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Abstract

The power law potentials in the Schr8dinger equation solved
recently are shown to come from the classical treatment of the
singularities of a linear, second order differential equation.

This allows to enlarge the class of solvable power law potentials.
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Considerable attention has been drawn recently to the

solutions of the Schrédinger equation for central power law potentials

d*w , 2(L+1)
+ E<2 A U(.r)]ukz =0 (1)

dr? r?
N o
U(r) = ) y,ri say: rational number
i=1

The set of exponents {ai}fonm; in general an ordered sequence
of equally spaced numbers including the powers for the energy

and centrifugal terms.

(1-5)

In aseries of articles Znojil has set up a general pro

cedure to obtain solutions to (1). In terms of classical

(6) (7)

texts the procedure proposes "normal" or "subnormal" so

lutions around the singular points at zero and infinity.

(8)

Starting from the solutions for "confining" potentials th

o > 0 a relation can be established with the solutions cor-

responding to several other sets {ai}. For confining potentials,

one writes:
u,(r) = exp£(x)]v, , (x) (2)

with £(r) a polynomial and Vip @D analytic function.

(1) (5)

Znojil has shown that the solutions proposed, whose

energy eigenvalues result from the Green's function, converge.

Examining the problem for confining potentials Znojil(z)

and Rampal and Datta(g) have shown that in order to obtain po
lynomial solutions the coupling constantsyi must satisfy some

constraint equations. In general, it is not possible to ful-
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fill these equations but only for certain sets {ai}.

Other authorsLlO) have also obtained different solutions
which turn out to be special cases of those from the work by
Znojil and Rampal and Datta.

In this work we wish to present another point of view on
the same subject. This viewpoint is not totally new since it
is based upon the classical theory of ordinary linear differ
ential equations of the second order (an expression we shall

(6)

abbreviate as OLDESO) proposed decades ago by Ince and part

(11) (12) in pioneer

ly exploited by Bose and Lemieux and Bose
work not fully appreciated. We shall show hwvéllczsestraﬂed
in the literature mentioned above can be covered by the uni-
fying classification proposed by Ince which allows also for
new ones. ~

According to Ince all OLDESO might be classified in a
scheme starting from original ones having different fixed
numbers of elementary regular singularities. These :are de-

fined as singular points of the general equation

+ plz) g—“z’ + q(z)w = 0 (3)

having exponents in its indicial equation which differ by
1/2. The coalescence of these elementary regular singularities gives
rise to a new kind of singularity called regular if their ex
ponents are two arbitrary numbers or irregular if it has a
single exponent or none. A regular singularity comes from
the coalescence of a pair of elementary regular ones, and an

irregular singularity results when three or more of the ele
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mentary regular singularities are made to coincide. The order
of an irregular singularityis j when it is originated from j+2
elementary regular singular points. In Ince's notation, an
OLDESO may be classified as E:L,M,Nj + N +...] where L is

the number of elementary regular singularities, M is the num

are the numbers of irreg

ber of regular ones, and Nj’ Nk""

ular singular points of kinds j,k,... .

Though details are given in chapter XX of Ince, let wus
recall that from [?N,0,0] the coalescence of couples of ele-
mentary regular singularities carry onto a [0,N,0] equation,
which should be the solution of the generalized Riemann's

(13). The usual Riemann's problem with singularities

(14)

problem

at three points 1is N = 3, and the Whittaker confluent

equation is obtained from it as Bhlqlzl.

From the physical point of view, the interesting cases
seem to be those where in (1) the origin is at least a regu-
lar singular point (as long as the centrifugal term is present
in (1)) and infinity is always an irregular singular point, -since
the energy term must be always in place. These singularities

may be produced by coalescence of simpler ones but another

(2-5)

mechanism involves the use of transformations on the in

dependent variable(ls). The combination of both artifacts

leads to all cases analyzed and solved in the literature for
equation (1) and also several not considered yet. This is the

matter of our work.

The path to be followed was indicated by Bose (1)

Lemieux and Bose(lz), and is also contained in the works of

Ref. 15 and in the work by Znojil(2_5). The substitution

and
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w=yenl} | pznaz] )
brings (3) into its "normal" form

&’y + I(z)y =0 (5)
dz?

where I(z) is called the invariant of the normal form of the

equation and is given by
I(z) = q(z) - 3 Bl2) _ 2 p2 g - (6)

(11,12,15)

Using a generalized transformation the normal form

is taken to a normal form of the Schr8dinger equation, that is
(1), having a constant (energy) term and a centrifugal one.
The Schrddinger equation will be for f(x) .related to y(z)

through:
1/2
y(z) = (52) 2 ¢ (7a)
and the invariant for (1) becomes:
°(x) = (3 1(z(0) + 3 {z,x) (7b)

where the last term is the Schwarz derivative

_ (dz, ~ 3 _ 3 [,dz,-1 ,a%z,7]2 .
{Z;X} = (dx) (—3') > —('ax—) (——Z')J (7c)
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The invariant I®(x) (or I(z)) contains all the information
about the singularities of the equation.

