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1- Introduction:

Dirac [1] suggested the possibility of building dynamical theory of a physical system
on the three dimensional hypersurface in space-time formed by a plane wave front
advancing with the velocity of light. The initial conditions on the dynamical variables
are here specified on the hyperplane (light-front), say, v = (z° + 2%)/v/2 = 0, which
has a light like normal- the front form dynamics. The conventional formulation uses
instead the z° = t = 0 hyperplane- the instant form dynamics. In both the cases
the separation between two points is space like in general which may become light like
in particular cases. Latter the front form dynamics was rediscovered by Weinberg [2]
in the infinite momentum frame rules in the quantized field theory. The rules were
clarified by Kogut and Soper [3] to correspond to the theory quantized on the light-
front. Even earlier [4] the p — co technique played an important role in the derivation
of the current algebra sum rules and it was also observed that it amounted to using
appropriate light-front current commutators. The recent revival of interest [5,6] in the
light-front theory has been motivated by the difficulties facet'i in the nonperturbative
QCD in the conventional formulation. We have the problem of reconciling the standard
constituent (valence) quark model and QCD, where the vacuum state itself contains
an infinite sea of constituent quarks and gluons ( partons), to describe the hadrons.
The problem of describing relativistic bound-state of light quarks in the presence of
the complicated vacuum in the instant form seems difficult bat it was found that the
Light-front Tamm-Dancoff method [5] may be feasible. The front form dynamics may
serve as a complementary tool where we have a simple vacuum while the complexity
of the problem is now transferred to the light-front Hamiltonian. This was illustrated
recently also in the light-front quantized scalar field theory where it is found [7] to
be nonlocal, in contrast to the polynomial form of the equal-time formulation, due to
the presence of a constraint equation in the theory which allows also to describe the
spontaneous symmetry breaking. It was shown {7] that the physical outcome in the
case of continuous symmetry is the same in the two forms of dynamics, however, it is
achieved through different mechanisms. In fact, we will show that in the case below
many of the external ingredients, which we usually add to the scalar theory treated in
the insiant form upon invoking the physical considerations, are already contained in

the front form through a set of self-consistency constraints.

The simplicity of the light-front vacuum, which may often coincide with the free
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theory one, derives in particular from the observation that the longitudinal momentum
kt = (k°+k%)/v/2 of a free massive particle is necessarily positive. Another general
feature of the front form theory is that it describes a constrained dynamical system. The
Dirac procedure [8] to construct a self-consistent Hamiltonian formulation is convenient
to use. The theory may be quantized via the correspondence of the Dirac brackets with
the commutators of the corresponding operators and these brackets, available in the
Hamiltonian framework, are again useful for unifying [1] also the principle of (special)
relativity in the theory. We also note that if we assume the microcausality principle
both the equal-time and equal-r commutators of two, say, scalar observables may take

nonvanishing values only on the light-cone.

We discuss in the paper the stability of the vacuum in the ¢* theory when the
coupling constant is increased from vanishingly small values to larger values. The light-
front framework seems very attractive to study this problem. On renormalizing the
theory we have now, in addition to the usual equations like the mass renormalization
conditions, also the renormalized constraint equations to deal"‘with. In our context we
remind that there are rigorous proofs [9] on the triviality of ¢* theory in the continuum
for more than four space-time dimensions and on its interactive nature for dimensions
less than four. In the important case of four dimensions the situation is still unclear {9]
and light-front dynamics may throw some light on it. In view of the complexity of the
renormalization problem in this case we will illustrate our péints by considering only
the two dimensional theory, which is of importance in the condensed matter physics.
For example, from the well established results on the generalized Ising models, Simon
and Griffiths [10] conjectured some time ago that the two dimensional ¢* theory should
show the second order phase transition. We do find it to be so by quantizing the
theory on the light-front. The variational methods based on the instant form like
the Hartree approximation or Gaussian effective potential [11], or the one based on a
scheme of canonical transformations [12], or using the front form theory but ignoring
the constraint {13], all seem to give a first order phase transition contradicting the
conjecture. The instant form post-Gaussian approximation [14] and the non-Gaussian
variational method [15] give a second order transition for a particular value of the
coupling constant. Our result shows second order transition for any coupling above a
critical value. In view of the remarks made at the end of the first paragraph front form
theory should be able to throw light on this quite old problem. The procedure used
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in the paper is the well established Dyson-Wick expansion [16] of perturbation theory
and may be improved systematically computing still higher order corrections which is
difficult to do in the variational methods. A brief sketch of the front form Hamiltonian
formulation is given in Sec. 2, the renormalization and the phase transition are discussed

in Sec. 3, and the conclusions summarized in Sec. 4.

