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Abstract

We have made the complete calculation for pp'+A++ﬂ_p
diffractive dissociation reaction at high energy in the frame-
work of the Three Components Deck Mcdel. This calculation suf
fers from some difficulties originated by the (3/2%,3/72%,17)
vertex that appears in one of the components. We give the main
technical details and so this paper remains essentially tech-
nical. Our conclusion, based on the results obtained is that
the structures of "zeros" or dips predicted by the Model can
not be analytically seen because of the complexity of the for
mulae involved. But we have perfofmed numerical calculations
for several distribuﬁions. A strong interference among the
three components may appear according to a particular choice

of the parameters.

Key-words: Diffractive dissociation; Deck model.
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I. INTRODUCTION

In the last years, the Diffractive Dissociation Reac
tion (DDR) in strong interactions was almost exhaustively studied
from a phenomenological point of view?. At high energy, these
reactions have peculiar characteristics and are intrinsically
associated to the vacuum of the Regge Theory (the Parneron-(P)).
More recently there has been an increasing interest in Quan-
tum Chromodynamics, or in general, in the results of gauge the-
ories. As a consequence experimental and phenomenological works
show a clear orientation in the sense of testing such theories.
But (DDR) and in general diffractive aspects of hard scat-
tering exhist and dominate high energy regime and many prob-
lems are undefined. We think that in the next future, a solid
bridge must be constructed between Quantum Chromodynamics and
Regge behaviour. Perhaps the Dual Topological Unitarity? is
an adequate approach, for it adds dual interesting aspects. In
this sense, the vacuum of several theories and different points
of view must be unified.

In this paper we have concentrated in a particular

(DDR)

pp » A D (1)

or the spin parity structure

(1/2)" (/)" » 3/2)7 ()" (w/*? (2)
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in the scope of the Three Components Deck Model (T C D M ) 7.
This model has been very successful in describing experimental
results. Its main success consists in the description of mass-
-slope-angular correlation phenomena that appears differently
in each particular reaction. These effects are not understood
if we do not consider the three components contributions. 1In
this sense the net slope given by (T C D M) is a conseguence of
the interference of these components dictated by spin - parity
structures for each reaction.

We have performed many calculations" for several re-
actions. Our results have indeed confirmed the expectations of
(T C D M). It has been shown® that it is essential to con-
sider duality in (T C D M) because it is the only correct treat
ment for the three channel and gives results that are compara
ble with experiments. In order to apply in all cases the main
ideas of this model, in the present case we have first exam-
ined the model without dualization for reaction (1). This
means that we are presently interested only in the interference
mechanism at the level of the helicity amplitudes with the
Born terms.

In next section we treat each particular vertex in-
volved in interaction (1). The particular Delta-Delta-Pomeron
(AAP) vertex with spin -Parity (JP) structure (3/2+,3/2+,1_)
gives a very complicated contribution to our amplitude, and
this calculation is one of the main features of this paper. To
take into account all difficulties and therefore completely solve
the problem, we will be obliged to do a lot of detailed calculations,

making this paper a very technical one. But the solution of
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this case is very important to complete the systematics of the
(T C D M) for all (DDR). Further we calculate the (AAP) ver-
tex from a general hypothetical reaction A-hadron elastic with
P_ exchange. The principal hypothesis used to obtain the most

c*¥® that represent the vertex

simple tensor structure of the
(AAP) is the s-channel-helicity conservation (SCHC) for (P)-
—-exchange, and the Photon - (P)-analogy (YPA) or vectorial cou
pling hypothesis (VCH)®. To obtain the quantitative value of

Ianp coupling constant we use the optical theorem and Irpp de
pends only on the experimental asymptotic cross-section. In
section Il we describe the (T C D M) and its application to pp+A++ﬂ_p
reaction. We also give the currents used in each component of

the (T C D M) which are the 7-exchange or t.-channel, the A-ex-

1

change or ul—channel, and p-direct-pole-exchange or S, channel
components, respectively referred here as T, U and S-compo-
nents. These three components are coherently added to give the
total amplitude A. In section IV we define the helicity ampli-
tudes with their high energy approximations (HEA). The helicity
amplitudes are given in the end of this section IV as a func-
tion of the invariants, masses, angles and known coupling con
stants only.

Finally, section V is devoted to the discussion of
the main points and to our final conclusions about this appli
cation of the (T CDM). A set of technical appendices (A,B,C,D
and E) with the detailed calculations is given. In order to
read the paper without calculations we can follow the text and

forget these appendices. The kinematical and notations are

defined in appendix A, the 3/2-wave functions is given in ap-
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pendix B, currents and couplings in appendix C, the behaviour
of currents at high-energy conditions in appendix D and tables
of useful formulas in appendix E.

In a next paper we will present a partial wave expan
sion of the helicity amplitudes. This is very important in or
der to study the interferences and consequently the slopes in

each partial wave as appears in several experiments.

II. THE HELICITY CONSERVATING AAP COUPLING

As we emphasize 1in the introduction, the vertex
(ANP) = (3/2+,3/2+,l-)(EJP) is the principal complication of
this paper. Then, we decide to begin with this point and ex-
plicitly calculate the structure of this tensorial vertex cHve,
The complete form of c*VY can be found in reference {[6]. But,
with some hypothesis - see below - we can arrive at the sim-
plest form for cHV® which is more adapted to our problem. This
form will be applied to (T C D M) when treating the pp - A++1T_p (DDR)
as we will see in the next section. It is well known that the
(SCHC) 7 for P-exchange is experimentally verified for high e-
nergy phenomena. The current associated to diffractive subre-
action Ap > Ap (see fig. Alb) is obtained in appendix C (C-12),
through the (V C H) for the Pomeron. Therefore we must im-
pose to it the (SCHC). To do this, let us consider a hypothetdi
cal diffractive elastic reaction, A(p) +h(g) > A(p')+h(g") where
h can be a pion or a nucleon and the p, q, p' and q' stand for

the associated 4-vectors. In all cases the current connected
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to h-P-h vertex, following (C-3) and (D-10) is given by

g ' B B
Jpn (@' /@) = 29,0
where,
1
Q == (g+g") . (3)
2
The helicity amplitudes for this reaction, AAh(k',A)

are proportional to the currents scalar product, JiA(X',A)Jm]B.

