1ISSNOD20-3088

@ CNPq

@ cBPF-csmno BRASILEIRO DE PESQUISAS FiSICAS

p———

Notas ;:Ie Fisica

CBPF:NF-075/93

Light-Front Quantized Field Theory:

(an introduction)
Spontaneous Symmelry Breaking. Phase
Transition in ¢* Theory

by

Prem P. Srivastave

Rio de Janeiro
1993



ISSN 0029-3865
CBPF-NF- 075/93

LIGHT-FRONT QUANTIZED FIELD THEORY: (an introduction) *

Spontaneous Symmetry Breaking. Phase Transition in ¢* Theory.

Prem P. Srivastava**

Ceniro Brasilesro de Pesquisas Fisicas, Rio de Janeiro.

Abstract

The field theory quantized on the light-front is compared with
the conventional equal-time quantized theory. The a.rgniments based on
the microcausality principle would imply that the light-front field theory
may become nonlocal with respect to the longitudinal cqordinate even
though the corresponding equal-time formulation is local. This is found
to be the case for the scalar theory. The conventional instant form theory
i1s sometimes required to be constrained by invoking external physical
considerations; the analogous conditions seem to be aIre@dy built in the
theory on the light-front. In spite of the different mechanisms of the
spontaneous symmetry breaking in the two forms of dynamics they result
in the same physical content. The phase transition in (¢*); theory is also
discussed. The symmetric vacuum state for vanishingly small couplings
is found to turn into an unstable symmetric one when the coupling is
increased and may result in a phase transition of the second order in
contrast to the first order transition concluded from the usual variational
methods.
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1- Introduction:

The possibility of building dynamical theory of a physical system on the three
dimensional hypersurface in space-time formed by a plane wave front advancing with
the velocity of light was indicated by Dirac [1] in 1949. The initial conditions on the
dynamical variables are now specified on the hyperplane (light-front), say, z° +z® =0,
which has a light like normal, the front form, in contrast to the usual formulation where
we employ instead the z° = t = 0 hyperplane, the instant form. He also argued that
the light-front formulation should be simpler since seven of the ten generators of the
Poincaré group turn out to be kinematical while in the case of the instant form there
are only six of them. The kinematical generators correspond to the ones which leave the
chosen hyperplane invariant. Latter in 1966 the front form dynamics was rediscovered
by Weinberg [2] in the infinite momentum frame rules in the quantized field theory
which were clarified by Kogut and Soper [3] in 1970 to be equivalent to the'quantization
on the light-front. Even earlier [4] the p — oo technique played an important role in
the derivation of the current algebra sum rules and it was observed [5] that it amounted
to using appropriate light-front current commutators. The front form coordinates are
also adopted frequently in the string theories [6] in order to be able to work with the
physical degrees of freedom and to expose clearly the physical qi?ntents.

A remarkable feature of the theory quantized on the light-front is the apparent
simplicity of the vacuum state. In many theories the interacting theory vacuum coincides
with that of the perturbation (free) theory one. In fact, the four momentum components
are now (k=, k% k') where k* = (k°+k%)/+/2 and &kt =k = (k*, k?) indicate the two
components transverse to z3-direction. For a massive free particle on its mass shell and
k® > 0 we find k¥ nonvanishing and positive. On the other handin the instant form, the
momentum eigenstates of a particle is specified by the components (k!, k2, k%) which may
take positive or negative values. We may construct here eigenstates of zero momentum
with arbitrary number of particles (and antiparticles) which may mix with the vacuum
state, without any particle, to form the ground state. In contrast in the light-front
framework we require k* — 0 for each of the particle entering the ground state with
vanishing total momentum. Such configurations constitute a point with zero measure
in the phase space and may not be of relevance in many cases. It should, however, be
remarked that when dealing with momentum space integrals, say, the loop integrals, in
some cases a significant contribution may arise precisely from such a (corresponding)
configuration in the integrand; the reason being that we have to deal with products of
several distributions.

The recent revival of interest {7,8] in the light-front theory has been motivated
by the difficulties faced in the nonperturbative QCD- the gauge theory of quarks and
gluons- in the usual instant formulation. The technique of the regularization on the
lattice has been quite successful for some problems but it cannot handle, for example,
the light ( or chiral fermions) and has not been able yet to demonstrate confinenment
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of the quarks. We have also the open problem of reconciling the standard constituent
quark model and QCD to describe the hadrons [7,8]. In the former we employ few
valence quarks while in the latter the QCD vacuum state itself contains an infinite sea of
constituent quarks and gluons ( partons) with the density of low momentum constituents
getting very large in view of infrared slavery. Another problem is that of relativistic
bound-state computation in the presence of the complicated vacuum in the instant form.
Recent studies [7,8] show that the application of Light-front Tamm-Dancoff method [7}
may be feasible here. The front-form dynamics may serve as a complementary tool where
we have a simple vacuum while the complexity of the problem is now transferred to the
light-front Hamiltonian. In the case of the scalar field theory, for example, discussed
below the corresponding light-front Hamiltonian is found [9,10] to be nonlocal due to the
presence of constraint equations in the Hamiltonian formulation. A different description
of the spontaneous symmetry breaking is obtained which is, however, equivalent ([9],
Sec. 2) in the physical contents to the usual description in the instant form. In the latter
case we customarily do add to the theory some physical requirements from outside while
such conditions seem to be already incorporated in the light-front context through the
self-consistency requirements and the constraint equations (Sec. 2). We give arguments
that the nonlocality mentioned above is not unexpected and it does not enter into conflict
with the microcausality principle. r'-‘

A general feature of the front form theory is that it describes a constrained
dynamical system and the construction of Hamiltonian formulation is not
straightforward. The Dirac procedure [11] or its variants must be used to handle such
a system. Selfconsistent classical Hamiltonian formulation [1] is very convenient to
quantize the theory via the correspondence of the Dirac (Poisson) brackets with the
commutators of the corresponding operators and also allows us o unify the principle of
(special) relativity in the dynamical theory again by making use of these brackets.

We introduce the following notation. For the coordinate z* and for all other
vector or tensor quantities we define the + components z* = (z°42%)/v/2 = zz.
We adopt z7 to indicate the light-front time coordinate and z~ the spatial longitudinal
coordinate. The spatial transverse components will be usually denoted by z = 2zt =

(z! = —-z1, 2% = —z3). The metric tensor for the indices u = (+,—,1,2) is given
by g++ = g™~ = gl2 = 921 — 0; g+— — g-—+ - _gll = _922 = 1 and it is
verified that g,,A*B* = A#B, = A~B* + AtB~ — A'B! — A?B? is the correct
Lorentz invariant expression, for example, z#z, = z* = 2z%z™ — z2. Under the

pure Lorentz transformations in (0, 3) plane we note that the components A* undergo
scale transformations such that both A*B~ and A~B™* are left invariant. Their
sum corresponds to the usual invariant A°B® — A3B3?, while the difference to the
invariant A°B? — A3B? which has a symplectic structure. It is easily verified that
the transformation from the usual coordinates (z%, 2%, Z) to the coordinates (z+,z~, 7)
is not a Lorentz transformation.

It is well known that two distinct points lying on the hyperplane z° = const. are
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separated by space like distance, e.g., (z — y)? = —(# — #)? < 0, and the separation
becomes light like when the two points become coincident. The points on the hyperplane
zt = const. also have space like separation for 1 # yL. It becomes light-like
when z1 = y', however, with the difference that the points now need not become
coincident, since (z~ — y™) is not required to be vanishing. This observation when
combined with the microscopic causality postulate: ‘the commutators of two physical
observables pertaining to space-time points which are separated by a space like distance
be vanishing’, leads to the result that the front form (quantized ) dynamics may become
non-local with respect to the longitudinal (space) coordinate z=. Consider, for example,
the commutator [A(z?, %), B(0,0)] of two scalar observables A(z) and B(z) where %
indicates the usual 3-vector (in equal-time formulation). It is function of the invariant
z? due to Lorentz invariance and vanishes for z2 < 0 if microcausality condition is
assumed. Employing the light-front coordinates and evaluating the commutator on the
light-front we find that [A(z*,z™,7), B(0,0,0)),+=0 should vanish for # 0, since
z? = —%? < 0 when zt = (. This commutator hence is non-vanishing only for z = 0
when also z? becomes light-like. We thus expect that its value contains a §2(%) and its
derivatives which would imply locality in Z. No constraint, however, is obtained on the
&~ dependence which is arbitrary. In the instant form case similar argurmnents applied to
the equal-time commutator [A(z?, £), B(0, 0)],0q lead to the pdasible presence of 6% (&)
and its derivatives implying locality in all the three space coordinates. We remark that
in view of the microcausality the knowledge of the equal-z+ or equal-z° commutator is
equivalent to finding its value on the light-cone z2 = 0, while approaching it from the
space like regions.

