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Abstract

The propagation of spin -1/2 particles in the background of spatially homogeneous

cosmological models has been analysed. By restricting the direction of propagation of

the spinors, it is shown that Dirac equation reduces to a decoupled system of differential

equations depending only on the time variable. A new exact solution is presented in the

Joseph cosmological models.
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I Introduction

The Dirac equation is an outstanding achievement whose consequences the physicists are

very far to exhaust due to the complexity of the calculations involved. The establishment

of this equation was the starting point for many research problems, one of which is the

study of spin 1/2 particles in the presence of gravitational fields. Brill and Wheeler1 stud-

ied the interaction of neutrinos with the gravitational field of a spherically symmetrical

body. They developed the mathematical formalism to study spinors in curved space-time

and opened the road for many other authors.

The quantum mechanics of particles in curved spacetimes has been analysed in many

articles and some important results are the creation of particles due to the expansion of

spacetime2 and the Hawking radiation of a black hole3. These developments go in the

direction of a unified theory of quantum and gravitational fields. In this context, the

knowledge of exact solutions of the Dirac equation in curved space-time is demanded.

The most studied cosmological backgrounds are the Robertson-Walker ones, due to

their simplicity and their accuracy in the fitting of the astronomical data of the recent eras

of cosmological evolution. We can refer to Parker4, Isham and Nelson5, Ford6, Andretsch

and Schäfer7, Kovalyov and Légaré8, Barut and Duru9 and Villalba and Percoco10.

Recently a great effort has been done to solve the massless Dirac equation by applying

the method of separation of variables to a general diagonal metric11,12. This study could

generalize the analysis of the propagation of spin 1/2 particles in curved space-time, since

most of the background used so far depends on just one space-time variable.

There is an important class of spacetimes – spatially homogeneous models – that is

characterized by having a three dimensional hypersurface of type space passing in every

point of the space-time13,14. They have been classified from the geometrical point of

view as the Bianchi cosmological models, and they are the simplest generalization of the

Robertson-Walker models. The Bianchi models are spatially homogeneous but they admit

anisotropies. The formalism of differential forms allows one to treat these models in a

unified way. Some authors have used this formalism to study the Maxwell equations in the

background of Bianchi models15. In the present article we use this formalism to analyse

in an unified way the Dirac equations in the background of the spatially homogeneous

cosmological models.

The Dirac equation has already been studied in some anisotropic Bianchi models. The
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Bianchi type I model is the most used one, since the flatness of the space hypersurface

simplifies the analysis9,16,17. There are also exact solutions of the Dirac equation in Bianchi

type VI0 models18.

Henneaux19 has studied the problem of finding the most general spinor field with the

same symmetry of the gravitational field. In the present article we study the separation

of variable obeying the Ansatz (15) in the background of the diagonal Bianchi models.

Our purpose is to reduce Dirac equation to a decoupled system of differential equations

depending only on the time variable. So, we restrict the direction of propagation of the

spinor. We show that for Bianchi type II models, there are two directions of propagation

allowed, for the Bianchi types III to VII there is only one particular direction of propa-

gation and for the Bianchi types VIII and IX it is not possible to separate the variables

using the Ansatz (15).

We present a new exact solution to the massless Dirac equation in the Joseph cosmo-

logical models20, which are Bianchi type V vacuum space-times.

In section II, we stablish the Dirac equation in the background of the diagonal Bianchi

models and separate the variables to obtain a decoupled purely temporal system of dif-

ferential equations. In section III, we give two applications of the formalism developed

here.

II The Dirac Equation

The spatially homogeneous cosmological models have a homogeneous three-dimensional

hypersurface passing in every point of the space-time. If we choose the direction of the axis

of the timelike parameter to be orthogonal to these three-dimensional surfaces, we have

a synchronous coordinate system and the line element is given by the following form13:

ds2 = dt2 − gij(t)w
iwj (1)

where gij is a symmetric three-dimensional matrix depending only on t coordinate. The

one-forms {wi, i = 1 · · ·3} form a basis for the three-dimensional dual space. These forms

are invariant under a three-dimensional transitive Lie group which defines a Lie algebra

with the structure constants Ci
jk given by

dwi = −1

2
Ci

jkw
j ∧ wk . (2)
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The enumeration for all distinct groups in the context of spatially homogeneous cosmo-

logical models has been done by Taub14 following the original work of Bianchi21 in a

pure mathematical context. There are nine types that are splitted into two main classes,

namely: class A when ΣkC
k
ik = 0 and class B when ΣkC

k
ik �= 0.

