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ABSTRACT

We discuss, within a unified renormalization group (RG)
framework, the onset of chaos appearing in the l—a|x|z map for
real z >1. In particular we study with some detail the criti-
cality associated with the k+« limit of the pk bifurcation se
quences (p=2,3,4, which correspond respectively tO‘dKER*k,(RLfk
and (RLZ)*kMSS sequences). The critical points a;(z)npmﬁxmicql
ly increase, for all values of p, from a;(l)(Lia;(l)< 2) to 2
while z grows from 1 to infinity. The z-dependence of %Jz) for
p=2 (62(2) monotonically increases from 2 to infinity while
Zz increases from 1 to infinity) is different from that associ-
ated with p> 2 (ép(z) diverges in both z-»>1 and z-+»® limits
presenting a minimum in the neighborhood of z = 2). The present
RG recovers, for both ap and ép and all values of p, the exact
asymptotic behaviors in the z—+1 limit. It provides, in the z»> «
limit, the (possibly exact) asymptotic behaviors a;—z «1/z and

§ =2z,
P

Key-words: Chaos; Bifurcations; One dimensional map; Criticality.
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I. INTRODUCTION

Nonlinear dynamics is no doubt an important and very ac-
tive area of research. More specifically, because of its analo
gy with critical phenomena as well as because of its strong in
trinsic interest, the routes to chaotic behavior are nowadays
being intensively studied from both theoretical[l—7] and ex-

perimental[s_lzl

standpoints. In particular the models associ
ated with simple one-dimensional one-parameter maps have re-

ceived considerable attention. The map

Xt+1 = fa(%t) (1)

with

£, (x)= l1-a|x|? (2)

has been investigated for z =2[2] (quadratic map), for z2>2

)[4'6’7] as well as for z-+l[4],

(integer and 1t 1is by now well
established that z determines universality classes (in the sense
that more complicate functions presenting the same type of ex
tremum will share critical exponents, in particular the bifur
cation ratios 6). The methods that have been used include a-
nalytical[4] as well as numerical and renormalization group

[2,4-7] calculations.

(RG)
Herein we follow along the lines of the latter (more spe
cifically we use the "equality of slopes"—RG[4’7]), and extend

the discussion to all real values of zz;l (there is no onset

of chaos for z<1l; see Ref. [5]). We study in detail the criti
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cality associated with the k+« limit (onset of chaos) of the
pk bifurcation sequences (hereafter referred to as p-furca-
tion sequences) for p=2 (bifurcations), p=3 (trifurcations)
and p=4 (tetrafurcations), which respectively correspond to

the R*K [SB

, (RL)*X and (RL?)** MSS (Metropolis, Stein and Stein
sequences (for this nomenclature, see Refs. [3,4]). The z-de-
pendences of both critical points a; and p-furcation ratios ¢

are calculated, and the z~+1 and z »« asymptotic behaviors are

discussed. We present in Section I the RG formalism, and in

Section III the results.

II. RENORMALIZATION GROUP FORMALISM

(4,7]

In order to recall the RG procedure let us introduce
the notation £ 1) (x) = £ (), £ 2 £_(£, (), £ = £_(£, (£, (N,
and so on. No finite attractive basin exists for the map asso
ciated with Eg. (2) if a> 2; on the other hand no chaos can ap
pear for a< 0. Consequently we restrict our  discussion to
0<a <2, vz (as a matter of fact we shall verify later on that
no onset of chaos is possible below a =1; therefore all the
interesting phenomena are going to occur in the interval

liaiZ,Vﬂ.

We verify that the equation

x = f;l)(x) (3)

(1)
1

admits two roots, noted x (a) >0 and xél)(a)< 0. x{l)(a) e-—
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guals unity for a=0 and monotonically decreases for increasing
a; it is a stable fixed point for a low enough, and becomes
an unstable one above a certain value of a(which equals 3/4 for
z=2). xél)(a) monotonically increases from minus infinity to
zZero, while a increases from zero to infinity; it is an unsta
ble fixed point of no particular interest.

We also verify that the equation

(2)

a

x = £

(x) (4)

admits the root x{l)(a) {besides xél)(a)); but, for a greater
than the value mentioned before, a bifurcation occurs and two
new roots appear, noted xiz)(a) and xéz)(a), and satisfying
x£2) (a) _>_x£1) (a) _>_x§2) (a), as well as x{z) (1) =1 and x§2)(l) =0,
vz (see Fig. 1).