In order to obtain some information on the nature of the light-front commutator,
say, of the scalar field, we may consider the corresponding Lehmann spectral
representation [12] for the vacuum expectation value of the commutator given by

Ol1¢(e), 6010 = [ do? o0 Az ), (L1)

Here ¢ is is an Heisenberg operator, p(0?) is Lorentz invariant positive-definite spectral
function, and A(z; %) is the free field commutator function

1
(2r)3

A(z;0?) = /_m d*ke(k°)5(k? — a?) e~ k-2 (1.2).

where the distribution e(y) = —e(—y) = 6(y) — 6(—y) =1 for y > 0. In case the theory
is derived from a local Lagrangian we may also establish, by making use of the canonical
equal-time commutation relations, the result

/0 " dotp(o?) =1 (1.3).
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Let us compute the free field commutator (2) on the light-front 2+ = 0. We note that
d*k = d*kdktdk=, k? = 2ktk~—k?, ko = kte~ + k2t - k.2, and(2|k1))6(k? —0?) =
§(k——[k%+0?}/(2kT)). In view of the mass shell condition implied by the delta function
it is easily shown that (k~ /k*) > 0 and from the definition k° = (k* 4+ &7)/v/2 it follows
that inside the integral e(k°) = e(k*). On setting z+ = 0 and integrating over ¥~ (to
remove the delta function) and & we obtain

Alat, 57,5 0%)|ehm = -;iaﬂ(s)e(x-), e

which does not depend on ¢2. On using (3) we obtain

[8(*,27,2), 6(O)]letm0 = — 8 (F)e(z"), (15)

as far as the vacuum expectation value is concerned. We will give below an independent
derivation of this light-front commutator by quantizing the scalar field theory directly
in the front form by following the Dirac procedure. From (1.5) we derive

[8u- (27, 2), 8(O)]ls 0 = —38°(@)o(z"). (16)

Comparing (1.6) with the equal-time commutator [x(z%, &), $(0)]}s0~0 = —16*(F), where
7 = 01, it is suggested that the canonical momentum in the light-front quantized theory
is ~ 8;- ¢ and is thus not an independent variable, a result we rederive below.

We note also that in the front form the Green’s function are ordered with respect
to light-front time z% rather than z° = t. However, in view of the microcausality
requirement, the retarded commutators [A(z), B(0)]6(z°) and [A(z), B(0)]6(z*) do
agree. In the regions 2° > 0,z% < 0 and z° < 0,z% > 0 where they seem to disagree
z? is space like and they are both vanishing. Such retarded commutators appear in the
LSZ reduction formulas [13] of the S-matrix elements in terms of the field operators.

We describe briefly the elements of the Poincaré algebre on the light-front and
some of their properties. In the system of coordinates (z°,z',2% %) with the metric
Guv = diag (1,—1,—1,—1) the generators of the Poincaré algebra satisfy the following
commutation relations:

[Myy, Pe] = —~i(Pugpe Pygue),

[Mpvs Mpa] = i(Mppgva + Myogpp - My ,9u0 — Muggyp) (1.7)

Introducing the convenient variables J; = —(1/2)e;uM* and K; = M,; where
$,7,k,0=1,2,3 we find

i, Fj] = teijn Fr for Fy=Jy, Por K; (1.8)
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while

[K,',Kj] = —1€ix K, [Ki, Pi) = —iPogix, [K;, B} =1iF;, [J,',Po] =0. (1.9)

We note that the six (kinematical) generators Pj, My; leave the hyperplane z° = 0
invariant. In the light-front coordinates on the other hand there are seven such
generators P_ P\, Py, Mz = —J5, My = K3, M- = —(K1 + R)/V2 =
—Bi, M. = —(K; — J1)/v/2 = —B; which leave the light-front z° + 23 = 0
invariant. The remaining three generators related to the dynamic [1] are Py, M4+ =
(K1 -—Jz)/\/ﬁ =5, My, = —(Kz +J1)/\/§ = —53. The generators P+,P1,P2, S1, Sa,
and J; commute with P~. The generators By, B, J;, which also commute with
P*, span the E; subalgebra of the ’little’ group which leaves the light like vector
(n® =1,0,0,n% = 1) invariant. The K3 boosts along the 3-direction {[K3, P¥] = FiP¥)

einKe p oinKs o o Fu pE (1.10)
while under Galilean (transverse) boosts o
l"‘
e"-Bpeit-B — (P u;Pt), i=1,2 end @.B={uB1+uB;] (1.11)

i

e B P8 B = p- pa P4 @?Pt, @ BptinBopt (112

K4

B~

They are useful for constructing an eigenstates |p*, p!, p?) starting, say, from the state
described in the rest frame. We collect also

[B]_,P]] = [Bz,Pg} = iP+, [Bl,Pg] - [Bg,Pll = 0., [B_,',P-] = iPJ', [Bj,P-I-]. =0
(1.12)

[S;,P7}=0, [S;,PT]=iP;, [51,8:]=0, | [S1, Py] = [S2, P3) = 4P~
(1.13)

[B1,B2] =0, [B:1,Js]=—iB;, [By,Js}=iBy, [B;,K;3|=iB;, [J;,K;3]=0.
(1.14)
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2- Spontaneous symmetry breaking mechanism in light-front quantized
scalar fleld theory:

The quantization of the scalar field theory in the instant form is found in the text
books but the quantization on the light-front has been clarified only recently. Working
directly in the continuum it was demonstrated {9,10] that corresponding to the local
Hamiltoman in the instant formulation we in fact now obtain a nonlocal Hamiltonian
in the front form formulation. The nonlocality arises along the longitudinal direction
x~ because of a new ingredient in the form of the nonlocal constraint equations in
the Hamiltonian formulation. The treatment of the theory in the usually adopted
discretized formulation (assuming the finite volume) [14-18,9] introduces spurious finite
size contributions which make the physical interpretations difficult. The infinite volume
limit may, however, be taken [9] which coincides with the continuum formulation [10).
As argued in Sec. 1 such a nonlocality is not unexpected and we pay the due price
for working with a simple vacuum on the light front. The constraint equations allow
to describe the tree level spontaneous symmetry breaking [10,14-18] and suggest the
modifications that would be introduced by the quantum corrections [9]. The problem
had been a a challenge for a long time [8]. The reason seems to be that of not
distingunishing clearly between the bosonic condensate associated with the scalar field
and the field which describes the (quantum) fluctuations (see 'Also 2(¢c)). We remind
that the scalar field theory plays an important role in many branches of physics. It
is relevant, say, in connection with the generalized Ising models [19] in the condensed
matter theory, is an indispensable ingredient (Higgs sector) of the Standard Model of
electro-weak interactions, plays an important role in describing inflationary cosmology,
and in the construction, say, of the heterotic string theory [6].

Dirac [1] discussed the problem of fitting together in a dyﬂamica.l theory the two
general requirements: it should be quantized and also incorporate the special theory of
relativity (ignoring gravitation). He showed that Hamiltonian formulation, where we
introduce a new element in the form of Poisson brackets, is a convenient procedure
to attain this objective. We would apply the Dirac method {11] to construct this
formulation.