There are alternative conventions for the choice of Ci
jk. The choice of different conven-

tions should not alter the physical results, but can simplify or complicate the intermediate

calculations. From our experience, we follow the convention of Luminet22 and Eardley23.

The structure constants of all Bianchi types are listed in the appendix.

In general, the three-dimensional metric gij does not need to be diagonal. In the

present article we restrict ourselves to analyse the models with diagonal metric. In this

case the line element (1) reduces to:

ds2 = dt2 − R2
1(w

1)2 − R2
2(w

2)2 −R2
3(w

3)2 (3)

where the metric components R1, R2 and R3 depend on t only. We use a tetrad basis of

one forms {σ2, a = 0 · · ·3} given by

σ0 = dt

σi = Riw
i (no sum). (4)

The Dirac equation in curved space-time is24

(γaH µ
a ∂µ − γaΓa + im)Ψ = 0 (5)

where the H µ
a establish the connection between tetrad indices (Latin indices) and world

indices (Greek indices). The components H µ
a are obtained from

σa = Ha
µdx

µ (6)

where Ha
µ and H µ

a are inverse components. The quantities Γa are given by

Γa = −1

4
Γbcaγ

bγc (7)

for not charged spinors. γa are the Dirac matrices of Minkowski space-time and Γabc are

the Ricci rotation coefficients defined by

dσa = Γa
bcσ

b ∧ σc (8)
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and are antisymmetric in the first two indices Γabc = −Γbac. Using eqs. (2), (4) and (8)

we can obtain the components of the Ricci coefficients:

Γ0ii =
Ṙi

Ri
(9)

and

Γijk = −1

2

(
Ri

RjRk
ηipC

p
jk +

Rj

RiRk
ηjpC

p
ki +

Rk

RiRj
ηkpC

p
ji

)
(10)

where ηij = diag(−1,−1,−1). Using eq. (7) we can find Γi

Γi = −1

2
Σ3

i=1

Ṙi

Ri

γ0γi − 1

4
Γjkiγ

jγk. (11)

We have already discussed the choice of a convention for the structure constants.

Once this convention has been stablished, it is possible to have alternative choices for the

coordinate system. Different from the choice of Ci
jk, the coordinate system does not alter

the form of the spinor. The basis wi can be expressed as

w(i) = h
(i)

jdx
j (12)

and the wi’s are listed in appendix for all Bianchi type models with the respective dual

basis ξi. We use parenthised indices to distinguish tetrad indices from coordinate indices

when necessary. The components h
(i)
j are time-independent but they are related to the

time-dependent components H(i)
j by eqs. (4) and (6)

H(i)
j = Rih

(i)
j (no sum) (13)

Using eqs. (11) and (13), Dirac equation (5) reduces to:(
∂t +

γ0γjh �
(j)

Rj

∂� +
1

2

∑
i

Ṙi

Ri

+ imγ0 +
1

4
Γkjiγ

0γiγkγj

)
Ψ = 0. (14)

Eq. (14) is the Dirac equation for the diagonal Bianchi models. Our main interest here

is to try a separation of variables of the form

Ψ =
ei�k.�x

(2π)3/2
√
R1R2R3

f(�k, t) (15)

to obtain a differential equation depending only on the time coordinate. Note that the

dependence on space coordinates of eq. (14) is restricted to the second term (aside the
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spinor itself), since the inverse components h k
(j) is the unique term that can depend on

space coordinates. Using the Ansatz (15), eq. (14) reduces to(
∂t +

ik�h
�

(j) αj

Rj
+ imγ0 +

1

4
Γkjiγ

0γiγkγj

)
f(�k, t) = 0. (16)

The components h �
(j) can be read as the coefficients of the ∂� terms of the vector basis

given in appendix. By inspection, we can see that Bianchi type VIII and IX models do

not admit a separation of variables of the form (15), since the second term of eq. (16)

can be independent of the space coordinates for no choice of �k. On the other hand, for

Bianchi types III to VII we must impose �k = (k1, 0, 0), for eq. (16) be purely temporal.