We use this fact, spatial reflexion (SR) and time reversal
symmetries in order to stablish the helicity states indepen-
dently of the particular form of the equations (C-12). So we

obtain the following relations between differents amplitudes,

A (=A', =) y (A=A

AR (-1

A (AT, A) (4)

(A"=2) .
(-1) AAh(A P A) (5)

Ay (A A1)

B

Looking to the current JAA

{A',2) and taking into account these
relations (4) and (5) we have a substantial reduction of the
number of amplitudes i.e., from sixteen to six independent

ones only. Using the subsidiary condition (B—2),pudé+)qu):o,

the APA coupling, can be written as

Cqu uv_B Gqu

= g9 Y+ (6)

where,
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g

Gqu Uvp B 1 u_Bv uB

1
= g,9 + = g, (p'g" Y+ g"Pp Yy« 2 g, p¥Pp" Y (7)
2 , 73 L b

1 '
and P = = (p-p').

2

Now, from the explicit Rarita-Schwinger wave functions
in the helicity and momentum representation (B-21) and, the

coupling (6) we may write the independent currents, as,

B _ = HBv — - u- _B
J " (3/2,3/2) e G g u.u pe Uy, (8a)

{
+
Q

=
™M
m
o
<
o]

gf(1/2,3/2) =

u
U+ V+ — +

(e. G e,,u,u, +9;°¢ e+uyu+) (8b)

e,,d u_+g,€ € u_y u,) (8c)

/s
/z
3
B /L (= eHuBV_ = = u= B
J " (=1/2,3/2) = \/;(e G e, 0,0, + 9,8, € Uy u+) +
s
3

3% (-3/2,3/2) = §, "V T u, 9,8, et 5_v"y, (84)
aP/2,1/2) = % (€, G0 +g,5, 5 v u) +\/—§(EM+GUBVE\)OG_u++
+ gleu+€gu ygu ) +\/§ (EUOGUB € +1_1+u_+glzuoal1 u+YBu_) +
+ f (EUC>G“8\)£-:\)Oﬁ+u+ + 91€uo€uo—+YBu+’ (8e)
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~J

75 (<1/2,1/2)

W =

= GHBYV = = u= B /2" = uBv_ =
(eu__G s:\)+u+u__+gleu__s:+ uy u__) +\/ 5 (eu_G e:\)ou_yu+

= u= _B - uBv - - B
+ glsu_eou+\ u, o+ Equ £,,0_u_+ g1LUO€

U

Luly u ) +

2 = uBv = - u
+ (e. G £ u_u++gleuoe

-~ B
3 uc Vo u_y u+) (8£)

0
where for the sake o0f shortness we have used the following
notation for wave functions: u(p,*1/2) = u,, u(p',*1/2) = u,,
e(p,*l) =¢,, €(p,0) = €_, e*(p',*1) = Ei and e*(p',0) =EO.

To obtain these expressions in the diffractive 1limit
we make use of the (H EA) (D-6,7,8) and (D-13). These approxima
s

tions make possible to neglect terms containing EE or in

face of PB, since when they are contracted with QB' we have,
g N N R . - P V-t B ~ i :

£ (p,_l)QB_ e (p ,+l)QB + Yl and P QB 5 - Then, in these
conditions, the currents (8) can be written as,

PRIy
B, = (-t)2 v(r',n) pf (9)

where V(A',A) for each pair (A',A) 1is given by

mt

vV(3/2,3/2) = —Zg1 - 2mg2 + —;1—94
1 2 3
v(1/2,3/2) = —{=g,+ 3g,+9g, -=tqg,}
VT m L 2 37 4
1 1 1 1 t 10)
v(-1/2,3/2) = —{ -=g g, + —(m+)g, } (
V3 m 2 2m 3 4 m 4
9,
v(-3/2,3/2) = - —
8
V(1/2,1/2) = 2{-(6+—=)g, - 203n+Zg, -3 g Em s 2gq,)
3 2m? m m 4 m
V-1/2,1/2) = 2 g v 263+ g, v 2000 g, -E 54 g,

3 m 2m? 2m? 8 m?
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and m=m,. We take now these expressions to impose the helicity
conservation, annihilating the currents which do not exhibit it
explicitly in region defined by |tl<<nﬂ. This procedure re-

sults in

4 2
g, = 0, g5 =-9g, and g,=-=9g, (11)
m m

And with these values we can rewrite expression (9) as
By ~ B
J (A", A) = ZglP SXX (12)

(Note that only V(-1/2,1/2) has a neglegible term ~2t/m’° giving
a little helicity violation. But in the limit considered above,
this is a good approximation). Now if we take (11l) into ac-
count in (C-12), the corresponding coupling (as (6)) with he

licity conservation reads,

Cqu uvYB__g

= g,1g g"VpP + 4 (pHgBV L gMBpYyy (13
m

m

we will see in the following how we can estimate +the wvalue

of this constant.

Let us consider now a general elastic reaction like

alp,2) + blg,A)) ~ a(p',K;) + b(q',Ng) (14)

From optical theorem for unpolarized reaction we have
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(A, A ).) =

1 )
Im A(s,t=0; (A ,A. ).
(25_+1) (26, +1) *a™b a’’b’i a’ b7 f

)\1/ 2

b

2(s,m;,m ) o.. . (s) (15)

Tot

It is well known that at high energy and particularly for the

2

diffractive region, where s>>1n;,n%

t the differential cross
14
section behaves as a strongly dumped exponential. Using the

habitual parametrization, we have,

d9 _ ctre. Pt (16)

where this constant is dO/dtlt:O' In that physical region the
scattering amplitudes for hadronic elastic reactions are mainly
purely imaginary and can be described by Pomeron exchangel.
Here we have considered the (yPA)>, i.e., the Pomeron couples
to the hadrons as a spin one object, so that the corresponding
hadronic currents are vectorial. The corresponding helicity
amplitudes for reactions (14) have the following form,

Bls, tih, AN, ) = e a0, )58 o) (17)
where f(t) is a function which contains all information about
P-exchange, and the two currents in the diffractive region are

J, (A ,x)
a’'"a

B 29.ap P8 Ox 2
a a

(18)

J, (A, AL)

B b

295pp 5A'bxb
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- 10 -

Where I..p Jppp 2TC the Pomeron coupling constants with the

hadrons a and b. P::%(p+p') and Q::%(q+q'). As in (HEZR2),
P.Q=s/2 and A(s,mi,mé)-=sz, from (17) we have
A(s,t;%a,kb;?a,kb) = igaaP gbbE‘f(t)S 6N 3 6X ) (19)
aa bbb

and putting this expression in (15) we obtain

£(0) = ¢, = (20)

Y2ar%bbP Tot

Now, revlacing the amplitude (19) in general expression (A~45)

and by comparison with (16) we obtain

bt

£(t) = £(0) e? . (21)