Discrete symmetry in two dimensions:
(a)- Continuum formulation:

In order to emphasize the new features which distinguish the front form from the
instant form we consider first the simpler case of a real massive scalar field theory in two
dimensions. The Lagrangian density in the front form is given by [¢¢' — V ()], where
an overdot and a prime indicate the partial derivatives with respect to the light-front
time 7 = 2t = (2% + #')/v2 and the longitudinal coordinate 2 = 2~ = (z° — z!)/v2
respectively. In contrast to the case in the instant form dynamics the ¢ now occurs
linearly in the Lagrangian and the eq. of motion is 2¢' = ~V'(¢) , where a prime
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on V indicates the variational derivative with respect to ¢. It shows that the classical
solutions, ¢ = const. = w, are allowed and given by solving V'(¢) = 0. On the
other hand the vacuum expectation value (vev)} (vac|plvac} of the quantized field must
be a constant in view of the requirement of the translation invariance of the theory.
It is suggestive that there is a certain correspondence between the value w with the
tree level vev of the quantized field ¢. We now note that if we integrate the eq. of
motion over —L/2 < ¢ < L/2, where L — oo, we are led to the constraint equation,
fdzV'(¢) = -28,[C(r,L)], where C(7,L) = [é(r,z = L/2) — ¢(r,z = —L/2)].
The constraint thus seems to depend on the boundary conditions imposed on ¢ and
thus needs clarification. We should, however, first formulate the physical problem at
hand more precisely. Moreover, we need to write the equations in Hamiltonian form
as stressed above. Taking into consideration the discussion made here we propose to
make the separation ¢(z,7) = w(7) + ¢(x,7) for any fixed value of light-front time
7. The variable w corresponds to the bosonic condensate or the background field while
¢ describes the (quantum) fluctuations above the condensate. This separation should
be done independently of whether we work in the continuum formulation or in the
discretized one where L is taken finite (finite volume), frequently employed. It should be
emphasized, however, that a well defined infinite volume limit must exist if the theory
is physical and self-consistent [20]. At the classical level the':‘(p field is an ordinery
function of z such that (f dz |¢| < co) and such that its Fourier transform (or Fourier
series) along with its inverse are defined while ¢ is a generalized function of z due to
the constant term w. Since our primary interest is to discuss the vacuum states we will
ignore presently the 7 dependence of w and return to the general case latter below.
The Lagrangian then reads as

L2
/ LAl V9, 1)

where for illustration purposes we take, V(¢) = —(1/2)m?¢? +(A/4)¢* +const., A > 0,
with the wrong sign for the mass term and L — oco. We next construct the classical
Hamiltonian formulation for the system which may be used to make transition [1] to
a relativistic and quantized theory through the correspondence principle, in analogy
with what we do in the construction of the quantum mechanics or alternatively, by
employing the functional integral technique. The canonical light-front Hamiltonian is
easily obtained to be [ dzV(¢). However, in the front form dynamics there is no physical
argument available to minimize the light-front energy in order to obtain the (classical)
ground states. In equal-time formulation we add new ingredients to the theory invoking
physical considerations such as dy¢ = 0 and 8,1 = 0 which reduce the energy and argue
then to minimize the energy functional in order to obtain the ground states. We will
demonstrate below that the light-front dynamics already incorporates such information
in the theory through self-consistency requirements and the new ingredients found in the
form of the constraint equations. The physical resulis in the two forms of dynamics
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coincide even though oblained through different mechanisms. We remind that in the
Hamiltonian approach for nonsingular Lagrangians the number of dynamical variables
to describe the theory is doubled and it also contains the first-order Hamilton eqs. whose
number is twice as compared to the number of the second-order Lagrange eqs. The
approach also introduces a new object in the form of a Poisson bracket which allows
us to satisfy in the theory both the requirements of the special theory of relativity
and of the transition to the quantum theory. It is also richer than the Lagrangian
formulation in that it allows for a broader set of general transformations (on the phase
space). In a self-consistent Hamiltonian formulation the Lagrangian formulation must
be recovered [11]. In contrast to the tnstant form the light-front Lagrangian (2.1) is
singular and the Hamiltonian here determines the evolution of the dynamical system
with changing 7 in place of . We follow the Dirac method to build the canonical
framework at a given 7. Indicating by =x(z,7) the momenta conjugate to ¢(z,7), the
primary constraint is found to be ® = 7 — ¢’ &~ 0 while the canonical Hamiltonian
density is H. = V(¢), with the symbol ~ standing for the weak equality [11]. We
postulate now the standard Poisson brackets at equal-r, with the nonvanishing brackets
satisfying, {n(z,7),¢(y,7)} = —6(z — y), and assume for the preliminary Hamiltonian
the expression '

l't

H'(r) = Hy(r) + / dy u(r, ) (7, y), 22)
where u is a Lagrange multiplier function. Using f = {f, H'} + 5f /O we find

= {&,H'}~ - V'(¢) — 2u". (2.3)

. ’
The persistency requirement ® a 0 then results in a consistency condition involving
the multiplier v and does not generate a new constraint. The only constraint <I'(:c) 0
in the theory is second class [11] by itself since

{8(2),8(y)} = —20,6(z — y) = C(x,y) = ~C(y, ) (2.4)

is nonvanishing. Its (unique) inverse with the correct symmetry property is C~*(z,y) =
—C~Y(y,z) = —e(z — y)/4. The equal-r Dirac bracket {,}p is then constructed as

(), 9)}p = (F(@) 9®)} + > j j dudv{f(2), (w)}e(u — v){(v),o(v)}. (25)

where we suppress 7 for convenience of writing. We verify that {f,®}p = 0 for any
arbitrary functional f(y,n) and thereby we are allowed to set 7 = ¢' even inside the
Dirac bracket, e.g., treat it as a strong equality. The eqs. of motion are now given by

f= {f,Hc}D + 0f /07 since H'(7) reduces to H (1) = P~ , and whose explicit form
is
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L/2

P~ = dz V(¢) _
/‘ L/2 (2.6)

Lr 1 )
= ] dz [u.’()u.;:2 ~mBp + -(30? —m?)p® + I + —pt + const.]
~Lf2 2 4

where L — oo.
The variable 7 is not an independent one unlike in the case of the instant
formulation and from (2.5) we derive

{w(z,7),0(y,7)}p = —(1/4)e(z — y) , (2.7)

We make a brief digression on the transition to the quantized theory. To each dynamical
variable we associate an operator in the quantized theory and make the correspondence
i{f,9}p — [f, g] where [f, g] indicates a commutator (or anticommutator) between the
operators. Such procedure is frequently adopted to obtain the quantum mechanics
of a particle in the Heisenberg formulation. For example, from (2.7) we find
[p(z,7),¢(y,7)] = —(i/4)e(z —y) for the ¢ commutator in two dlimensions. This agrees
with the one suggested from the considerations on the Lehmann {spectra.l representation
in Sec. 1. We note that the antisymmetry of the Dirac bracket imposes that we define
€(0) = 0. We also note that unlike in the equal-time case here the ‘commutator does not
vanish on the light-cone for non-coincident points with z # y and we derive on using
O-e(x —y) = 26(x — y)

4

@), 0( 7)) = —(1/2)6(z —y) , (2.8)

and

{#'(,7),¢' (4, 7)) D = —(1/2)0y8(z — y) (2.9)
It is easy to show that the translations in the space direction z~ are generated by

PH) = [de(e'(e, ), ¢a,) = (o), o, (2.10)
For example, {V(é(z,7), PT(7)}p = 8:V(é(z,7)) and from which it follows that

{P~(r), P*(1)}p = V($(00,7)) ~ V(¢(—00,7)). (2.11)

The right hand side must vanish in a relativistic invariant theory.
The Hamilton’s eq. for ¢ is found to be
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‘F"(xa T) = {‘P(I!T)!P*(T)}D

1 14 (2.12)
=1 /dye(z——y)—————aé(y’r) _
and we derive from it the Euler-Lagrange eq.
g, 7) = —n Y
% (;’C, T) - 92 6¢(Z,‘T) (2‘13)

The Hamiltonian formulation constructed above is thus - self-consistent with the
Lagrange formulation. If we substitute the value of V'(¢) obtained from (2.13) into
(2.12) we find after an integration by parts

¢(m37) = f,b(:t,‘r) - % {'16(0037)6(00 - :C) = (;.?(—00,7)6(——00'- I)} " (214)