For Bianchi type II, we must impose �k = (k1, 0, k3) and for Bianchi type I, �k can be

arbitrary since the h �
(j) vanish. The last result was expected, since Bianchi I models

admit three independent Killing vectors of the form ∂i. Therefore, a spinor of the form

(15) can propagate in all directions in a Bianchi I model. In the other models the spinor

is restricted to propagate in two directions (Bianchi II), or in one direction (Bianchi III

to VII).

In order to continue in a unified way, we impose �k = (k1, 0, 0). The Bianchi models

of type II to VII admit this kind of momentum. For these models, the second term of

eq. (16) reduces to iεk1α
3/R3 where ε = 1 for Bianchi II and ε = −1 for Bianchi III to

VII. Using eq. (10), use can put the fourth term of eq. (16) in the form iA(t)γ5 +B(t)α3

where A(t) and B(t) are given by:

Bianchi II : A(t) =
R1

4R2R3
, B(t) = 0 (17)

Bianchi IV : A(t) =
R1

4R2R3

, B(t) = − 1

R3

(18)

Bianchi V : A(t) = 0, B(t) = − 1

R3
(19)

Bianchi VIh : A(t) =
1

4

(
R1

R2R3

− R2

R1R3

)
, B(t) = −

√−h

R3

(20)

Bianchi VIIh : A(t) =
1

4

(
R1

R2R3

+
R2

R1R3

)
, B(t) = −

√
h

R3

. (21)

The expressions for Bianchi type III and VI0 can be obtained from VIh using h = −1 and

h = 0 respectively, and the type VII0 from VIIh using h = 0. Now we can put eq. (16) in

the form (
∂t + imγ0 +

(
B +

iεk1

R3

)
α3 + iAγ5

)
f(�k, t) = 0 (22)
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which is equivalent to
 ∂t + im iA +

(
B + iεk1

R3

)
σ3

iA +
(
B + iεk1

R3

)
σ3 ∂t − im




 fI

fII


 = 0. (23)

This equation decouples in two 2× 2 systems:
 ∂t + im iA+B + iεk1

R3

iA+B + iεk1

R3
∂t − im




 f+

I

f+
II


 = 0 (24)

and 
 ∂t + im iA−B − iεk1

R3

iA−B − iεk1

R3
∂t − im




 f−

I

f−
II


 = 0. (25)

Let us call

C± = iA±
(
B +

iεk1

R3

)
. (26)

Eqs. (24) and (25) yield the following equations:(
∂2

t −
Ċ±

C± (∂t + im) + C±2 +m2

)
f±

I = 0 (27)

and

f+
II = − 1

C± (∂t + im)f±
I . (28)

Eq. (27) can be put in the form:(
∂2

t +
1

2

C̈

C
− 3

4

Ċ2

C2
− C2 − im

Ċ

C
+m2

)(
fI√
C

)
= 0 (29)

where we have taken out the ± sign. The problem of finding the solutions for the Dirac

equation in a spatially homogeneous models satisfying the Ansatz (15) now reduces to

find the solutions for an equation of the form (29). This differential equation is rather

complicated in the general case even when m is zero (neutrinos). The function C(t) must

obey eq. (26), where A(t) and B(t) are given by eqs. (17)-(21). Most of the known

exact solutions of Einstein Equations25 yield a differential equation (eq. (29)) that has no

known exact solution. In the following section we give two applications where eq. (29)

can be integrated.



– 7 – CBPF-NF-082/95

III Two Examples: Bianchi VI0 and V

As an application of results obtained so far, let us consider the line element

ds2 = dt2 − t2dx2

(µ− ν)2
− dy2

t2(µ+ν)e2x
− e2xdz2

t2(µ+ν)
(30)

studied in ref. 18, where solutions for the Dirac equation have been presented both

for neutrinos and massive spinors using the coordinate system of eq. (30). With the

coordinate transformation

x = x1

y =
ex1

√
2
(x2 + x3)

z =
e−x1

√
2
(x2 − x3) (31)

the line element (30) can be put in the form

ds2 = dt2 − t2(dx1)2

(µ− ν)2
− (x2dx1 + dx3)2

t2(µ+ν)
− (x3dx1 + dx2)2

t2(µ+ν)
(32)

Chosing

w1 = x3dx1 + dx2

w2 = x2dx1 + dx3

w3 = −dx1 (33)

we can see that the line element (32) can be put in the form (3) with R1 = R2 = 1/t(µ+ν)

and R3 = t/(µ − ν). The structure constants of this model are C1
23 = C2

13 = 1, therefore

it is of type Bianchi VI0 (see the appendix). The function C(t), given by eqs. (26) and