Choosing f£(0)=1 the amplitudes (17) become
bt
2

. Laoay L B
A(Sltl)\alkblkal)\b) = 5 e JBU\'a'Aa) J

(Xp rAy) (22)

b

with

g g = 0, ®.
aaP “bbP Tot (23)

As we said above, to determine the constant 9, =gAAP we use
this relation (23). In our case we have the reaction Ap-—Ap,
then 9..p = Ianp and Ipbp = INNP and if we know Gng, 5, and 8
we have the value of Iarp desired. Other reactions can be found

by comparison and with other relations we can estimate the best value.
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IT. THE THREE COMPONENTS DECK MODEL FOR pp + .  'n p REACTION

In former calculations® the existence of the "zeros"
or "dips" in the (T C D M) amplitudes as a consequence of the in
terference between the three components of this model was dis
played in complete agreement with the exverimental results®. Each
amplitude has its slope behaviour. But the interference among
the three terms gives an effective slope and a mass—cos@QJ'—
—~slope correlation. On the other hand, these interferences pro-
duce a minimum ("zeros") in the amplitude and consequently in
the differential cross-sections.

It is experimentally known that the structure of the
interferences changes for each reaction. In our model these
changes proceed directly from different structuresof spin-parity of
the particles involved. There are some reactions where these
interferences are stronger, e.g. pp - nnmp°? and other reactions,
where we only see the "zeros" or a dip in some partial waves. This
is the case in KN~ KpN, K*7N °. The main interest of the present
calculations for pp-+A++ﬂ~p taking into account their spin
structure, is to verify as these complications coming from the
spins affect the interferences above mentioned. So it is very
natural to extend this study for pp-+A++ﬂ_p diffractive disso-
ciation reaction by the (T C D M). To complete the test of this
model and for a future generalization, we need these calcula-
tions with all difficulties coming from the AAP-vertex. The
three graphs representing the (T C D M) are given in fig. Al. In
this model the total amplitude results from the addition of

each component corresponding to the graphs of the fig. Al (a),
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{p) and (c). Besides, each term is constructed from the Born
term of the Pp~> AT subreaction times a term representing the
P-exchange for the diffractive part, i.e., the correspondent
elastic off-mass-shell subreaction. It is evident that we must
take into account the spin of all particles involved. In fact,
this point is very important in the context of this paper, be
cause the existence of the "zeros" proceeding from the inter-
ferences of the three terms, very dependent of spin structure
of the amplitudes, is not evident. We adopt the form commonly

btz

used for the Pomeron, amplitude, P =1iso,» e Z

. . The two "parame

ters"” O and b correspond to the asymptotic cross section and
the slope of the do/dt2 distribution for each elastic diffrac
tive subreaction related to the three terms. The subreactions
are off-shell, but in the kinematical region of interest, i.e.,
near the poles in ty (mt-exchange pole), in y (A-exchange pole)
and Sy (p-direct pole), they can be approximated by on-shell ones.

It is important to call the attention on the limit
of the validity of the model in the kinematical region where

it was constructed, i.e., near the poles in the s t, and u

1" "1 1
channels. Any extrapolation for other physical regions far from
the threshold of the resonances in Sy would implicate a Dual-
-Reggeized amplitude®. From fig. Al we see that there are four
differents vertices, the (pPp), (1P7w), (APA) and (pAm). On the
(pPp) vertex the nucleons are on shell in all three components,
corresponding to the "diffractive vertex". In (HEA) this vertex
behaves as (7P7n) one (equations (C-3) and (D-10). So, it does

not contribute to the helicity structure of the amplitude. In

the three other vertex there are always one particle off-shell.
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- 13 -

The correction off-on-shell is introduced by the O and bi
parameters referred above. This procedure avoids the introduc
tion of form factors additional functions that certainly would
destroy any interference mechanism.

Due to the common vertex (pPp) in the three components

we have a current

NN -

obtained in appendix D. Its (H E A) is given by (D-10) and using
{A-2) notation,
NN

JB (A

372) = 29pyyRg 6>\3xb : (25)

And for (mP7) vertex, following (C-3) and (A-2) we have the cur

rent,

T

JB = ng’TﬂTQB (26)
and for (pnA), following (C-2) we have,

J(NA) - u

= gNTTA WU(Pllxl) Pa u(parka)- (27)

With these currents, the amplitude for tl—channel or T-compo-

nent can be written (using (23)) as,

T = 26)\b)\3gR-Q Eu(pl,kl) paU u(pa,ka) (28)
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- 14 -
where,
t
g (t,) !
6. 2 ;0 (29)
NTA t _mz
1 2
and,
1
—=b t
t o 2 "TN"-2
g (t2) = Oo.% (TN) e . (30)

For the sl—channel, the (pPp) vertex gives a current similar to

(24). And to (Apm) vertex corresponds a current,

Am _ = H
350 = gy, P (e A By (31)

<

The corresponding amplitude, following (23) and (A-2) can be

written
s=238, 8% (o, AP, (B+m ) Kulp_, 2 ) (32)
KbXB VU R | 2 a Fa'"a
where
S
g (t,) '
£ . 2
j‘ lgN'TTA 5 -15 (33)
S - m
1 a
and
1
bt
g°(t,) = 0,7 (NN) 2 NN 2 (34)

Finally, the component coming from ul—channel, contains the A-

-propagator (see B-14) and the (APA) vertex, (calculated in the
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- 15 =
previous section II) so,
AA _ - vV
Jg (AyrA) = 9ppp ¥ (py,2y) Fung (k,2) (35)
where,
T =g (y --E—P ) + Ja(g P +P g, ) (36)
U8V uv B B B v Tu7Bv
m m
1 1
For the (pAm) vertex we have,
PT _
Js - gNﬂAPZOU(pa’Aa) (37)

Now with the variables defined in the appendix A we write the

ul—channel or U-component amplitude,

- _ T HBVv o
U = éxbxfeu“’u‘f’rkl) T (m, + K) hyotkIpy ulp, /2,) (38)

where,
u
g (t,) .
u_ lgN,”A a 5 =lu- (39)
1771
!
=b t
u _ - 2 "NA"2
g (tz) Orot (NA) e (40)
and
_ _ 2 1 1
hyo(K) = 94 2kvko"~'YvYo'+_—_(kvyo_kbyv) (41)
3m1 3 3m

1

Then, the total amplitude of the (T C D M) is obtained adding the



CBPF-NF-070/83

- 16 -
three components (28,32 and 38) above,
A =S + T+ U (42)