Considering finite values of £ we must then require ¢(co,7) + ¢(—c0,7) = 0. On the
other hand the equal-7 commutator of ¢ obtained above may be realized through the
momentum space expansion given below in (2.16). Integrating over z the expansion
of ¢'(z,7) we easily show that ¢(oo,7) — w(—0c0,7) = 0.4, Combining the two
results we are led to 9r¢p(+o0,7) = 0 as a consistency condition. This is similar to
O:p(z! = too,t) = 0 which is imposed from the outside in the equal-time formulation
based upon the physical considerations. :

On integrating (2.13) over the longitudinal space coordinate it follows that we must
(also) satisfy the following constraint equation in the light-front Hamiltonian framework

F 4

L/2
B(r) = limpoop /L L V@)

Lf2
= (W = m?) +limpmeo [ de[ (32 - mp + Mg +4%)] = 0
/2

L

(2.15)
The Hamiltonian formulation in the present case thus contains a new ingredient in the
form of a nonlocal constraint (2.15). This is not unexpected in view of the discussion
give in Sec. 1. In ref. 1 we find some illustrations where restrictions on the potential
arise due to the necessity of incorporating special relativity in the theory. Because
of the constraint eq. the light-front Hamiltonian (2.6) is nonlocal and much involved
compared with the local polynomial form for interaction in the corresponding equal-time

formulation.
At the classical (or tree) level the integrals appearing in (2.15) are convergent (since
J dzlp| < 00). In the continuum limit, when L — oo, we find the result V'(w) = 0 which
determines the tree level values for the condensate w and they are the same as those
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found in the instant formulation, where the condition is added to the theory (imposed) .
by appealing to physical considerations for minimizing the energy functional. Similar
comments hold true as regards Orp(+00,7) = 0. Such considerations in general are
not available in the front form dynamics. In its place constraint equations like (2.15) or
consistency conditions like (2.14) arise in the theory itself. The two forms of dynamics
should clearly lead to the same physical results even though attained by different paths.
This will be explicitly seen in the description of the spontaneous symmetry breaking
considered below.

In the quentized theory the field ¢ and its commutation relations are obtained
through the correspondence i{f,g}p — [f,g]. It is easy to verify that the equal-7 ¢
field commutator, [p(z,7),¢(0,7)] = —(3/4)e(z), can be realized in the momentum
space through the following (momentum space} expansion of the field (suppressing 7)

o(z) = —— ] dk ‘9(") [a(k)e—'*=+a’f(k)e'*==] C (216)

where a(k) and at(k) satisfy the canonical equal-r commutation relatmns
la(k), a(k)!] = 6(k—&"), [a(k), a(k")] = 0, and [a(k)!, a(k")!] = 0. We note the presence
of 8(k) in (2.16) originating as a consequence of the integral representa,tlon of the sgn
function, e(z) = (¢/7)P f(dk/k)e=**%. Also, in contrast to the case of equal-time
formulation, there is no dependence on mass in (2.16)..

The vacuum state is defined by a(k)jvac) =0, k > 0. The loﬁgitud.ina.l momentum
operator and the light-front energy operators are fdr : ¢ : and P~ = H =
Jdz : V(@) : respectively. Here we normal order with respect to the creation and
destruction operators to drop unphysical infinities. We find [a(k), P*] = ka(k),
[a’f(k) P*] = -k at(k) The tree level description of the spontaneous (discrete)
symmetry breaking may be given as follows. The values of w = {|¢|},,, obtained
from the tree level condition V'(w) = 0 characterize the possible vacua of different type
in the theory. Distinct Fock spaces corresponding to different values of w are built
as usual by applying the creation operators on the corresponding vacuum state. The
w = 0 corresponds to a symmetric phase since the Hamiltonian is then found symmetric
under the discrete symmetry transformation ¢ — —¢p. For w # 0 this symmetry is
clearly violated and the system is in a broken or asymmetric phase. In the case of
the right sign for the mass term, m? — —m?, and A = 0 the system is found in the
symmetric phase at the tree level. When the interaction is switched on, the constraint
eq. (2.15) shows, however, that the symmetric phase may become unstable due to the
quantum corrections and the system may undergo a phase transition, as the coupling
constant increases, to the broken phase. For the wrong sign for the mass term we have
the possibility of both types of phases already at the tree level. It should be stressed
that we do not have any physical arguments, like for P%, in the front form theory to
normal order the constraint equation (2.15) and consequently the tree level value of the
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condensate does obtain high order quantum corrections as dictated by the renormalized
constraint equation. A factor L may arise in the numerator which cancels the L in the
denominator in the integrals involved in (2.15). A self-consistent frent form Hamiltonian
formulation can thus be built in the continuum which also can describe the ssb. The
phase transition in two dimensions can be described (Sec. 3) in the renormalized theory
based on P~, # = 0, and the light-front commutator.

(b)- Discretized formulation in finite volume:

It is instructive to rederive the continuum theory above as the infinite volume limit
of the discretized formulation in the finite volume [9]. It is some times wrongly affirmed
in the literature that the infinite volume limit of the discretized formulation does not
exist. We make the Fourier series expansion of the field ¢ and write

rr)=w+ —= Ll T) E q,,(‘r) ekt = oy 4 (T, ) (2.17)

where the periodic bounda.ry conditions are assumed for convenience with A =
(27/L), ks = nA, n =0,£1,42,.., and L is now finite. The discretized Lagrangian
obtained by integrating the Lagrangian density in (2.1) over thq' finite interval —L/2 <
z < L/2 is given by

Lj2

B ke = [ devie) (2.18)

The momenta conjugate to g, are then p, = ik,q_, and the canonical Hamiltonian is
obtained from the expression in (2.6). The primary constrainte are thus py ~ 0 and
®, = pn—ikng—n =0 for n # 0. We postulate initially the standard Poisson brackets
at equal 7, viz, {pm,qn} = —6mn and define the preliminary Hamiltonian

i)
H =H°+Zn ua®n + uopo. (2.19)

On requiring the persistency in 7 of these constraints we find the following weak equality
relation

n_ OH 1 [E? |
= {m, B} =—5 - = \/f/-m dV'(§) = ——= fr) 0, (220
and for n # 0
. . L/2 .
@, = {&,,H'} = —2£annu_n - == dz V'(¢)e 2 0.  (2.21)

\/_ ~L/2
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From (2.20) we obtain an interaction dependent secondary constraint B =~ 0 while
(2.21) is a consistency requirement for determining u,, n # 0. Next we extend the
Hamiltonian to

H" = H' +v(1)8(7), (2.22)

and check again the persistency of all the constraints encountered above making use of
H". We check that no more secondary constraints are generated if we set v ~ 0 and we
are left only with consistency requirements for determining the multipliers u, , uq.

We verify that all the constraints po = 0, § ~ 0, and ¢, ~ 0 for n # 0 are second
class. They may be implemented in the theory by defining Dirac brackets and this may
be performed iteratively. We find (n,m #£0)

{‘I'ﬂ,po} = 0, {‘I'mq’m} = _2ikn6m+n,0 3 5 (2'23)

L2 W ,
d:t [V"(¢) Vﬂ( + go )] e—:k,.z = —

4

@a,B} = {pn, 8 —, (224

(@08} = (purB} =~ [ 4 . 22)

0B) =~ [ davrgy = -2 (2:25)

B} = ——= z = ——, .

VL J 1 vI

{po,p0} = {8,8} = 0. (2.26)

The explicit expressions of a,, and a appear below in the numerator and the denominator
of eq. (2.29). ’

We implement first the pair of constraints py = 0, # &= 0. The Dirac bracket {}*
with respect to them is easily constructed

{f,9} ={f.9} —[{fip} {B,9} - (0 & ﬂ)](ﬁ)‘l- (2.27)

We may then set py = 0 and 8 = 0 as strong relations. and the variable py is thus
removed from the theory. We conclude easily by inspection that the brackets {}* of the
surviving canonical variables coincide with the standard Poisson brackets except for the
ones involving ¢ and p, {(n #0)

{QO,Pn}* = {q{h q’ﬂ}* = _(a_lan) (228)
For the explicit expression of the potential given above we find {go,pn}* =

3M[2(w + 90/ VI) VEIgn + [11}, dzg? e 7]
[3A(w + @/VIY —m?]L +6(w + 90/VE) fi 1y dzeo + 3 [0, du?