2- Light-front Hamiltonian formulation:

The Lagrangian density in the front form is given by [q'5¢' — V(¢)], where an
overdot and a prime indicate the partial derivatives with respect to the light-front time
T = 2t = (z° + 2')/V2 and the longitudinal coordinate z = z~ = (2 — 21)/V2
respectively. The eq. of motion is 2¢' = —V'(g), where a prime on V. indicates the
variational derivative with respect to ¢. It shows that the classical solutions, ¢ = const.
are allowed and given by solving V'(¢) = 0. We write [7] ¢(z,7) = w(r)+p(z,7) where
the variable w corresponds to the bosonic condensate and ¢ describes the fluctuations
above the former. Qur interest being in the ground state we assume (in view of the
translational invariance of the vacuum) w to be independent of 7. The Lagrangian then

reads as

-

L/2
j dz [p¢' — V(4] (2.1)
L2

where L — o0 and V(¢) = (1/2)mo?¢? + (A/4)¢* + const., A ; 0, with the correct sign
for the bare mass term. The Lagrangian being singular we follow the Dirac method [8] to
construct the Hamiltonian which describes the evolution of the system in 7. Indicating
by #(z,7) the momenta conjugate to ¢(z,7), the primary constraint is found to be
® = 7 — ¢’ ® 0 while the canonical Hamiltonian density is H, = V(¢), with the
symbol »s standing for the weak equality. We postulate the standard Poisson brackets
with the nonvanishing one give by {7(z,7),¢(y,7)} = —é(z — y) and adopt for the

preliminary Hamiltonian

H'(r) = Ho(r) + f dy u(r, y)(r,y), (22)

where u is a Lagrange multiplier function. We find

é = {,H'}~ — V'($) - 20 (2.3)
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The persistency requirement ® = 0 results in a consistency condition for determining
u and does not generate a new constraint. The constraint ®(z)} = 0 is second class
since, {®(z),®(y)} = —26:6(z —y) = C(z,y) = —C(y,z) # 0. The unique inverse
with the correct symmetry property is C‘l(m; y)=—-CYy,z) = —e(z —y)/4 so that
the the equal-r Dirac bracket {,}p may be defined by

(f(@.90)}p = 1@.0w} + [ [ dudvif@) sletu - )30 0w} (29

Since {f,®}p = 0 for any arbitrary functional f(p,7) we may set now = = ¢’ even
inside the Dirac bracket and (2.2) reduces to the following light-front Hamiltonian

L/2 :
HY- = / dz [w(,\w" +mo®)p + %(3)«»2 +mo®)p? + dwp® + %sO‘ + cmst-]- (2.5)
—-L/2

From (2.4) we derive also {¢(z,7), (v, 7)}p = ~(1/4)e(z — 3).
The quantization is done by associating to each dyna.micai variable a field operator
and we make the correspondence ¢{f,9}p — [f,g] where [f,g] indicates a commutator

(or anticommutator) between the operators. The well known light-front commutator

[o(z, ), p(y, 7)) = —(i/4)e(z — y). / (2.6)

is then reobtained. Its right hand side is not a delta function and does not vanish
for distinct points with 2~ # y~ on the light-front z+ = 7 in contrast to the case of

equal-time commutator. The antisymmetry property of the commutator requires that
we define €(0) = 0. The Hamilton’s eq. is found to be

@z, 7) = {p(z, ), H- (m)}p

2.7
— -3 [dee -9 vis,m) &0

and we recover the Euler-Lagrange eq.
#(a7) = =3 V(9(z,) (28)

assuring us of the self-consistency [8]. If we substitute the value of V’(4) obtained from
(2.8) into (2.7) we find on an integration by parts
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§z,7) = 927 - 3 [ploo o0 = 2) ~ (-0, )0 = 2)|.  (29)

For finite £ we obtain ¢(00,7) + ¢9(—00,7) = 0. On the other hand the commutator

(2.6) may be realized in the momentum space through the expansion

——-1— - @a e ¥z a]L S
""””)‘\/z—«f_md"\/z—k”"” e+ af(k,r)ete (2.10)

where a(k,7) and at(k, 7) satisfy {a(k, ), a(k’, T)T] = 6(k — k') etc. Now if we integrate
the momentum space expansion of ¢'(z, ) over z we show that (oo, T)—¢(~00,7) = 0.
Combining this with the condition obtained above we are led to dr¢p(+o00,7) = 0 as
another consistency condition. This is similar to 8;p(z* = o0,t) = 0 which in contrast
is added to the equal-time theory upon invoking physical considerations.