As we can see the non-diffractive part (or the (pP‘+L++ﬂ_) is
not affected by the spin structure coming from (pPp) "diffrac-
tive vertex" represented by ékb)3. So we can pass over this fac
tor in the helicity amplitudes, which is equivalent to neglect

the spin effects of the particles b and 3 in (H E A).
Iv. APPROXTIMATIONS ON THE HELICITY AMPLITUDES IN THE DIFFRACTIVE REGION
In this section we present explicit forms for the he~
licity amplitudes in the (H E A). The amplitude (28) with the
approximation (A-17) can be written as
~ = U
T Széwu(pl,Kl) p, ulp,,2 ) (43)

In the equation (32) for sl—channel helicity amplitude, we have

(¢-+ma)R = 2R-p + R(ma—p) where R-p = R-pa+-R-(pb-p3). But, as
R'(pb—p3) = 0, then 2R-p = R'(p-rpa) = 2R+K. The amplitude then
becomes
- H
S =Zg wu(plﬂxl)pz [2R-K + R(m_-p)Ju(p,,2,) (44)

With Dirac equation and the energy-momentum conservation we ob

tain (ma—¢)u(pa) = (¢a—¢)u(pa) = (¢3—¢b)u(pa), then, with the
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subsidiary condition (B-2) together with (A-18) and (E-4) we ob

tain

B, |
X

2v’s-1

s =sifmu(pl,xl)p“{1+i sina[o>! + o*%sina—-0" cosallu(p_,2,)

(45)
For compactness we write now the helicity amplitude (38) as,
_ ay H
U= -UTB, py,ap) 2% ulp, ) (46)
where

uo HBV e
Qr = RBF (m1+k)A\)o(k)p2 (47)
Using the expressions (36,41) together with the Dirac and Rarita-
- Schwinger equations (B-8,1) and the subsidiary conditions (B-2,3)

we obtain, (see Table E-1 where are defined the r.,v, and ei)

Qr = pa{ZP'RIB + 2r8R-p2 - —= ¢1} + P {_%F6P'R—
m
1
2 (PU—PE)
—2r8R'p2 + ——(P-R+R-p2)1?5} + ———(ul+2k-p2+mi +
ml m1

1 U 2
+2mlma)R + —(r6p3-+r9p“)(pb¢3—-pb-p3) + £ RMr m,-m? +

3 3 171 72
2k-p2
+2p, P, + I3k-p, + 2r (3P-p, - — P-k) - 2P-kr_ +
m
1
2
2p-k (p;+ k) k-p
+ ) (zpa'Pz—Hg) - -—l—;——-(k-pz—lnf)+[-rr— Z _
2k-p ( k2
2 P.k P, +k)
-=(3P-p.~ P.k —_— D S
m P T b+ 2 £, 18} (48)

2 m]_ m]_
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From the results (A-9) to (A--16) with the approxima-

tions (A-17) to (BA-20) &nd (E-4),
1 u 1
o = s ix, (pL-2p") +;:-p”¢} + s,{rg(p--p") +;r%p“-p§)¢}
1 1

sinoc[r6p;J + rgpu] (:31+ GOBSLLI'}C(—OOICOSOL) +

+ (p“—pz)R ot is
+RY(F, + == B) (49)
1

_ 1 2 2 2
F, = {3r8(s -u rr—2m)+2(mr+m u1)+r3(ma—m

1 et B Bl B 111 274) -

8 (2 2 2 1
- (ma—mz—ul) (3u1—t2+m1) + 5 (3u1—t
my my

+m?) (m r,-m?

ptmy) (m ry-my-u,) -

1 _ 2 2 2_ 2
_m2(2u1 t2+2m1)(ma—2m1—m2—u1)}

1

— — — — — 2_
F, = 3*[2t2 3s Zm m +5m 4m 3m +m2 (3u1 t2+m1) (m +m -
1

\m m—u )}

(50)

|/s'
= su,t,v (pl)\ ) {r (2pEpz) -1 puyo}u(pa,Aa) +
m
1

5 Vsr
+ s,UT, (py 2 ) (p"-p]) (rg= - YO u(p,,A,) -

_ , _ /5]
“Ur, Fp2) (H-pXIRup 2 ) UT(p 2 )R (F1+Ll F,x)ulp, 2 )~

Ty
D, |

s|p,

V5T

s1na‘U.IP(pl>\ )(r6pg+r9p“) (c3l+ OOBSj_na—oOlcosa)u(pa,)\a)

(51)

Following (42) with the components (43,45,51) the helicity

amplitudes read
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Akl)\az Eu(Pl r>\1)pU (S£+ 526+ S;U-)U(pa ,>\a)-— 32(6_r8u) @u (pl)\l)(pu—ps)u(pa,)\a) _

_ =y VBT
—S3u-¢, (pl,)\l) {r6pi+pu (_;1_ Yo—r6-r3)} u(pa,ka)—sy:wu (pl,)\l)(pu_p;l) YOu (pa,ka)_
1
- - . | \5)
= ;u(pl,xl)(p“—pz)mu(pa,xa) —U.wu(pl,»xl)R“ (F 4 — Fzyo)u(pa,xa)-

oy

5
5P|
-] =

S)/57

L= 31, 03 _. 01
sina wu (p1 ’ Xl) [r6up1;+ (r 91[- 33) p“] (07 "+0 "sina-0 cosoc)u(pa,)\a)
(52)

with the expression (E-10) we obtain

S

25y

(v®-sinayl-cosay?) (53)

R:

and the amplitudes may be written as

-

s
_ T u 1 o}
A>‘1}‘a— wu(pl,kl)E {[\/sl's£+|/sl'szé+r653v4u.]—;— s3u.y }u(pa,ka) -

1

e 1B, 1T (0,02 ulp, 00 + 5,5, (B,4)) v, ¥ 15,124 (e U -

\/Sluo 10 u— U1~ 1oby, O 1 . 3
-— WUy }u(pa,Xa)— s ll)u(pl,kl) [V3E -]paIZ Jy =y sina-y coscx)u(pa,ka)—

m 2)/5)

F F 0
—Eu.wu(pl,kl)(EU+Xusina+Zucosa)( 1 +—i Y )u(pa,ka) -

2 Vs m

P, |

s|p _
- a sina Y (pl,Xl) {[(rgs1 +r1E )u,—3VS '5] ¥ &+
6|/5] H a 1
+U.r1|ga| 2%} i (6! + 0P sina - 6% cosa) ulp,, 1) (54)