(2.29)
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Next we implement the remaining constraints &, =~ 0 (n # 0). We have

Cnm = {&n, Bm}* = —2iknbnimo (2.30)

and its inverse is given by C™ ', = (1/2ik,)8n4m,0 - The final Dirac bracket which
takes care of all the constraints of the theory is then given by

{f,9}p = {f,9}* - Z M ——{f, ®n)* {®-n, g}". (2.31)

Inside this final bracket all the constraints may be treated as strong relations and we
may now in addition write p, = tkpg—p . It is straightforward to show that

Y 1 . 1
{90,90}p =0,  {20,Pn}D = {90, ikng-n}D = 5 {0, Pu}*,  {gn;Pm}D = Sbum.

(2.32)
In order to remove the spurious finite volume effects in discretized formulation we
must take the continuum limit L — oo [20]. We follow the well known procedure:

= 2(n/L) — dk,kn = nA > k,VIqn = limp .o [11], dop(z)en® =
I dzp(z)e** = V2rp(k) for all n, Vomp(z) = [ dk@(k)e~™* , and
limp—oo(go/VI) = 0. From {VIgm,VIg_a}p = L6,.m/(2zk,.) following from
the Dirac bracket between ¢ and p, for n,m # 0 in (2.32) we derive, on using
Lbnm — limp .0 [ 7 Ly dzeikn—km)z — [0 du"(*-*’)= = 2xé(k — k'), that

(B(6), B(~F)}p = oz 6(k — &) (2.33)

I 4
where k,k' # 0. On making use of the integral representation of the sgn function,
e(z) = (/7)P f_f_’ooo (dk/k)e~*** we are led from (2.33) to the light-front Dirac bracket
(2.7) for ¢ obtained in the continuum formulation above.
From (2.29) and (2.32) we derive

, _ 8 [2wp(2) +0*(2)]
{\/__,tp (@)} = -(-é-) [(8Mw? —m?)L +6) [dz ¢ + 3) [ dz p(2)?]

(2.34)

where L — co. The eq. (2.34) is consistent in the continuum limit for the values of w
given at the tree level by V'(w) = 0. The constraint eq. (2.20), 8 =0, in the discretized
formulation, goes over to the expression (2.15) of the continuum formulation and the
egs. (2.12) and (2.13) are also recovered in the infinite volume limit.

It is interesting to recount the history of the consiraint equation in the light-front
framework. In the decade of 1970 the light-front commutator was reobtained [21]
by other methods not following the Dirac procedure and the constraint escaped the
observation. In 1976 the procedure was attempted [14] in two dimensional scalar field



-15- CBPF-NF-075/93

theory using the discretized formulation. The constraint py = 0 was, however, missed.
The constraint equation was noted but its implications ignored. Latter in 1989 it was
remarked [16], again in the context of the discretized formulation, that the light-front
quantization of the scalar field theory would be extremely difficult due to the complexity
of the constraint eq. which relates the zero mode go with nonzero modes ¢, with n # 0
(see (2.15)). Moreover, at the quantized level the zero mode (in the finite volume) is
an operator which does not commute with the nonzero modes (see (2.34)), making it
necessary to order it in the constraint itself. Here also the Dirac procedure was not
followed and arguments were based essentially on the equation of motion. In 1991 it
was proposed [17] to modify the Dirac method introducing py & 0 from outside; this
may not be regarded as gauge-fixing constraint since we do not have any first class
constraint in the theory considered. There was also some confusion caused by not
distinguishing between the zero mode of ¢ and the bosonic condensate w, clarified only
latter. Since 1985, with the proposal [8] of DLCQ-Discretized light cone quantized
theory in the context of perturbation theory, the zero mode (and the condensate)
were ignored until recently. The Dirac quantization of the light-front scalar field theory
directly in the continuum while separating the condensate [10,9] was considered only
towards the end of 1991. It was strongly believed since 1977, when it was perhaps first
mentioned [15], that it was not possible to take the infinite volume limit of the discretized
formulation just discussed, ignoring strangely enough the conflict with a basic principle
[20]. It was sometimes also affirmed that the light-front quantized field theory could
not even be construct directly in the continuum. From our discussion we conclude
on the contrary. The theory seems manageable only in the continuum formulation
and there are no signs of any inconsistency when properly constructed following the
Dirac method without modifications. We loose control over ther self-consistency checks
if any modifications be introduced in the procedure and even the doubts would arise
on the genuinity of the constraint equation obtained. The theory constructed above
can also describe the spontaneous symmetry breaking of both the discrete as well as
the continuous symmetry (see below) and it contains both the tree (classical) as well
as quantized level descriptions. The suggestion that the Hamiltonian in the light-front
context may be nonlocal does not occur in any of the earlier works.

(¢)- Continuum formulation with w dynamical:

In case we maintain [10] the 7 dependence in w the Lagrangian is

L/2
Cot [ delpg' ~V(@), (2.35)

where C(7) = [¢(T,2 = L/2) — p(r,2 = —L/2)] and L — oo. The egs. of motion are
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' =(-1/2)V'(¢),

L/2 '
¢ " &vi(e (23)
-] l
Integrating the first on = for (—L/2 < z < L/2) and comparing with the second we
find ¢ = 0 and consequently the constraint (2.15). It is interesting to note that if we

consider C also as a dynamical variable we obtain & = 0 among the egs. of motion.

In the case ¢ is an ordinary function admitting Fourier transformation as well as its
inverse the surface term C drops out since ¢(Zoc,7) =0 (from the Fourier transform
theory) We note that the Fourier transform of the generalized function ¢ is given by
¢k, 7) = VZrw(r) 6(k) + @(k, 7). Indicating the canonical momenta conjugate to w
and @ by p e 7 respectively, the primary constraints are p ~ 0 and & = r — ¢’ 2 0 and
we start from the preliminary Hamiltonian :

H'(r) = H(r) + a(r)p(r) + ] dy u(r,1)8(r,y), (2.37)

where p e u are Lagrange multipliers. We find
b= {pH}w~ - f dz V'(4) = —B(r)," (2.38)
= (&,H}~ — V'(g) - 2. (2.39)

The Dirac procedure the leads to the three second class constraints p=~0, 3~ 0, & ~ 0.

In view of  {8(7),p(7)} = a(7) = [dz V"(¢) , {8,8} = {p,p} = 0, we define the
modified bracket {,}*

@, 9@} = (5,90} - U@ pHB 0@} ~(Brp)],  (240)

where

a(r) = ]d::: V'(¢) = L(3 \w® —m?) +6)w /dzqo +3X fda: @2, (2.41)

We verify that for the independent dynamical variables only {w,7}* = {w, @} =
—a~' V"(¢4) do not coincide with the corresponding Poisson brackets {, }. Defining the
final Dirac bracket {, }p by

U@ s@)o = (£ @) +7 [ [ dudois(2), 8w} cu—u)i2(e), 90} (242)
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we can also implement ® = 0. From (2.42) we derive

{e(z), (1)} = —(1/4)e(z —y) , (2.43)

@,7@)o = {0,¢@}p = @)}, {w,0}p =0 (249)

The constraint 8 = 0 is interpreted as in the discusssion given above. At the tree
level @ — oo which leads to {w,7}* = —~a~'V"(¢) — 0. It follows from (2.44) that
{w,¢(2)}p = 0, which leads to w = 0, in agreement with the constant values for w.
We also verify that the Lagrange eq. for ¢ is also recovered. It is thus possible to
construct a self-consistent Hamiltonian formulation in the continuum with the proposal
of separating first the condensate from the fluctuations represented by . "

Continuous symmetry in 3 + 1 dimensions:

The extension to 3 + 1 dimensions and to global continuous symmetry case is
straightforward. Consider the multiplet of real scalar fields ¢,(a = 1,2,..N) with
nonzero mass which transform as an isovector under the global isospin transformations
of the internal symmetry group O(N). We separate the condensate variables and write
$a(2,%,7) = wq + palz,Z,7) while w, is assumed independent of r. The classical
Lagrangian density