Consider now the equation

(3)

a

x = £

(x) (5)

(1)

It admits of course X (a) as a root; but for a greater than

a certain value (which equals 1.75 for z=2), a trifurcation

occurs by pairs (see Fig. 2), and six new roots appear, noted

3 3 3
ME I C I O
The next step (p=4) is indicated in Fig. 3. In gen-

eral the equation

x = £ (x) (p=1,2,3,...) (6)
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will present 2P roots, some of them having appeared earlier;
through one or several p-furcations, new roots appear which
will be noted xip), xép), xgp),..., starting from the highest
among them.

It is well known (at least for z =2) that below a=2 a
complex bifurcation scheme occurs. In particular, as a increases
from 0 to 2, a succession of attractive fixed cycles determines
the recursive evolution of x. The first family of cycles which
appears 1is the 2k one (i.e., R*k) ,and is responsible for the first
onset of chaos (with critical point ag and bifurcation rate
62). An infinite number of other families follow: we are pres
ently interested in the pk—cycles, with critical points a; and
rates Sp. It is worthy to stress that, for instance, p=3 re-
fers to the (disconnected) family 3k (i.e., (RL)*k), which has
to be distinguished from the (connected) family 3}<2k (i.e.,

*k

(RL) *R" "), whose critical point lays between a* and a* and

2 37
whose rate is 62 (same universality class as 2k). Let us also

recall[l'4]

that a single family of primary p-furcations is associated
with each value of p for p=2,3 and 4 (see Figs. 1-3); but there
are three different families (namely (RLRZ)*k, (RLZR)*k and
(RLS)*k) for p=5, and a rapidly increasing number of them for
increasing p: each of them determines, for a given value of
z, a universality class.

The eigenvalue associated with the p-cycle of fa(x) is

given[4] by
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a £P) (x)
— a
A (a) = —2
g dx (p)
X =X.
1
S, S— (p=1,2,3...) (7)
] dx X=X§p) ,

where j runs over the p stable roots (of Egqg. (6)) corresponding
to the chosen family of sequences and i is anyone among them

(e.g., for p=3, it is j=1,4,6; see Fig. 2). The RG's (noted

(p)
b'b

2,4 .
sen family of p-furcations are determined[ ]bythe following re

RG ) describing the onset of chaos corresponding to the cho

cursive relations
Xb.(d) = Ab(a) (p=2,3,4,...) (8)

where b'=1,p,p?,p%>,..., and b=pb',p?b',p’b’,... In order to

avoid nomenclature confusions let us illustrate this equation

through the specific cases we shall discuss: (i) for RGig) we

calculate Xl(a') and Xz(a) by respectively using the roots

x{l)(a') and x{Z)(a) (see Fig. 1); (ii) for RGEZ) we use x{zha')
and x§4)(a) (see Fig. 3); (iii) for RG{Z) we use x{l)(a‘)and
x§4)(a) (see Fig. 3); (iv) for RGig) we use x{l)(a')and>é3%a)
(see Fig. 2); (v) for RG{Z) we use xil)(a') and x§4)(a) (see
Fig. 3). The approximate critical point a;;bhb corresponds to

the unstable fixed point of Eg. (8), and therefore satisfies

* =
Mo (B5bnn) T Apahigy) (p=2,3,4,...) (9)

The approximate p~furcation rate 6p'b'b is given by
’ 4
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1 1
dnt pbl/b ax, (a) /da pb*/b
5 - jda’ _ ) e T
Pibhb Y4, ax, , (a')/da!
a* a* _,
P;b'lb p;b,b
(10)

The exact critical points a; and rates dp are, in principle,

iven by a* =1lim a* and § =1im § .
g Y b p ;bl’b b+ p;bl,b
b'<b b'<b

Ior. RESULTS

Through use of the method described in the previous Sec-
tion we have obtained the results indicated in Figs. 4,5 and 6
and Table I.