These amplitudes may be calculated explicitly using the results

(E-6,7) and (B-21) and results,
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Aligyg, +1/2)l809) =

(8,9) =

B (33/2,%1/2)

Biry2,:1/2) 800 =

B(T1/2,+1/2) 00 0) =

where,
A T > {F1cS r6|i;a|v7)
Re (+3/2 *1/2) = s sina sin¢g¢iv_cos—} -6 lp I{ -
2 ST 2l TR s 3
1
(55-a)
Im(x3/2 x1/2) = Im1 + s, Im2 + S, Im3 + Imacosct (55-b)
lf , r. .G r6|§ IVg’l
Re (+3/2 *1/2) = = sina sing V6sin'—e——91|f>| 10 - = ’
2 |2 2 V51 3 J
1
(56-a)
Im(+3/2 x1/2) = Im5 + s, Im6 + S, Im7 + Im8cos¢ (56-b)
£1/2 £1 ing si \fz{lpal ['% 33')\/ o E_ v, sin®
Re(x1/2 +1/2) = ssinasing ; —g—v7 [(r9 - s]+r E Ulv,si 5 -
> a1} ! ‘el 'r1olf’a| r6|_§alzv8
_r6v2lpa|841L) -+lL — [——————— G - ————| +
4 Vs 1 3
1
r ]
+——19-[v v sin!g +V IE le,1G + 1L—sin LARe } (57-a)
21 /5 371 \2 2'Falt T4 T 2 6
V71
Im{+1/2 *1/2) = Im9 + s, Im10+ S, Im11 + Imlzcos(o (57-b)

- 20 -

+ig

e - N

* {+Re (£3/2,21/2) +1i Im(+3/2,21/2)}
V2"

+2i¢ _
€ {+Re (7 3/2,%1/2) + i Im(+3/2,£1/2)}

V2!

{+Re(+1/2,+1/2) +1iIm(x1/2,%1/2)}

2 0 pa (3172, 1/2) +1i In(T1/2,21/2)}

(55)

(56)

(57)

(58)
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551na51n¢u_ IG 9———'lp| 16, -
Ve \/‘" 6

= |

——1-(—) (V.v.+ vV l~> lcose)G cos(—)-l—?——— ((r 33 )
3V1 Py == 3 Vs

Re (+1/2+1/2) =

\/5{
u‘
+x E u,)v -V, lp Iu]v + “-cos(8/2) v} (58-a)
2
Im(+1/2+1/2) = Im13 + s, Im14+53 Im15+Im16cos¢ (58-b)
FRE
m. = S W [v.cosa -1, v, |P | - a G_sinal (55-bl)
1 1 5 10°8 a 63 S -
L 1
-> ' f
Im, = IpalelhﬁOIL—E_G ) (55-b2)
- t
m, = |5, lo,r.E (55-b3)
L T8, Telp,l sU
Im4 = [ezlpal( - v7) + v563]————sina (55-b4)
‘fsl' 3 2
lp_ |x
{
Im. = —S-Uw 8, Iv cosa—|_§ l (r, .v_+ a G sin®a)] (56-bl)
5 > 2 6 a 107 3/ +
\/ 1
> Y !

Im, = lpalez(vgu—Eﬁ) (56-b2)
In, = |p_|o,r.E ' (56-b3)
7 " al¥2767+ -

r. G r,|p
)21
Img = (vgo, -6, B, | (2= 02 ) sUWeine  (56-ba)
\/sl' 3 2

Im

1]

] I 5 | ' !
9 {\/_" /—.E 5 (v +r10v3v8) + Vas—‘ \/?[(r;u _33 )V‘s‘l‘+
1

' .2 Su‘ >
+r6Eau,]G_sm alv;s cos(E)/2)+E{vse:‘lcoson--rmv?_|pa'83v8 +

>

P, | Ip, |2 5 r.|p_|?
— V.G 8,sin’y 40 G 6.sin2a}
\ TeV,G_ 8y ,B,sin%a} (57-bl)

5 27/—1/—1 GVS—l'
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2 . ] } [ e > ] 1
Im10 = | /—é-ivl(!/sl'E_é +Vy [Vlou—E—Z;DCOS;)"IpalVZBB [vlou—E_6 ]-
Ip, | '
e G W Bep (57-b2)
5 9 + 2
o~ s.E i E ©
Im, =UJ\/3 {v, [r,v,E e PO +r, | [(vE 6.~ 5} (57-b3)
3 - \21 al i 2-3 5
my
1P, |
27 . 1PalVy ! ' ! .18
Imlz = ‘; S sS1nG+t ——g-—' [(rgu—:%j )V§I+ r6EaUJvlsmg\E} - (57—b4)
> >
ro.Ip,l6_ . lp, |’
_r6v2i5|6w +U.,'8[10 a__ - __6"a v,] +
a4 1 4)/57 12 8
1
r int v
10 . 163 > 1 6
+ [v,v,sin =i + v, |p_|90,]1G ——[vve——eD}
251 3°1 2’ 2 a 4 + 2 5271 2 4

P
JE—% [((r9u'—33') qu' r6EaU'.)V1_

2 [
Im, , = s&/-—;{v1 /PIE+£ an{;

b 1
—r6v2|pa| ]G+6451n o+ —; (v6v264+ ; ) cosa - (v6 +
-
8 relp,|*
.8 Vg©1 > 1 “6'Pa . 2
+r10v3v7)51n\—2-) vl—(v2v764+—2——) rlolpal-———6-——;——- G_elsm ajl (58-b1)
‘/ 1

2 R ! M ! > !
ImM _—.\/;{vlsul\;; (E:+\/s—1‘-6+v3[vgu+E+GD + |Pa| Vz[vgu- -

t [} i 61
- E;@‘ 16, + [Vlou -E_Zo ]-2—>} (58-b2) .
PRTL SIP e > !
Im . = ; u [v1 (r6v4E+— . )sln.\;) +X |pa| (V2E+64+T)] (58-b3)
1 } |_§ l r |5 IZ r ->
Im, o :-S—é_qlla-{u 10-a G,6,- 6 a v7€12——1g (V3V1+ vzlpalcose)G_cos‘—e-\ -
6 2 S 6 Vs—l‘ 2
Bl oy ! A
a _ , > ! ! 7573
————3 [((x, 35)\ ]sl'+ r6EaU-)vl—r6v2Ipalu,]vse3 U (_;——V6V262)}

(58-b4)
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V. RESULTS AND CONCLUSIONS