In the table we exhibit for N = 3,4 and 5 the potentials
which can be solved knowing one of them and making a transformation which
is also indicated for an initial EZN,0,0:] kind of OLDESO. It is understocd
that the largest positive power and/or the smallest negative power in the
potential must have a positive coefficient. We leave the details for
a forthooming publication and restrict to some comments.

11)

For the case N = 3 we reproduce the results by Bose for -

the confluences [0,1,12] at zero and infinity, respectively;

it is the well known Coulomb problem. Via z = ax? it trans-

forms into the equation for the harmonic oscillator. We incor-

porate another case, that starting from

-3 -2 -1
I(z) = Az +Bz + Cz , (8a)

c:'orrespondihg to two irregular singularities of the first kind,

[0,0,21], at the origin and infinity; it .goes into

Yl YZ

2
— + —+k (:8b)
X X

1°(x) =
whose exact solutions have been studied by Spector(’l6). Notice
that this is of a kind of confluences that donot derive from req
ular singularities, i.e., from [0,3,0].

For N = 4 we have that [0,4,0:] corresponds to the equation

proposed by Heun(l7) . Its polynomial solutions were studied
-, . (18

by Erdelyi (1 ). The confluences starting from it have been congidered
(19)

by Maroni and Pham Ngoc Dinh (20) and both proved the con
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vergence of their solutions. Lemieux and Bose studied Heun's equa
tion and its confluences [0,1,1,] and [0,0,2,]. In our table
we exhibit also the case [:0,0,11+13] which does._not belong neither
to the cases considered by Znojil (2-5) .

For N = 5, the pattern of confluences reproduces, and now
we have two new cases not considered before: the families for
[0'0111"'15] and [0,0,23] . Notice that the former contains the
well known Lennard-Jones potential used currently in molecular
physics.

Whereas the singularities produced from I:O,N,O:I are the
ones studied by Znojil and previous authors, the others are
considered for a moment by Rampal and Datta (9) . These authors
have shown that they can receive the same treatment proposed
by Znojil but they admit no polynomial solutions. Incidentally,
the polynomial solutions by Rampal and Datta -can be .obtained

(19) (20)

from the articles by Maroni and Dinh

Notice that the transformations studied by Johnson(lS)can
scarcely have any meaning outside the group of solutions pro-
posed here, since otherwise the remaining singularity at infi
nity causes troubles. '

We may show (and shall do it in a forthcoming article) that
a number of other potentials can be considered as long as we
consider other transformations of variable than power like.

(12) chowed how [0,4,0] might copy a two-cen-

Lemieux and Bose
ter potential, such as the Coulomb potential in the hydrogen
ionized molecule H; We believe that multi-center potentials
may equally come out of the case [O,N,0] (N > 4).

What about the equations coming from [2N+ 1,0,0]? One can
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apply similar procedures to those outlined above, but clearly
the point is thathere always one singularity comes froman odd
number of elementary regular ones. The potentials arising from
[?N+l,0,0] somehow £fill gaps in our table, giving rise for
instance to forms like

YooY,

I5(x) = — + — + k% + y,x (9)
. X2 X

For these potentials, as remarked by Rampal and Datta(g), no

polynomial solutions can be found.

One may raise the question whether all potential forms may
be obtained and solved this way. At first sight, there are no
means to include a potential with an irrational power, and is
not evident either that any OLDESO might be solved by a nor-
mal solution. )

Summarizing, the classical theory of OLDESO together with
the normal solutions proposed by Znojil are able to solve an
enormous variety of potentials, many of physical interest,
for the two body forces. It will continue to provide an im

portant tool for the understanding of potential theory.
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TABLE
POTENTIALS GENERATED FROM [2N,0,0] BY CONFLUENCE
N =3
Confluence: Bhlqlqj; Invariant: I{z) = 5; =‘§ + c
Schr8dinger invariants: Transformations:
1°%(r) =Y1r_2+y2rml+k2 Z =Qr
1°%(r) ==Y1r-'2+k2+y2r2 z =ar?
Confluence: [b,0,2l]; Invariant: I{(z) = g% + %% + %
1% (1) =y1r—h+ er—2+k2 z =ar?
N =4
Confluence: [p,l,l“]; Invariant: I(z) = g% + g + C + Dz + Ez?
Schrddinger invariants: Transformations:
1%°(r) = ylr_2-+y2r-3/2+ y3r—l-+y4r—l/2+ k2 z=ar'/?
1%(r) = er—z-kyzr_k/3+ Y3r—2/3+ k2-+Y4r2/3 z=ar¥?
1°(r) = er—z-+Y2r_l-+k2-+y3r-ky4r2 z=or
is(r) = er_2°+k2-+er2-+y3r“+—y4r6 z =or?
Confluence: [b,o,11+13]; Invariant: I(z) = f% + 5% + % + D + Ez
Schrddinger invariants: Transformations:
I°(r) = er—s/a + YZr_2 + Y3r—h/3 + Yl;r-Z/a + k? z =qr¥3
1% (r) =Y1rA_3+Y2r”2+Y3r-l-'”kz‘*\( r z =or
4