Let us first discuss the z-+1 limit. For p=2, all three

(2) (2) (4]
G14 and RG24

indeed they are all numerically consistent with

RG(Z), R recover the exact

12 asymptotic behavior;

a§‘(z) v l+¢2(2) (11)
and
8,(2) ~ 2+ z-1 (12)
¢2(Z)
where

¢2(z) + (z—l)/bn¢2(z) +2z=-1 =0 (13)
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Notice that 1lim a;(z)=1, and lim 62(z)= 2.
z->1 z—+1 (3)

For p=3, the same happens with RG as it recovers the

13 '/

exact result[4], namely

a%(z) ~ ay(z) + ¢4(2) (14)
and

(2-1)53(2)
63(2) N (15)
¢3(Z)

where

1-3,(2z) [3;(2)-1|% ~ 0 (16)

corresponds to the superstability point of the sequence RL, and
-1

r 2
b (2) ~ {e?[28,(2)-1113,(2)-1] [3,(2) 1% (17)

Notice that lim ag(z)=(/§’+l)/2 =1.61803 (this is the same value

2>l [1,4] ,
into which merges* "’ 7", in the limit z-> 1, the enfane  window
3x2%), and lim 8,(2) =,
z>1 L (4)
For p =4, we have only checked the limit itself, i.e,, RG14
provides lim a} . 4(z):[.(19+9m7§)1/3+(19-9fﬁ7§)]/3+1]/3=1.&3929
Z'*]. r 4

(this is the same value into which merges, in the limit z->1, the entixre
window 4 x 2 or (RLz)*R*k), and lim 64.1 4(z)=oo, which are the exact re-
r-r

[4] z>1

sults . We recall that the exact value for a; (1) satisfies [4]

f;p)(x=0,z=l)=0, i.e.

l-alil-a...|1-a]1-a]|] = o (p=2,3,4,...); (18)

| . L2 L)

also[4] lim § (z2)=«, Vp> 2.
z+1

Although we have not attempted a general proof, the above

set of results strongly suggests that, in the limit z-+1 and
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for allf p, the RG;ﬂB's asymptotically recover, for atl (b* b},

(4]

the exact results .
With respect to finite values of z-1, the overall situa-

tion is satisfactory: whenever previous results are availa-

ble[4_7], they are recovered within the present framework (ex

cepting for a few possible small inadvertences, e.g. Egs.(4.67)

and (4.68) of Ref. [7] are numerically inconsistent among them:

the correct value of 62.]2(2) is [].8+2;/l7]1/2

not 5.1224575 as indicated therein, as well as in Ref. [6]).

(2)
24

guite reliable when compared to the :available exact results

=5.1231056, and

For p =2, the results provided by RG prove to be numerically
(see Table I): this is probably true for alf values of z.
Finally a simple general tendency is numerically verified

in the z-+» limit, namely

A
* __P_7b'.z_ll
ap;b”b(z) N2 (19)
pA
and
Gp;b',b(z) " Bp;b',b zZ (20)
with (A ) = (4.3, 0.51),

) =(6.1,2.00) , (By.; yBy,y 4

(A B, ., ) =(3.4,0.51) (this is probably a good approxima
2;2,4"72;2,4° 2

tion for p=2) and (A

2;1,2'82;1,2

3;1,3,B3;1,3)= (0.05,300).
With respect to the p-dependence, notice that, for both
pP=3 and p =4, 6p(z) becomes minimal in the neighborhood of

6 , i
z=2[ ] (see Fig.6 and Table I). We verify that roughly 63mm/62(2) =



CBPF-NF-082/83

=a4min/63m1“ = 15, which might be an indication that

dpmin (or even ép(z) for all finite values of z-1) grows ex

ponentially with p, in the p-»>« limit. This would imply that

the cycha]enqdlcrchaLexgxmné4]v(z) =——£EIL~— vanishes when
P Ln § (z)

Do, P

IV. CONCLUSION

Within the "equality of slopes"-renormalization group (RG)

]

framework[4’7 , we have studied the criticality corresponding

to the onsets of chaos associated with the l—a|x|z map for real

z >1; we have specifically focused the 2k family of bifurca-

tions (p = 2; doubling-period type), the 3k family of trifurca

tions (p = 3; tangent type), and finally the 4k family of te-
trafurcations (p =4; tangent type). Our main conclusions can
be summarized as follows:

i) We have numerically confirmed that, for p=2,3,4, this RG
recovers the exact[4] z +1 asymptotic behaviors; this is
possibly true for all values of p, all the sequences existing
for a given value of p, and {ndependently o4 the sizes (b
and b') of the cycles that have been used to construct the
RG;

ii) The critical points a;(z) monotonically increase from a;(l)
(l_ia;(l)< 2) to 2 while z increases from 1 to infinity, and

satisfy ag(z) <a§(z) <aZ(z); along the same variation of
z, the bifurcation rate 62(z) monotonically increases from