L =[pape — (1/2)(0i0a)(Biva) — V() ] (2.45)

is invariant with respect to the global O(N) symmetry group. Here i = 1,2 indicate the
transverse space directions. The eqs. of motion are given by 2@, = [~V!($) + 8:8ip.] -
Following the Dirac procedure as above we find

[pa(z,Z,7), 08(y, 5, 7)] = —(i/4)base(z — ¥)6*(Z — ), (2.46)

P=(r) = [ dez[V(g)+ 5 (@iga)(0r0n) Pt = [ dadtarge, (247)

where 7a(2z,%,7) = ¢4(2,2,7), Pa(£oo,Z,7) = 0, and the set of coupled constraint
equations 3, = 0 when expanded in Taylor series is given as

1
LV w) + Vii(w) / dogs + o Vit (w) f droype + ... = 0. (2.48)

The momentum space expansion of the fields is now
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7 (\/_ » f dkd?k —L 9("’) [ab(k k,7)e " (k=tE.2) +Gt(k E,r)eflketha)] (2.49)

where [as(k, k, 7), ac(k', k', T)t] = bycb(k — k)62 (k — k') etc. At the tree level the values
of w, are obtained from VJ(w) = 0 where V, indicates the variational derivative of
V($) = —(1/2)m2¢? + (A/4)¢* + const. , with respect to ¢,, with ¢? = ¢,¢,.

The case of discrete symmetry in 3 + 1 dimensions is obtained here when there is
only one real field.

Consider next the discussion of the field theory symmetry generators and the
description of the spontancous symmetry breaking of the continuous symmeiry. The
classical theory is invariant under global isospin rotations §p, = —i€a{te)abps, 6wa =
—t€q(ta)esws where a, § = 1,2, . .N(N —1)/2 are the group indices, {, are hermitian and
antisymmetric generators of the group, and [t4,ts] = 2 fag~ t. The classical conserved
Noether currents are given by J#, = —i0#¢Tt.¢ = —za“tthago —i(tqw)ToPp. In the
light-front quantized theory the field theory symmetry genera.tors are

r
5

Go(7) = /deidx Jt
= -—i/dzidz:[@;(ta)abwb - i(taw)atp;] (2'50)

=i / Pzdrg’,(ta)asps = [ F dk 6(K)aa (b, E) (e )as as(k, B)

in view of ¢(+00,%,7) = 0 and where we used also the (light-front) expansion (2.49)
of the field. The continuous symmetry generators come out already normal ordered
and as such they annihilate the vacuum state independent of the values assumed by
the condensates. We define the system to be in the symmeiric phase when all the w,
are vanishing while it is defined to be in the broken or asymmetric phase when some of
these are nonvanishing,.

The situation in the conventional equal-time formulation is different. The symmetry
generators here are given by

Qu(a?) = f &z J0

(2.51)
= —1Gy@a(ta)ars — H(taw)a / ds:cdt’oa

In the asymmetric phase the generators do not annihilate now the vacuum state and
the symmetry of the vacuum is broken. The generators, however, are conserved even



~19- CBPF-NF-075/93

in the quantized theory, since [Qa, ¢s] = —(ta®)a € consequently, [Qa, H(t)] =0. We
call it the spontaneous symmetry breaking because the Hamiltonian remains invariant
under the symmetry transformations but the vacuum state does not. In fact, the first
term on the last line in {2.51) annihilates the vacuum like in the earlier case but the
second one gives a vanishing contribution only for the generators for which (Z,w) = 0.
The set of such linearly independent generators define the group of residual symmetry
(of the vacuum state) in the theory.

Returning to the light-front field theory case we verify that [Ga,da] = —(ta)abios—
(taw)/2, [Ga,wa] =0. They imply that in the asymmetric phase the symmetry of the
quantized theory Hamiltonian is broken while the symmetry of the vacuum state is
preserved. Only the generators (or the linear combination of original generators) for
which ({qw) = 0 are left conserved, e.g., the symmetry transformations associated with
them leave the Hamiltonian invariant. The set of such generators give rise to the residual
symmetry group of the Hamiltonian operator and of the quantized theory.

The spontaneous symmetry breaking in the front form is described as follows.
At the tree level a particular solution (w1,ws,ws,...) of V/(w) = ws(dw? —m?) =0
determines a a fixed direction in the isospace which characterizes a (non-perturbative)
vacuum state, (0|¢4|0), = wa. The Fock space of this sector in the quantized
theory is built by applying the particle creation operators on,the vacuum state. In
the symmetric phase, both the vacuum and the Hamiltonian are invariant under the
internal symmetry group. In the asymmetric phase the vacuum remains invariant under
the initial symmetry group but the Hamiltonian does not remain so under some of the
symmetry transformations. The residual symmetry group in both the front form and
the instant form is determined from the condition ({qw) = 0. The total number of the
corresponding generators does not depend on the particular chice of the isovector as
long as (Aw? —m?) = 0. There is an infinite degeneracy corresponding to the continuum
of orientations of the (condensate or background field) isovector in the isospin space
satisfying this condition. This corresponds to the infinite degeneracy of the vacuum
states in the equal-time case. The number of Goldstone bosons may also be counted
[22] and is the same as in the usual formulation. Their number (ignoring the case of
pseudo-Goldstone bosons) is the difference in the number of generators of the original
and the residual symmetry group. The values of the condensates w, found at the tree
level get altered when the high order quantum corrections are included and we take
into account of the set of coupled renormalized constraint equations in the light-front
quantized theory.

It is possible, in the above discussion, to allow for an z dependence in w,. The
first term in the constraint equations now gets altered and the tree level configurations
are now obtained from [V]{w) — 8;8;w,] = 0. As before there is agreement with
the Lagrangian formulation. We obtain then the famous kink solutions but with an
important difference. In the front form dynamics the equation for kinks depends only
on the two transverse directions and not three as in the instant form case. two
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dimensions theories there are then no kink solutions. This reinforces the affirmation that
the vacuum of the light-front quantized theory is simpler than that in the instant form.
Moreover, the Hamiltonian maintains locality with respect to the transverse directions
but it is nonlocal with respect to the longitudinal direction because of the presence of
the constraint equations. In the presence of fermionic (or other) fields interacting with
the scalar fields the constraint equations would relate the fermionic condensates with
the bosonic ones.

We may also consider the still more general case [10] where w, = w,a(7,Z). In order
to implement the constraint 8,(7,%) = 0 and define the brackets {, }* we need now to
invert the matrix

Cab(2,9) = {Bo@ (i)} = [E1- 60s 804+ Vi) + Vi) [dze+.] G-
(2.52)

When w,, given by ws(Aw? —m?) = 0, are zero, the leading term, since I — oo, of
the matrix C is —L(0;0; + m?)6,36*(z — ), while for the case of (Aw? —m?) = 0,
the leading term is L [—6,38;0; + 2m? P, |6*(Z — §), where Py = (wewy)/w? 16 a
projection operator. In both the cases the inverse of the leading term contains a well
defined Green’s function multiplied by an explicit factor of 1/ L. Consequently, in the
continuum, we fall back to the situation similar to that discussed above in connection
with the theory in two dimensions. The final conclusions therl coincide with those
obtained in the beginning of this Section. It is interesting to note that we may now
give a new proof in favour of the absence of the Goldstone bosons in two dimensions
(23] (Coleman’s theorem): Since we have no transverse directiong in two dimensions, the
matrix C, — 2Lm2P,;. It cannot be inverted and we are unable to implement the
constraints g, = 0.

