Q

2) data with our calculations.
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