2 to infinity, while the rates 63(2) and 64(2) (and possi
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bly all ép(z), ¥p > 2) present a single minimum in the
neighborhood of z =2 (62(2)<63(z)<64(z),Vziﬁ;ig16 (z)=
=1im 6p(z)=<v, V p > 2); see Table I for numerical appro
xi;:tions of {a;} and {6p} as functions of z;

The present RG results for z>>1 are consistent with the
z > » asymptotic behaviors (possibly correct for all p>2)

a*v2-A /z, and § "Bz, with (A,,B))= (3,05}, (B;By)=

=(0.05,300) ;
Some preliminary indications exist that, for fixed and

finite 2z-1, Sp(z) grows exponentially with p in the p-rw
limit; if so the cycle length critical exponent vp(zr

vanishes in the p—+« limit.
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CAPTION FOR FIGURES AND TABLE

Fig. 1 - The roots of the equation x f;z)

a, for typical values of z.

Fig. 2 The roots of the equation x

a, for z = 2.

Fig. 3 - The roots of the equation x::f;4)(x) as functions
a, for z = 2.
Fig. 4 - z-dependence of the RG critical points a*

(x) as functions

f;B)(x) as functions

of

of

of

p,b',b associ

ated with bifurcations (p =2), trifurcations (p=3) and

tetrafurcations (p =4). The available numerically ex
act xesults[4] approximately lay between the dashed and dotted
lines.

Fig. 5 - z-dependence of the RG bifurcation rates 62; the
dots denote numerically exact results[4’7].

Fig. 6 - z-dependences of the RG p-furcation rates gp;b',b; 3:1,3
(64;1,4) attains its minimum at 1.87 (2.3) where it equals
60.9638 (984.335) . The dot indicates a numerically ex
act result[4].

Table I - RG critical points (a*) and p-furcation rates for

typical values of p and z (the numerically exact values

are reproduced from Refs. [4,7]).
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TABLE
P =2 P=3 P=4
| Tl | i | sl
at| 1 1 1 1| BH [1ss0
B 2 2 2 - -
Ly L2*|125191. 10502 [1.12550[ 11256 | - -
s |2.84606 [2.83818 |2.83032 2.857 - -
L g | °t/L31561]132036[1,52158| - |1.73047]1.9688
5 |4.21360|4.00024]3.96930| -  |66.7946]1841.21
, | *[1:3%039]1.39041 1 u0142 1.401155 1.78597 |1, 94269
5 |5.12311|4.86448 |4, 61483 |4.66920 |61.6175]1057.93
a*|1,501811.519401.52250[1.51930 |1.866561.97341
> 571725524 ]6.55992 |5.91871|5.9880 [85.6892 | 1162.48
, | o*|1.56925]1.59230[1.50575| - 1.90765 1,985
5 |9.31426(8.08956|6.99948|7.29 |125.544|1802.96
a*[1.61663 |1,64304|1.64652| -  |1.93170|1.99111
> |5 [11.3499(9.52206|7.9u966| - |170.607|2742.07
a*|1.65252[1.6803 |1.68432|1.68326 |1.94713|1.99414
® 5 [13.5734 | 10.850|8.808319.2997 (226182402566
. |o[168100[1.72056[1.72578] _ [1.95768]1.99502
5 {15.390112.1939|9.59717| - |290.059 [5689.92
. | a*|1.70433| 1.73uu9[1.75755] . |1.96525 1.90701
s [17.4027] 13.4572| 10,3301[ 10.948 | 362.150] 7787.26
, L= [172301] 175630/ 175719 _ [1.97089| 1.99777
5 |19.4126] 14,6820( 11,0168 . | 442,412] 10363.5
L, | =] 1.74063] 1.77100{1.77373| 1.77264 |1.97521]1.99828
5 | 21,4206 15.8753| 11.6643( 12.3762 | 530.820] 13466.9
b0 |2 ]1.83286 185015 1.86078] - [1.99177] -
o |u1.4623]26.5207|16.7790] - | 1860.63| -
L | *11.87349[1.89565| 1.89677] - [1,99585] -
5 |61.4843[35.7376(20.5271] - |3997.91] -
BB 2 2 2 2 | 2
-y @ «© © @ @ o