3- Phase transition in (¢*); theory:

We will discuss now the stability of the vacuum in the ¢* theory when the
coupling constant is increased from vanishingly small values to larger values. The
light-front framework seems very appropriate to study this problem. On renormalizing
the theory we have here at our disposal, in addition to the usual equations like the
mass renormalization condition in the equal-time formulation, also the renormalized
constraint equations in the theory. For super-renormalizable theories in two and three
dimensions these eqs. will be shown to contain all the information needed to study
the problemn at hand and they can also describe [24] the phase transition. We showed
in Sec. 2 that the same physical description of the spontaneous symmetry breaking is
obtained whether we use the front form or instant form dynamics in spite of the different
mechanisms in the two cases. The same is seen to be true for the problem we consider
below.
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We recall that there are rigorous proofs [25] on the triviality of ¢* theory in the
continuum for more than four space time dimensions and on its interactive nature for
dimensions less than four when the theory is also super-renormalizable. In exactly
four dimensions the situation is still not clarified [25] and it will be very interesting
to study this case on the light-front since it is pertinent to the Higgs sector of the
Standard Model of Weinberg and Salam [26]. However, due to the complexity of the
renormalization problem in four dimensions we will illustrate our points considering only
the two dimensional theory. From the well established results on the generalized Ising
models, Simon and Griffiths [19] conjectured some time ago that the two dimensional
#* theory should show a second order phase transition. We do seem to verify this
conjecture by studying the theory quantized on the light-front. Variational methods
like the Hartree approximation or Gaussian effective potential [27], using front form but
ignoring the constraint [28], or the one based on a scheme of canonical transformations
[29] all lead to a first order phase transition contradicting the conjecture. The post-
Gaussian approximation [30] and the non-Gaussian variational method [31] give a
second order transition for a particular value of the coupling constant. QOur result
shows it to be of second order for any coupling above a critical coupling as implied by
the mathematical theorem [19]. Our procedure uses the well established Dyson-Wick
expansion [13] of perturbation theory and may be improved squtema.tica].ly computing
still higher order corrections which is not possible to do in the variational methods. From
the considerations on the light-front quantized theory we find that we may not ignore
certain contributions in the theory originating from a finite renormalization corrections.
If we drop them our results are in complete agreement with those obtained in the
variational methods.

G
Renormalization. Phase transition in two dimensions:

On the light-front we need to renormalize the theory with the Hamiltonian

1

Y= f Pz [%(mg + 30?)p? + drp® + %sa‘ + gmiw’ + ikw“], (3.1

in the presence of the constraint equation

L2
w(Aw? +md) + /\IimL_.m% ! dz [Bwp? +¢%] = 0. (3.2)

-L/2
and the light-front commutator obtained in Sec. 2. It is clear that it is not
convenient to eliminate w using (8.2) since the resulting Hamiltonian would be quite
involved. However, we may renormalize the theory based on (3.1) and obtain thereby
a renormalized constraint equation. We have taken here the correct sign for the mass
term and myp indicates the bare mass which is assumed to be nonvanishing, We recall
that there is no physical consideration in the light-front framework to normal order the
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constraint equation. In view of k # 0 we have ¢(k = 0) = 0 (see also ref. [32] which
implies fdzyp =0.

We write MZ2(w) = (m2 + 3Aw?) and choose Hy = My2¢?/2 so that Hins =
Awp?+Ap? /4. The theory being super-renormalizable we need to perform only the mass
renormalization. We could follow as is usually done [33] the old fashioned noncovariant
perturbation theory. However, we could as well use the covariant propagator (as shown
in Appendix A) and use the Dyson-Wick expansion [13] based on the Wick theorem for
exponentials ordered with respect to light-front time 7

Tle' J 25000 | _ o= [ [ 28y i(0)Gotz-0)it) , 18 f Sz i)l

where Gy is the free propagator of the scalar field.
The self-energy correction to one loop order is

—-1Z(p) = —iX, — iEg(p)
= (—i6)1)= Dl(Moz) + (—zGAw)z (—z)Dg (p?, Moz) , (3.3)

where the divergent contribution D; (see (3.5) below) refers to the tadpole graph while
the one-loop second term comes from the cubic interaction vértex and gives a finite
contribution (Appendix A) with a sign opposite to that of the first. Also the symmetry
and other factors from the vertices are explicitly written. We argue below that due to
the presence of w in the second term it is of the same order in A as the first one and thus
cannot be dropped in the one-loop order we will be considering. This term is also quite
relevant for determining the nature of the phase transition. We remind that {p(2)) =0
and the one particle reducible graphs originating from the cubic’term in the interaction
are ignored. The divergences will be handled by the dimensional regularization and we
adopt the minimal subtraction (MS) prescription [34].
The physical mass M(w) is defined [13,34] by

Mo*(w) + Z(p)lpr= M2y = M (w) (3.4)

where p* is the Euclidean space 4-vector and M(w) determines the pole of the
renormalized propagator.  Following the well known procedure of dimensional
regularization we have

Dy(My) =

(27)" /(k2+Moz)
ey 1, Mg o n
4 2)“(4““2)(? NrQ - 5)

(n-2)
“4,, oy — 7 ) (35)
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where the limit n — 2 is understood. From (3.3-5) we obtain

3 1
2r (n—2)’

Here we have taken into account that in view of the tree level result w{iw? + me?) =
w[Mo?(w) — 2Aw?] = 0 the term A%w? ( when w # 0) is, in fact, of the first order in
A and not of the second. We keep the terms only up to first order in A\. We remind,
however, that M; depends on « and which in its turn is involved in the constraint
equation (3.2). The expression of D, is given in the Appendix A; it is finite with the
value D2(p*, M?)|p2=—_p2 = V3/(18M?). To maintain consistency we also replace M,
by M in the terms which are already multiplied by A.
From (3.6) we obtain the mass renormalization condition

V3
Mz

where for convenience of writing we have set M(w) = M and M(w = 0) = m indicating
the physical masses in the asymmetric and symmetric phases respectively. The eq. (3.7)
expresses the invariance of the bare mass mo?. For w = 0 or A & 0 it implies M? = m?
(symmetric phase).

Consider next the constraint equation (3.2). To the lowest order we find [13,20]

M3 w)

Mo} () = M3 (w3 [*r+f( )| +18X202 Da(p, MP) o arat 5= (36)

3

M? —m? = 3 +—In( ) At — (3.7)

3w (p(0)?) ~ 3Mw.iGo(z, z) = 3hw.Di(M),

Np(0)) 2 M=), [ da(To(OP o)

b

— _a)2 — _g)2
= ~6X*wDy(M) = ~6Nw el

(3.8)
where ¢ indicates connected diagram and Ds (Appendix A) is a finite integral with
b ~ 7/3. Teking the vacuum expectation value of the constraint equation (3.2) and

on making use of (3.5-8) we find that the divergent term cancels and we obtain the
renormalized constraint equation

2
Bw)=w [M'2 = 22w? 4 222 ﬁ - (2:)2 };2] =0. (3.9)
We will verify below that 8 coincides with the total derivative with respect to w, in
the equal-time formulation, of the (finite) difference F(w) (see below) of the renormalized
vacuum energy densities in the asymmetric (w # 0) and symmetric (w = 0) phases in the
theory. The last term in § corresponds to a correction ~ A(Aw?) in this energy difference
and thus may not be ignored just like in the case of the self-energy discussed above.
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In the equal-time case (3.9) would be required to be added to the theory upon physical
considerations. It will ensure that the sum of the tadpole diagrams, to the approximation
concerned, for the transition ¢ — vacuum vanishes. The physical outcome would then
be the same in the two forms of treating the theory here discussed. The variational
methods write only the first two (= tree level) terms in the expression for # and thus
ignore the terms coming from the finite corrections. A similar remark can be made
about the last term in (3.7). Both of the egs. (3.7) and (3.9) and the difference of energy
densities above are also found to be independent of the arbitrary mass scale introduced
in the dimensional regularization and contain only the finite physical parameters of the
theory. The finite renormalization corrections alter the critical coupling and the nature
of the phase transition compared to what found in the case of the variational methods.

Consider first the symmetric phase with w =~ 0, which is allowed by (3.9), and
for which M? ~ m? as follows from (3.7). The latter also allows us to compute
BM?[Bw = 22w(3 — VA MY)/[1 + 3)0/(4nM?) — v/3)2w? /M*] which s needed to
find B = df/dw. lts sign will determine the nature of the stability of the vacuum
corresponding to a particular value of w obtained from (3.9). In the symmetric phase
we obtain 8'(w = 0) = MZ[1 — 0.0886()/M?)?]. It changes the sign from a positive
value for vanishingly weak couplings to a negative value when the coupling increases. In
other words the system starts out in a stable symmetric pha.se'for very small coupling
but goes over into an unstable symmetric phase for values above the small coupling
gs = A /(27m?) ~ 0.5346.