The following nonlocal consiraint equatio.n in the front form theory then follows
if we integrate the Lagrange eq. of motion (2.8) over the coordinate z and use the

constraint just obtained .
i

Lj2
B(1) = ww? + mp®) + IimL...m%/

da [ (33? + mo?)p + A(Bwg? + ¢*)| =0.
—-L/2

(2.11)
Eliminating w using (2.11) would result in a nonlocal and invelved Hamiltonian in the
place of the local and polynomial type .a.dopted in the conventional approach. At the
tree level since the ¢ is an ordinary bounded function, the second term in the expression
of 3 in (2.11) drops out and we obtain the conventional result V'(w) = 0. The extension
[7] to 3+1 dimensions and the continuous symmetry is straightforward. In fact, general
arguments which include the microcausality postulate may be given on the light-front
to show the possibility of the appearance of nonlocality in the longitudinal coordinate,
while the theory remains local in the transverse ones. We do find in ref. 1 some
examples where constraints on the potential arise due to the necessity of incorporating

special relativity in the theory.

3- Renormalization. Phase transition in two dimensions:

The theory based on (2.5), (2.6), and (2.11) may be renormalized. We do

not solve (2.11) but instead obtain the renormalized constraint equation. We set
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ME(w) = (m} + 3\w?) and choose Hy = Mp?p?/2 so that Hiny = Awp® + Apt/4.
In view of the superrenormalizability of the two dimensional theory we need to do only
the mass renormalization. We assume that the bare mass is nonvanishing so that [17]
fdzp(z,7) = V27 p(k = 0,7) = 0, e.g., k = k* > 0, and the corresponding term in
(2.5} and (2.11) drops out. We could follow as is usually done {18] the old fashioned
perturbation theory, but the Dyson-Wick expansion based on the Wick theorem [16]

Tle' [ #2i@0@) | _ =4 [ [ #280i(2)Go(z-9)itw) , (i f Pz i@)ele))

is convenient. Here T indicates the ordering in 7 and Gy is the free scalar field
propagator. |

The self-energy correction to the one loop order is

—iZ(p) = —i%; ~ iS2(p) 1

= (-i6N); DM + (6N (~)Da(PP M), (3)

where the divergent contribution D; refers to the one-loop tadpole while Dy to the one-
loop finite contribution coming from the p* vertex. The latter curries the sign opposite
to that of the first and it will be argued below to be of the same order in \ as the first
one, because of the presence of w in it. We have shown explicitly the symmetry and
other factors in (3.1). The one particle reducible graphs comi#ig from the cubic vertex
are ignored and also {p(x)) = 0. On using the dimensional regularization [19] with the

minimal subtraction prescription.

1 d"k 1, M,? n
= _ = 4(r—2) (0 \(§-1) —_—
{n—2) 2
¢ 2 Mo
4w [(2 —n) 7= In{ 4mp? )] (3.2)

where the limit n — 2 is to be taken at the end and we suppress the terms which vanish
in this limit. Also

d*k 1
(27)? (k2 + M)[(p — £)? + Mo”]’

V3
BMZ'
(3.3)

Dz(stMoz) =

Dz(pzi Mg)lp’=—Mu’ =
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The physical mass M(w) is defined [16,19] by

Mo*(w) + Z(p)lpr=-mr(w) = M*(w) (3.4)

where p” is the Euclidean space 4-vector and M(w) determines the pole of the

renormalized propagator. We obtain from (3.1-4)

Mo?(w) = MY @)+ 52 [+in (Mz(“’)

)] +18)%w2 Dy (p, M2)|,,,__M,+ ( 5 (39)
Here we have taken into account that in view of the tree level result w{Aw? + my?) =
w[Mo?*(w) — 2Aw?] = 0 the correction term A2w? ( when w # 0) is, really of the first
order in A. We ignore terms of order A? and higher and remind that M, depends on w
which in its turn is involved in the constraint équation (2.11). To maintain consistency
we replace My by M in the terms that are already multiplied by .

From (3.5) we obtain the mass renormalization condition

M —m? =3\ + 3 — Azwzm\@’- (3.6)

4r I %)
where M(w) = M and M(w = 0) = m indicate the phsyical masses in the asymmetric
and symmetric phases respectively. The eq. (3.6) expresses the invariance of the bare
mass and for w = 0 or A = 0 it implies M? = m2.