(20), is

C(t) =
ik1(µ− ν)

t
. (34)

Substituting this value in eq. (29), we obtain(
∂t +

1
4
+ k2

1(µ− ν)2

t2
+

im

t
+m2

)
(
√
tfI) = 0 . (35)

It can be verified that eq. (35) is equal to eq. (20) of ref. 18. Therefore, using the

formalism developed here, we obtained the same Dirac equation by a suitable choice of

the basis wi. The explicit form of the spinor will differ for these coordinate systems, since
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in one case it will be given in coordinates (x, y, z) and in other case in (x1, x2, x3). But

the temporal part will be the same. Eqs. (35) has been solved in ref. 18.

Let us consider a second application. By inspection in the eqs. (17) to (21) we can

see that Bianchi type V furnishes the simplest Dirac equation since A(t) = 0 and B(t)

has the same form of the term iεk1/R3 of eq. (22). The vacuum Bianchi V models have

been studied by Joseph20. The line element1 can be put in the form25

ds2 = (sinh 2aτ)

[
dτ 2 − (tanh aτ)

√
3(w1)2 − (tanh aτ)−

√
3(w2)2 −

(
w3

a

)2
]

(36)

where w1, w2 and w3 are listed in appendix. Since this line element has a coefficient in

dτ 2 term, it is interesting to introduce the coefficient R0(t)
2 in the general line element (3)

to obtain the correspondent Dirac equation of the form (29). The equations that change

are eqs. (4), (9), (11), (14), (16), (22) and the subsequent ones. Eq. (16) changes to(
∂t +

ik�R0h
�

(j) αj

Rj
+ imR0γ

0 +
R0

4
Γkjiγ

0γiγkγj

)
f(�k, t) = 0 (37)

and eq. (29) to(
∂2

t +
1

2

C̈

C
− 3

4

Ċ2

C2
− C2 − imR0Ċ

C
+m2R2

0 + imṘ0

)(
fI√
C

)
= 0 (38)

where C is given by

C± = iR0A±R0

(
B +

iεk1

R3

)
. (39)

For the line element (36) we have(
∂2

t − (ik1a+ a)2 +m2 sinh 2aτ +
iam cosh 2aτ√

sinh 2aτ

)
(fI) = 0 (40)

and

fII =
1

a+ ik1a
(∂t + im sinh 2aτ)fI

For neutrinos, the solutions are

fI = c1 e(a+ik1a)τ + c2e
−(a+ik1a)τ (41)

1In ref. 25 the constant a of the last term of eq. 36 is missing.
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where c1 and c2 are the integration constants. The four independent solutions of the form

(15) are

Ψ±
I =

ei(k1x+ak1τ)+aτ

(2π)3/2(sinh 2aτ)3/4




1

0

±1

0




Ψ±
II =

ei(k1x−ak1τ)−aτ

(2π)3/2(sinh 2aτ)3/4




0

1

0

±1




This spinor cannot be normalized due to the term e±aτ . This fact indicates that

this solution is non stable. A similar situation happens with a scalar field φ that has a

Lagrangian with a negative mass squared −µ2. In this case the scalar field has a term

e±
√

µ2−k2t. The usual interpretation is that the solution φ = 0 is not stable and the

spontaneous symmetry breaking occurs after a time of order µ−1 (see ref. 26).
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Conclusion

We have analysed the Dirac equation in the background of the spatially homogeneous

cosmological models. We have used the method of separation of variables through the

Ansatz (15). The dynamics of the spatially homogeneous models is caracterized by func-

tions depending only on the time variables. For this reason we have chosen a spinor of

the form of eq. (15). With this choice it is possible to reduce the Dirac equation to a

system of decoupled differential equations, depending only on the time variable.

We have showed that Bianchi type VIII and IX models do not admit this kind of

separation of variables, since too much components of the Killing vectors depend on space

coordinates. In this case the spatial dependence of the spinor cannot be ei�k�x. For the

other Bianchi models, it is possible to have solutions of the form of eq. (15), if we impose

restrictions on the direction of propagation of the spinor. For Bianchi types III to VII, the

spinor is allowed to propagate in only one direction. The direction is determined by the

spatial dependence of the space-like Killing vectors. In the present article the direction is

�k = (k1, 0, 0), since the first component of all space-like Killing vectors does not depend

on the spatial variables. For the Bianchi type II model, there are two directions allowed

and for Bianchi type I, there are no restrictions on the direction of propagation.