This paper contains many extense calculations. In or
der to make it easy to read, we have found necessary to de-
scribe these calculations in great technical detail. Besides
the case of pp—>A++"n-p reaction is not trivially calculated
in the framework of (T CDM).So in this case it 1is not possi-
ble to obtain qualitative informations from (T C D M) without per
forming numerical calculations. This is presented below. On
the other hand we need to test if the general predictions of
the (T C D M) are mantained at least qualitatively in the present
case. We recall that these are the existence of the "dips" in
dO/dtz or "zeros" in amplitudes in windows of invariant mass
M12’ and cosec"]'. This is the slope—mass—cosec"]' correlation.
Or for certain processes slope-mass-partial wave correlation,
as observed experimentally®. The principal hypothesis and ap
proximations used in our model, throughout the calculations

presented here, are:

(i) concerning the (DDR), it is evident that in general we
consider the (HE A) (A-6). These approximations identified
as diffractive region for hadron-hadron appear in all cal-
culations and at all levels,so that the final amplitude ob
tained is rigorously valid in these conditions which are

the experimental conditions for (DDR) data.

(ii) The (T C D M) considers only the three Born terms, corresponding
to the graphs presented in Fig. Al. No more components
and extra-effects so as backgrounds, threshold effects,

form factors, ressonances eventually produced in physical
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(iid)

(iv)

(1)

region considered, etc., are added to our model. The ap
plicability of the (T C D M) and comparability with experi
mental data for all distributions are possible when we
can dualize it in order to avoid double counting as it
has been done in earlier papers®. It is very difficult to
say now if it is possible or not to dualize the present
case in the present form of the amplitudes. This is an open
problem.

Pomeron factorization. The P-factorization hypothesis seems
to be a well stablished one, and we make use of it ex-
tensively. From spin-structure point of view, the diffrac
tive vertex ((EPp) (1/2,1,1/2) in our approximations (H E A)
behaves as (0,1,0) one. This nice property of this ver-
tex together with the P-factorization hypothesis gives a
simpler spin structure amplitude. From our calculations
point of view this is very welcome, since the simple
structure obtained for the (pPp) vertex does not inter-
fere with the remaining parts of the amplitude. This may
be represented by Fig. V-1.

Helicity conservation. This hypothesis is used in the
simplification of all diffractive vertices. The "V tensor
representing the coupling of the (3/2,3/2,1) vertex is
treated with this hypothesis to arrive at a final ex-
pression with only one constant. On the other hand we
recall that there is a reasonable experimental support’
for helicity conservation summing up, the main relevant

steps for our calculations are:

first, we make a complete treatment of the (APA) vertex,
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the source of the main complications of the present cal-
culations. In section I we show as (APA) can be obtained
from a hypothetic reaction in order to have an expression
containing just one constant gy - The estimation of this
constant is made thrcocugh the Optical theorem, and wusing
the (y®A)° hypothesis, which results in 9= 9ppp- SO/ this
is easily obtained just with experimental inputs as total as
ymptotic cross-section. This procedure has the advantage
of giving a result which is fixed by parameters well es-

tablished only experimentally.

Each amplitude is obtained in the framework of (TCDM), as

it is shown in section IT. The expressions (28), (32) and

(38) below,
T - 26>\b>\3'GR°Q@u(pl,>\1)pz ulp,,r,) (28)
5 - ékb)\:a{gﬁu(pl,)\l)pg (B+m )Rulp, 2 ) (32)
and
U = _élbk3RBqu(pl'xl)Fusv(m1+k) A\)O(k)pg u(pa,)\a) (38)

represent the three components from (T C D M) and they were
added coherently. This point 1is very important since the
interference effects are one of the main features of the

model. So the complete amplitude reads

A=S +T+U. (42)
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(iii) Approximations. Next, we write this total amplitude taking
into account all (HEA) above referred in terms of the

invariants only. This is made in section V.

Now we study numerically the structures that may ar-
rive from the interference mechanism in the amplitudes at high
energy and low t2, in particular, the "zeros" that may appear
strongly in some physical region.

We show in Fig. V-2 the tz—distributions (doﬂﬂi)hhich
correspond to different values for the elastic subreactions

[ee] [eo) (o6

b b and b

(N NN Oan’Pan’ Prx

AN). We may conclude that for a par
ticular choice of these parameters (Fig. V-2) we can see dif-
ferents regimes of the tz—distribution. It is clear that only
the experimental results may select the best set of parameters.
This procedure may also be useful for the estimation of the
off-mass-shell effects in the subreactions considered.

In Fig. Vv-3a,b we show the cosGG”L distribution for
the same parameters as used in Fig. V-2. The forward and back
ward enhancements are characteristics of the m and A exchange re-
spectively. In Fig. V-4 we show the azimuthal distribution with
the same parameters. All these curves presented here, are the
predictions of our model since experimental results does not
exist.

In next paper we will present a partial wave analysis

for the reaction studied here.
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APPENDIX A

KINEMATICS OF THE pp~+ A" 'm p REACTIONS

In this Appendix we present the main kinematic exvres
sions concerning the present work. This is a simple application
of the well known particles kinematics?’.

Fig. Al shows the three graphs corresponding to the
(T CDM) described in section II. The 4-vectors pi(izza,b,l,2,3)
related by energy-momentum conservation (pa+pb=:p1+p2+p3), re
oresent the external particles of the reaction (1) as is shown

in fig. Al. For internal lines we define,
9 ="P,~P; + k=P, -p, and p =p, +p, (A-1)
and for convenience, the particular 4-vectors,

P = I(p+k); 0=
2

N

1
(a4p,) 7 R=~(py+p;) and K= Z(psp)  (A-2)
2

With these 4-vectors (A-2,3) we can define a set of

useful invariants as,
2\
s = (pa+pb)
51: (p1+p2) 2 (a-3)

Sp= (Py*P3)°

S3= (Py+pjy) *
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)2 ]
£ = (PP
u; = (py=py)° (A=4)
_ _ 2
t, = (p, p3)
2

The mass of the particles involved are denoted by

a b 3 P
m; = m, > (A-5)
m, = m
2 7T
/

whose quantitative values we have taken from the Particle Data Group

Reviewl?!.
HIGH-ENERGY-APPROXIMATIONS

Some invariants at very high energy can be sim-
plified by reasonable approximations. These approximations for

high energy reactions corresponding to physical region of (DDR),

are determined by

$/S,,84 >> s, , (masses)?, t,,t,,u

Putting this condition (A-6) in the relation
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- 30 -
_ 2 2
52 + t2 + U, = mb + m2
we obtain,
s, = -u,
And for the scalar products,
4Q-R = 52 —uz
2K-R = s-—l(s +mi+mi+m
- 1 a b 3
2
1 2
2k-R = 2P+*R = s, - =(m +m
3 > b
w2 _ m2
2k p,= m m, u,
_ _ 2 2
4P.p2- S1 u; + m my
- 2 _
4p-k = 3u1 + my t2
4R-p2= S = S5 + S, +
and
2 _ 2
(p1+k) = 2u1 + 2m1