We deal next with the constraint equation (2.11). To the lowest order {16} we find

for the relevant vacuum expectation values

30 ({p(0)?) = 3Mw.iGo(z, ) = 3Mw.Dy (M),

AMp(0)?) 2 M—idw)s. ] dz(T(p(0) p(2)*)",

b

— 22 o _B\%,
= -6\ st(M) 6A w(41l')2M2,

(3.7)
where ¢ indicates connected diagram and [16] Dj; is a finite integral like D; with three
denominators and a numerical computation gives b ~ 7/3. From (2.11) on making use of
(8.5-7) we find that the divergent term cancels giving rise to the renormalized constraint

equation
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Alw) =w {M2 EPSVE BT R B ] =0, (3.8)

M2 (47) M?

We will verify below that f coincides with the total derivative with respect to
w, in the equal-time formulation, of the (finite) difference F(w) (see Sec. 3 below) of
the renormalized vacuum energy densities in the asymmetric (w # 0) and symmeiric
(w = 0) phases in the theory. The last term in § corresponds to a correction ~ A(Aw?)
in this energy difference and thus may not be ignored just like in the case of the self-
energy discussed above. In the equal-time case (3.8) would be required to be added
to the theory upon physical considerations. It will ensure that the sum of the tadpole
diagrams, to the approximation concerned, for the transition ¢ — vacuum vanishes (19].
The physical outcome would then be the same in the two forms of treating the theory
here discussed. The variational methods write only the first two (= tree level) terms in
the expression for 8 and thus ignore the terms coming from the finite corrections. A
similar remark can be made about the last term in (3.6). Both of the eqs. (3.6)"and
(3.8) and the difference of energy densities above are also foti{.ld to be independent of
the arbitrary mass scale introduced in the dimensional regularization and contain only
the finite physical parameters of the theory. .

Consider first the symmetric phase with w = 0, which is allowed from (3.8). From
(3.6) we compute OM? /8w = 2Xw(3— V3A/M?)/[1+3)/(4n M2) — V3A%w? /M*] which
is needed to find ' = df/dw = d? F/dw?, the second derivative of the above mentioned
energy difference. Its sign will determine the nature of the stability of the vacuum.
We find §'(w = 0) = M?[1 — 0.0886(\/M?)?], where by the same arguments as made
above in the case of # we may not ignore the A\? term. The ' changes the sign from
a positive value for vanishingly weak couplings to a negative one when the coupling
increases. In other words the system starts out in a stable symmetric phase for very
small coupling but passes over into an unstable symmetric phase for values greater than
gs = A, /(2em?) ~ 0.5346.

Consider next the case of the spontancously broken symmetry phase (w # 0). From
(3.8} the values of w are now given by

V32X

M2 - 2/\w2 + T = 0, (w # 0), (3.9)

where we have made use of the tree level approximation 2Xw? ~ M? when w # 0. The

mass renormalization condition becomes
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32, m? V3

2_ 2 _aqy 2, A, M. VI .
M*—m®* =3\ + o In(Mz) A 5 (3.10)
On eliminating w from (3.9) and (3.10) we obtain the modified duality relation
1 2, 3, m? V3

which can also be rewritten as [Aw? +m? + (3X/(47))in(m? /M?)] = 0 and it shows that
the real solutions exist only for M? > m?. The finite corrections found here are again
not considered in the references cited in Sec. 1, for example, they assume {or find) the
tree level expression M? — 2Aw? = 0. In terms of the dimensionless coupling constants
g = A/(2xm?) > 0 and G = A/(2xM?) > 0 we have G < g. The new self-duality eq.
(3.11) differs from the old one [11,13] and shifts the critical coupling to a higher value.
We find that: i) for ¢ < g. = 6.1897 (critical t.:oupling) there is no real solution for G,
i) for a fixed g > g. we have two solutions for G one with the point lying on the upper
branch (G > 1/3) and the other with that on the lower branch (G' < 1/3), of the curve
describing G as a function of ¢ and which starts at the point (g = gc = 6.1897,G = 1/3),
#1) the lower branch with G < 1/3, approaches to a vanishing value for G as g — oo,
in contrast to the upper one for which 1/3 < G < g and G continues to increase. From
(3.10) and 8 = w[M? —2)w? + /31 /2] we determine ' & (1+0.9405G) which is always
positive and thus indicates a minimum of the difference of the vacuum energy densities
for the nonzero values of w.