We have made two applications. In the first one, the Dirac equation was analysed in

the background of a Bianchi type VI0 model that has been widely studied in the literature.

In the second one, the background used was the vacuum Bianchi type V model studied by

Joseph[20]. In this case, the spinor found cannot be normalized. This probably indicates

that the Dirac equation yields non stable solutions when the spinor is in the presence of

a external gravitational field.
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Appendix

The structure constants (Ci
jk), the vector basis (ξi) and the invariant 1-form basis22 (wi)

of the Bianchi models.

The structure constants (Ci
jk = −Ci

kj):

CLASS A(C�
i� = 0)

Bianchi I: Ci
jk = 0

Bianchi II: C1
23 = 1

Bianchi VI0: C
1
23 = C2

13 = 1

Bianchi VII0: C
1
23 = C2

31 = 1

Bianchi VIII: C1
23 = C2

31 = C3
21 = 1

Bianchi IX: C1
23 = C2

31 = C3
12 = 1

CLASS B(C�
i� �= 0)

Bianchi III: Bianchi VI−1

Bianchi IV: C1
31 = C1

23 = C1
32 = 1

Bianchi V: C1
31 = C2

32 = 1

Bianchi VIh: C
1
23 = C2

13 = 1, C1
31 = C2

32 =
√−h, h < 0

Bianchi VIIh: C
1
23 = C2

31 = 1, C1
31 = C2

32 =
√
h, h > 0

The vector and 1-form basis:

Bianchi Type I :

ξ1 = ∂1 w1 = dx1

ξ2 = ∂2 w2 = dx2

ξ3 = ∂3 w3 = dx3

Bianchi Type II :

ξ1 = ∂2 w1 = −x3dx1 + dx2

ξ2 = ∂3 w2 = dx3
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ξ3 = ∂1 + x3∂2 w3 = dx1

Bianchi Type IV :

ξ1 = ∂2 w1 = (x3 − x2)dx1 + dx2

ξ2 = ∂3 w2 = −x3dx1 + dx3

ξ3 = −∂1 + (x3 − x2)∂2 − x3∂3 w3 = −dx1

Bianchi Type V :

ξ1 = ∂2 w1 = −x2dx1 + dx2

ξ2 = ∂3 w2 = −x3dx1 + dx3

ξ3 = −∂1 − x2∂2 − x3∂3 w3 = −dx1

Bianchi Type VIh :

ξ1 = ∂2 w1 = (x3 − ax2)dx1 + dx2

ξ2 = ∂3 w2 = (x2 − ax3)dx1 + dx3

ξ3 = −∂1 + (x3 − ax2)∂2 + (x2 − ax3)∂3 w3 = −dx1

Bianchi Type VIIh :

ξ1 = ∂2 w1 = (x3 − ax2)dx1 + dx2

ξ2 = ∂3 w2 = −(x2 + ax3)dx1 + dx3

ξ1 = −∂1 + (x3 − ax2)∂2 − (x2 + ax3)∂3 w3 = −dx1

Bianchi Type VIII :

ξ1 =
1

2
e−x2

∂1 − 1

2
(ex3

+ (x2)2e−x3

)∂2 − x2e−x3

∂3 w1 = (ex3 − (x2)2e−x3

)dx1 − e−x3

dx2

ξ2 = ∂3 w2 = 2x2dx1 + dx3

ξ3 = −1

2
e−x3

∂1 − 1

2
(ex3 − (x2)2e−x3

)∂2 + x2e−x3

∂3 w3 = −(ex3

+ (x2)2e−x3

)dx1 − ex3

dx2
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Bianchi Type IX :

ξ1 = ∂2 w1 = dx2 + cos x1dx3

ξ2 = cos x2∂1 − cotan x1 sin x2∂2 +
sin x2

sin x1
∂3 w2 = cos x2 dx1 + sin x2 sin x1 dx3

ξ3 = − sin x2∂1 − cotan x1 cos x2∂2 +
cos x2

sin x1
∂3 w3 = − sin x2 dx1 + cos x2 sin x1 dx3
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