Consider next the case of the sponiancously broken 3ymmet‘:ry phase (w # 0). It
follows from (3.9) that the nonzero values of w are found from

M? —2)0? + Q =0, (w # 0, (3.10)

where we made use of 2Aw? ~ M? in the zero order approximation when w s 0. The
mass renormalization condition now reads as

2
M? —m? =3\ + % m(%) - ,\?, (3.11)

On eliminating w from (3.10),(3.11) we obtain the modified duality relation

M,)—t— V3, -0 (3.12)

which can also be rewritten as [Aw? + m? + (3)/(47))in(m?/M?)] = 0 and it shows that
the real solutions exist only for M? > m?. The finite corrections found here are again
not considered in the references cited in Sec. 1, for example, they assume (or find) the
tree level expression M? — 2Aw? = 0. In terms of the dimensionless coupling constants
g = A/(2em?) > 0 and G = A/(2rM?) > 0 we have G < g. The new self-duality eq.
(3.12) differs from the old one [27,28] and shifts the critical coupling to a higher value.

1 2
§M+ —l(
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We find that: i) for g < g, = 6.1897 (eritical coupling) there is no real solution for G,
it) for a fixed g > g. we have two solutions for G one with the point lying on the upper
branch (G > 1/3) and the other with that on the lower branch (G < 1/3), of the curve
describing G as a function of g and which starts at the point (g = g. = 6.1897,G = 1/3),
#1) the lower branch with G < 1/3, approaches to a vanishing value for G as ¢ — oo,
in contrast to the upper one for which 1/3 < G < ¢ and G continues to increase. From
(3.11) and B = w[M? —2)w? + /31 /2] we determine 8’ ~ (14 0.9405G) which is always
positive and thus indicates a minimum of the difference of the vacuum energy densities
for the nonzero values of w.

The energetically favored broken symmetry phases become available only after the
coupling grows to the critical coupling g. = 6.18969 and beyond this the asymmetric
phases would be preferred against the unstable symmetric phase in which the system
finds itself when ¢ > g, = 0.5346. The phase transition is thus of the second
erder confirming the conjecture of Simon-Griffiths. If we ignore the additional finite
renormalization corrections the well known results following from the variational
methods are reproduced exactly in our calculation, e.g., the symmetric phase always
remains stable but for ¢ > 1.4397 the energetically favored asymmetric phases also do
appear, indicating a first order transition. '

Vacuum energy density:

The expression for the vacuum energy density in the comventional equal-time
formulation is given by

E(Ld) I]_(M(])"" m02w2 + A -I- A 3. D1(Mo) +(—36)u.u)’— —.D3(Mo), (313)

where the symmetry and other factors are explicitly written. The first term is the energy
density with respect to the free propagator with mass My? and is given by [27]

1 1 /o
Ii(Mo) = (2—)@/4(""”& 5 VE? + My?

M,
(4 )!’ ( """")
M1 2
4 2[(2—

o 2

ot (3.14)

4 ,u"’)]

The D;”? term represents the two-loop correction of the order A in the coupling
constant and so does the last one in view of the discussion above except for that
it gives a finite contribution and carries an opposite sign. We remark that the
last term is non-vanishing even in the light-front framework. Here we find in the
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integrand 8(k)6(k')0(k" )6(k + k' + k") multiplied by another distribution. The product
distribution, however, may not be considered vanishing. The last term of (3.9)
corresponds to the derivative with respect to w of the last term in (3.13). In the
variational methods this term is found ignored.

A finite expression for the difference of the vacuum energy densities in the broken
and the symmetric phases, which is also independent of the arbitrary mass g introduced
in the dimensional regularization, is obtained to be [24]

F(w) = W) — Ew = 0)

= (Mzs_w"‘z) (m +3,\w2)1n( )+ 2[ ln(—)]
§ miu? 4 "w Y zsAw)z.%.D?(M) . (3.15)

We verify that (dF/dw) = B and d?F/d*w = ' to the one-loop order. Except for the
last term it coincides with the results in the earlier works. From numerical computation
we verify that at the minima corresponding to the nonvanishing value of w the value
of F is negative and that for a fixed g it is more negative for, the point on the lower
branch (G < 1/3) than for that on the upper branch (G > 1/3). To illustrate we
find: for ¢ = 6.366 and G = 0.263 we get |w| = 0.736, F = —0.097\ while for the
same g but G = 0.431 we find |w| = 0.617, F = —0.082). For ¢ = 11.141 and
G = 0.129 we get |w| = 1.050, F = —0.174) while for the same ¢ but G = 1.331
we find |w| = 0.493, F = —0.111\. The symbolic manipulation is convenient to handle
(3.7) and (3.9). P
4- Conclusion:

The present work and the earlier one on the mechanism of spontaneous continuous
symmetry breaking [9,10] add to the previous experience [1-8] that the front form
dynamics is a useful complementary method and needs to be studied systematically in
the context of QCD and other problems. The physical results following from one or the
other form of the theory should come out to be the same though the mechanisms to arrive
at them may be different. In the equal-time case we introduce external considerations
in order to comstrain the theory while the analogous conditions in the light-front
formulation seem to be contained in it through the self-consistency equations. In the
discussion of the phase transition in ¢* theory the finite renormalization corrections
should also be taken in to account. In any case both the light-front and the equal-time
(space like) hyperplanes are equally valid for formulating the field theory dynamics.
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Appendix A
Light-front propagator:

The propagator for the free (e.g., in the interaction representation) massive scalar
field is defined by iGy(z;2’) = {0|T{p(z, T)¢(z’,7')}|0}), where T indicates the ordering
in light-front time r. On using the momentum space expansion and commutation
relations of the operators we arrive at

iGo(z,0) = o= [ SOE)[B(r) e Ce+aD pg-myei=tan], ()

where 2kex = m?. Consider next the usual Feynman propagator, where we change the
variables from k%, k% to kt = (k°+k1)/v2, k— = (k°—k?)/v2 with —c0 < k+, k™ < o0,

tdk~ i s
f / 4?2:; G ) D) + 8RN TN, (42)

and where we have inserted the identity 1 = [0(k*) + 6(—k™*)] valid in the sense of
distribution theory. We rewrite this expression as

/] dk'*’dk"i e—iktz+k™7) o(k*) N e—i(k"'z-i-l;":r) o(—kt)
@Y L2kF (k= —e(k¥) + i) © 2k (k— — e(k+) — i)
where n(k*) = m?/(2k*). Next we make the change k* — —k*, k= — —k~ in the

second term to recast it as

dk*+dk— e—i(kTe+k™ 1) etiktz+k~7)
| + ” ]
@)y TEF (k- — (k") +19) | 26F (- — n(k7)  86)

If we make the rule that the £~ integration has to be performed first we obtain, on
using the well known integral representations of 8(r), the light-front propagator (4.1).
Inversely we could introduce these representations directly in (A.1) and arrive at (A4.2).
In the gauge theories with the infrared singularities also present we need to find an
adequate procedure to regulate (subtractions) the integrals in momentum space before
so as to ensure that the £~ integration may be performed first. We recall that also in

the equal-time formulation similar arguments requiring that the k° integration be done
first are made [35].

Integrals D, Dj:

The finite integrals appearing in the text are well known and easily computed after
transforming them to the Euclidean space integrals by Wick rotation as usual

&’k 1

P72 M0) = | Gy G o~ R + 0

(A3)



29 - CBPF-NF-075/93

&kt diq 1
Ds(M) = .// (27) (27)2 (k2 + M%)(q* + M?)[(q + k)? + M?]’
1 b
(47’)2M2 ./ ./ dmdyll -y +ay(l - 3?)] (4m)2M2’

We find Da(p? = —Mp?, My?) = V3/(18Mp?). We could alternatively perform the
corresponding computation using the propagators in (A.1) and follow the old fashioned
perturbation theory [36] obtaining the same results.

(A4)
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