The energetically favored broken symmetry phases become available only after the
coupling grows to the critical coupling g. = 6.18969 and beyond this the asymmetric
phases would be preferred against the unstable symmetric phase in which the system
finds itself when ¢ > g, ~ 0.5346. The phase transition is thus of the second
order confirming the conjecture of Simon-Griffiths. If we ignore the additional finite
renormalization corrections we obtain complete agreement with the earlier results, e.g.,
the symmetric phase always remains stable but for g > 1.4397 the energetically favored
asymmetric phases also do appear, indicating a first order transition.

Vacuum energy density:

The expression for the vacuum energy density in the equal-time formulation is given
by
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E(w) = h(Mo) + 5 m02w2+ iL«r +’\ 2 1 1

79"+ 73.Du(Mo)" + (- i6w)’. 5

5-Da(M). (3.12)

Here the first term is the vacuum energy density with respect to the free propagator
with mass My? and is given by [11]

1 nenyy 1 [7 z_ M,® 1 n
400 = Gy [ 47 5 HM Gy TR
MEip 2
(n-2) Mo 1 _ .
—H 47 2 {(Z—n)+1 4,‘.”2)] (3.13)

The D,? term represents the two-loop correction of the order A and so does the last
one in view of the discussion above except for that it is finite and carries an opposite
relative sign. We remark that the last term is non-vanishing even in the light-front
computation where we find in the integrand 8(k)8(k’)9(%" )6(k + k' + k') multiplied by
another distribution. This product, however, may not be cohsidered vanishing. The
last term of 3 in (3.8) corresponds to the derivative with respect to w of the last term
in (3.12). -

From (3.5) we have MZ = M’[l + (3A/(2rM2)){A + 1/(n — 2)}] where A =
(4r) [(I/SN)In(Mz/pz) + 3z\w2Dg] i® = 4mplexp(—~), and 7 = 0.5772. We rewrite
(3.12) as

M® aeyM? 1
(4r) I‘(l- )_“( 2)F(z--n)

3\ [ M™"-2)
* Gy lam 70

) e

2
G-mlA

N[ M O 1o 1
+a " o 370 - - gl

(n—2) 8A 1 + m§ 1
(472 (2—-n)? " 4x (2—-n)

+(—i6)\w)2.%.D3(M) +u (3.14)
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Except for the last two terms containing the poles the expression involves only the finite
terms. Taking the limit » — 2 we obtain the following finite expression for the difference

of the vacuum energy densities in the broken and the symmetric phases

Fw) =€Ew) ~ Ew = 0)

= (_M_:;_f"_‘;z_) o (m? +3)\w2)1n( )+ ln( )]
1 ) .
+ 5m? + Zwt + ﬁ.(—zﬁz\w) .E.Ds(M), (3.15)

which is also found to be independent of the arbitrary mass u on using (3.6).

We verify that (dF/dw) = 8 and d®F/dw? = B' and except for the last term in
(3.15) it coincides with the result in the earlier works. From numerical cornputation
we verify that at the minima corresponding to the nonvanishing value of w the value
of F is negative and that for a fixed ¢ it is more negative for the point on the lower
branch (G < 1/3) than for that on the upper branch (G > 1/3). To illustrate we
find: for ¢ = 6.366 and G = 0.263 we get |w| = 0.736, F # —0.097X while for the
same g but G = 0.431 we find jw| = 0.617, F = —0.082X. For ¢ = 11.141 and
G = 0.129 we get jw| = 1.050, F = —0.174) while for the same g but G = 1.331
we find |w| = 0.493, F = —0.111A. The symbolic manipulation was found very handy
in treating the coupled egs. (3.6) and (3.8).

4- Conclusion:

The present work and the earlier one on the mechanism of spontaneous continuous
symmetry breaking [7] add to the previous experience [2-6] that the front form dynamics
is a useful complementary method and needs to be studied systematically in the context
of QCD and other problems. The physical results following from one or the other form
of the theory should come out to be the same though the mechanisms to arrive at
them may be different. In the equal-time case we are required to introduce external
considerations in order to constrain the theory (e.g., in the variational methods) while
the analogous conditions in the light-front formulation seem to be already contained
in it through the self-consistency equations. The phase transition of the second order
in the two dimensional ¢* theory follows if we include also the finite renormalization
corrections and without them our results agree with those obtained in the variational
methods,
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