By (A-6) we have the approximated relations,

20-R =

S

2—

2
1

t2)

+m2

3

+ u

1

_t2)

(A=7)

(A-8)

(A-9)

(A-10)

(A-11)

(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)
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2K*R = s (2-18)
2k-R = 2P-R = S, (A-19)
4R-p2= S - S35 + 5, = 2(s —53) {A-20)

The others stay unchanged. The energies (Ei) and momenta (gi)
in the R12 system: §1+52 =0, as function of the invariants,

are given by

s,+m?-t
a

E = 1 s 2 (A-21)
a 21/s
1
2 2
s—m-°—-m, + t
E, = a 3 2 (A-22)
2|/sy
2 2
s.+m2-m
2
B, = 12 (A-23)
2 s1
S.+m2-m?
1 2 1
E, = ————— (5-24)
2 S
1
2
S—s.-m
1
E, = o (A-25)
2 s1
1/2
lp,| = (2-26)
/ i B
1/2 ,
N A (Slm%’t 3)
A (A-27)
2 s1
1/2 2 2
|~+ |—> I (Slllnllmz)
P, l=lp,| = (A-28)
2\)sf
1/2
|yl = (A-29)
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where,

Then, in (A-6) conditions we have, for (A-30) relation,

and to energies and momenta,

>

N
Eb = E3 = lpbl = lp3‘ =

the others stay unchanged. The A (x,y,z) is defined by,

Mx,v,2z) = x2+ y2+ z?2 - 2(xy+xz+yz)

(A-30)

(A-31)

(A-32)

(A-33)

The Figure (A2) shows the Gottfried-Jackson system (GJS) for

El +i§2 = 0. The z-axis is defined by Ea and the y-axis by :5

The orientations of the other vectors are,

>

- - > > >
pPy= Py (8,0) i py=p, (x,0) and p,=p,(a,0)
The angle B8 between 53 and El satisfies the relation
cosP = cosacosf + sina sinf cosd

The angle o is given by

-
XD, .

3 b

(A-34)

(A-35)
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cosa = ———:l—? (2E, E - 2|/S]E +s+ mé—mz-—m;) (A-36)
212,113,
and in the (HE A) (A-6), we have
(s.—-m?+ t,)
cosa = - 1 a 2 (A-37)
1/2
)\/ (sl,m*,tz)
and
2\/5] \/-t,
sina =
1/2
A (s,m2,t,)
(s,-m2)?
Expanding in power series of t2, for |t2]<< ~—————— , we have
2s
1
q/s' \/—t'
cosa = -1 + 0(t2) ; sinao = 1 2 (A-38)
(s,-m?)
1 a
and the relation (A-35) reads,
a/s’\/-t'
cosB = —-cosb + L 2 sinb cos¢. (A-39)
s.—m?
1 a
With (A-6) we have too,
s, = = (E2+l51|cosB)
Vs,
and (A-40)
S ->
s = (E;~|p; |cosB)

VALY

and by using (A-39) we have,
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2s I-}.Sl H/ _tz

s, = —> (E,-|p,|cos8) + sinb cos¢
2 2 1 s - m?
Ve1 1~ Ma
(A-41)
>
s > Zslpllb “t,
sq = (E1+|p1|cos8) - - sin6 cos¢
Sl Sl_ ma
In the same approximation we derive,
(s,-m?)
2 - 1 a >
(ty-m5) = - ———~————(E2—|p1|cose)
®1
(A-42)
(s,-m?)
1 a >
(ul—mf) = - ——~——-—(E1+|p1lcose)
3
1
From (A-41) and (A-42) we obtain,
—> .
Sy . < H__2|plh/sf /—t251necos¢]
2 2 2 -
ul—nu S;—m (sl—ng)(E1+|p1|cose)
(A-43)
-+ .
s, . < [l.+2|p1H/s£\/—t551necos¢]
2 2 2 >
(t;-m)) s,-m’ (s;-m2) (E,-|p; |cosb)
and in the limit t2:=0 we have the relation,
S s
2
2 = = ; = __S__2 (A—44)
t - m) u)-m; s,—m

The expressions for cross-sections used in the text are defined

by the following formulae.
For a reaction 2+ 2 like a(p,Aa) + b(q,Ab)-+a(;f,A;)+

+b(q',Nb) the differential cross—-section for non-polarized beam

and target, we have,
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99s,t) = 1 — L ) IA('s,t;AaAb,)\'a)\'b)la
dt l6ﬂk(s,ma,mb) (25a+l)(26b+1)/hAb
¥arp (A=45)

where, s=(p +q)?, t=(p-p')?, 4 and 4, are the spins of the par

ticles a and b and the Xa and Ab are the helicities respectively.

(The same notation is used for final particles X;, XQ.
For a general reaction a + b+ 1+2+3 we use for dif-

ferential cross-sections??,

1/2 2 2
A (s, ,ms,m>) -
do = c 1172 ds, dt, dcose® 7 a7 |al? (A—46)

S1

where

- 10 4 2 2
c = 1/(2*"7 A(s,ma,mb)). (A-47)
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APPENDIX B

THE SPIN 3/2 WAVE FUNCTIONS (3/2 SWF)

This Appendix concerns Rarita-Schwinger wave functions
used in this paper. Although it is a well known subject?? we
put here explicitly our conventions and normalizations for a
self consistent exposition.