Is(r) =y1r_“ +y2r-2 + k2 +Y3r2+Y4r“ z = ar?
Is(r) =k2+Y1r—2+Y2r—~+Y3r_6+YAr_8 Z=0Lr_2
Confluence: [0,0,2,]; Invariant: I(z) = 5% + g% + g% + g + F

Schrddinger invariants:

- 3 -—

s _ -y 2 -1 2
IT'(x) =v;r "+vy,r YT T4y, r 4k

s = =6 * =2 2 2
I (r)—ylr +y,r tysr o +k +tY,r

Transformations :
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N=5

Confluence: [0116-1 Invariant: I(z) = —5+§+C+Dz+Ez + Fz® + Gz"
“Schrédinger invariants: Transformations:
1°(x) = er +y2 =h + y3r-q/3 + Yar_l +y5r'-%/3 +Y6r’1/3; + X2 z=o:.r—1/3
I°(x) = er_ + er-e/s + \(31’_6/‘5 + Y4r_&/5 + Ysr_2/5 +k%+ Y6r'2/5 z=or¥®

1°(x) = er-27+ yzr_3/2 + y3r_J + yz}r_l/2 +k*+ y5'r1/~2\+ YT z=orY?

1°(r) = \(1r_2 + yzr_“/3 + Y3r—2/3 + k%+ Y4r2/3 + ysr“/3 ¥ y6r2' z=oxr??

1°(r) =er—2+y2r_1+k2+y3r+y4r2+ Y5r3+y6r“ z=or

1°(x) = ylr_z +k*+ y2r2 + y3r'* + \([‘r6 + ysre + y6r1° z=or?

. A B C+ D+ Ez + Fz? + Gz°3
Confluence: [0,0,1 +1.]; Invariant: I(z) = St Z

-12 =2 —8/5 —6/5 —u/5 —2/5
1°(r) = ’* 4 YT Hy,r 75 4 YT /s YT /54 Y T /% 4 x2 —TL
—-5/2 -2 —-3/2 -1 ie=1/2 .
I (r)=y1r / YL HYgT Iz, Y, I Yo / +k2+y6r1/2 -
-8/3 -2 - - :
Is(r)=Y1r / YL Y L /e, Y, 7oy k2+y5r2/3+ Yér"/3 z=or??
@) =y, 4y.r 4yr  +kieyreyrieyr
1°(r) =y r_H+Y r_2+k2+y r’+y,r*+yr®+vy,rt = o2
1 -2 3 4 5 6 : z=or
I(r)=k +y T +y,r Ty, Ly, r 4y.r o+ Y¢b z=qor
Confluence: [0,0,12,+l;[; Invariant: I(z) = zé"_ + ;Ba— + ZC—2 + —ZQ + E + Fz + Gz2
Schrddinger invariants: Transformations:
s -3 —5/2 -2 . —-3/2 _ _
TO=nr Hvr Tyt s T e ya ey ke z=ar¥?
-10/3 —-8/3 -2 - - .
R T S AR I AR z=or¥?
I°) =y,r " +y.x” 2 k2 2 =
Y1 yzr +y3r +y4r +k +Y5r+y6r z=ar
s -6 -y -2
T (r)=y,r YL Y, +k2+y4r2+y5r“+y6r6 z = ar?
s _ 2 2 -2 -y -6 -8 _ =2
I (r)—er +k +Y2r +'Y3r +'Y4r +Y5r +.Y6r 10 Z=0Y
s 2 -1 -2 -3 -y -6 -1
T (@) =k"+y,r YL YT YT +y5r +y6 z=or

A B
Confluence EOOZ] Invariant: I(2) =gz toat %+-Z%+§+F+Gz

Schr8dinger invariants:

p Transformations:
S —_l ~-X¥/3 - 3 _ _ _
I (r) =Y1r +Y2r + YL X + Y., r 2 + Y “/3 %/3 +k2 z:ar2/3
3 4 5t
1°(x) = ylr +y2r +y3r +y4r +Y5 ik +y6r z=or

-6
I(r)=y1r +y2r +y3r +y4r +k2+y5r2+y6r“ 2 =qr2
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