The wave functions for spin 3/2 particles, for posi-
tive and negative energies, in the momentum (p) and helicity
(A) representation, wéi)(p,k) (where u is a Lorentz label) sat

isfy the Rarita-Schwinger equations,

(6 Tm) wff’ (p,2) =0 (B—1)

where m is the 3/2 spin particle mass. They are subjected to

the subsidiary condition

" 5 (0,0 = 0 (B-2)

We can also obtain a second subsidiary equation from (B-2) using

(B~1) above,

4V (£) 1 v t 1
by ) = SO Y ) - §‘¢+m)y"w(i)(p) -0

Then the (3/2 SWF) satisfies also the condition

Yol e = o (B-3)
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(%)
L

we need the equation (B-1l) and one subsidiary condition that

As a matter of fact, to completely define a (3/2SWF), ¥ (p,2)

can be (B-2) or (B-3). In the representation of momentum and
helicity, the (3/2 SWF) can be written as a combination of a

vector and a Dirac spinor'?, as

(+)

vyl ped) = }2) COrry ) €y (Pr2A) u(py,2,)  (B-4)
12
()\14' /\.2= A)

for positive energies, and

L ean) = )\ZX C(ysd, A) €3 (py2) v (PsA,)  (B-5)
1772

()\1+ Ay =A)

for negative energies, where CU&,X2J0=<1,X1ﬂJ2,X2|3/2,X;1JJ2>
are the Clebsh-Gordon coefficients for 1@1/2 =23/2 coupling.

The spin 1 fields fulfil the Proca equations
2 2 _ _
(p°-m )eu(p,kl)-o (B-6)
With the subsidiary equation
pYe (p,X;) = 0 (B-7)
perrl

(e* for negative energies) and the spin 1/2 fields the Dirac

equation,

(ﬁ-—m)u(p,kz) =0 (B-8)
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for positive energies and
(B+m) v(p,2,) = 0 (B-9)

for negative energies.

NORMALIZATIONS

The fields of 1/2 and 1 spin are normalized following

the relations?!?C®

u(p,A")ulp,r) = 2n16xx (B=10)

Vip, M) vip,A) = -2m 8y, (B-11)
and

ex (p, ) eM (p,A) = =835 (B-12)

so that for 3/2 spin fields we have,

) () p,2) = 7 2m s (B-13)
(p,)\') wU pl -~ )\l)\ . -

~(+
IPU

With this normalization the spin 3/2 field projector reads!?’?!?

P Yy P Y

+ + P 1
pHv( )(p) _m [g"Vo 2 pPpvo L Ve L V_pVyH)
2m 3m? 3 3m

(B-14)
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EXPLICIT FORM OF RARITA-SCHWINGER WAVE FUNCTION IN THE
MOMENTUM AN HELICITY REPRESENTATION

The conjugate wave function, for positive energies,

of (B-4), is defined by

wu(p,k)

11

+ 0
wu(p,A)Y
(B-15)

u’ (p,A)y°

kK

a(p, )

The Dirac spinors can be written in the momentum and helicity
representation’?¢ as
(E + m) I‘
u(p,x) = N(p) Xy, (B) (B-16)
>
o.p
where the normalization factor, from (B-10) is, N(p)=1/VE +m,
I and ¢ are the identity and Pauli matrices respectively. And
X, (P) are the spinors so that (p =p2),
1 0

(z) = and x_1/2(2)= . (B-17)

X41/2 1

When the momentum has an arbitrary orientation 5:iﬂ8,¢)vﬁere
8 and ¢ are the polar and azimuthal angles of the vector E

in a particular referential, we can write

X, 3 = DM (4,0,-0)x, (@) (B-18)

wherel®
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p(1/2) ~107 ¢/2 oy 6/2 102672

(¢Iel—¢)) = e . (B—lg)
For spin 1 field with the momentum oriented in an arbitrary di-

rection §(6,¢), we have

: P
eu(g,O) = 1 E sinbcoso

E sinfsing

E cos®b
and
. 0
0o eild) _
e " (p,*1l) = + cosfcos¢+1i sing (B-20)
V2! - : .
+ cosBsing -1 cos¢

+ sinb

So, the (3/2 SWF) for the helicity states, taking into account

the 1®1/2 Clebsh-Gordon coefficients, are

wu(p,i3/2) eu(p,il)u(p,tl/Z)

(B-21)

2 ¢ (p,0)u(p,x1/2) +\/—f€ (p,x1)ul(p,+1/2)
\/3 u u

3

wu(p,il/Z)

Now, with the wave functions of spins 1/2, 1 and 3/2 above de

fined, we obtain the following useful relations,

T, M) ulp,h) = (ag=4AN a,) Xy (B*) X, (B) (B-22)

ap' M)y ulp,A) = (0 +4AX a,) X3, (B') X, (B) (B-23)

a(p', X)Yulp,A) = (20534200, ) x5 (B) X, (B) (B-24)
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where, a; = VET+m VE+m ; a, = VE'-m'' VYE-m ;
ag = VE'+m" VE-m and a, = VE'-m' VE+m .
And using the matrix
o"Y = Z(vH vV (B-25)
2

we obtain,
s ' U Oj — : 2 N + o= = -
u(p', X))o “u(p,r) = 21()\a3 A 0.4) Xy (p )ijx(p) (B-26)

and

S(p' ) otdu(p,n) (@, =43, x5 (B) o, x, (B)  (B-27)

with cyclic permutations of i,j,k=1,2,3. With the choice 3:5(0,0)

T

> > .
and p'=p'(6,¢) we obtain

Xx(P)

Xy (2)

and (B-28)

(1/2)F

X3 (B') = g (2)D (6,8,~9)

Then,

0

. |0
—)6)\, A 2>\~1n(—

+ , -~ -
X (P') X, (P)
)\ A ) >

e_:.L (A -A) ¢ [cos

5»,-x] (B-29)
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. R A P Uy ¥ B, . .- _
X)\.(p )GXX)\(p) = e [cos(;)ok,,_>\+2>\51n(2)6>\.,>\]

~21sin(2) e P 12hc0s (2) 6y, +sin(S) 6y ] (B-30)

2

- - . —1i(A" =2 0 e
KB eyx; (B) = 1T T Yizcos gy wsime) 6y 31
+2sin($)e M Pcos )6, e2hsin(D) 6, )] (B-31)
~ - -1 (A" =X 6 . B
xJ B0, B) = e M Y 2rcos D)6y, (msinrey, 1 (B-32)

can now explicitly write the products of Dirac spinors,

T, A ulp, ) = e“i‘”‘”‘I’(al-wmz)[cos(-%)a“-zxsm(%)dx ) (B-33)

ey S Y .0 _ -l(>\">\)¢ 1 B . S,

u(p' ,A")y"u(p,r) = e (a1+4>\ )\az) [cos(E)6>\,>\—2>\sm(—2-)6)\.’_>\] (B-34)

') Yrup,A) = 20N aé){e“i”"“q’[cos(%) 5 '>\+2>\sin(g-) Syry] -

21 sin(gzz) M 2hcos (D)6, wsinDrey, 1) (B-35)

Gt ) yhuleA) = e PV 2 00gra) (2hcos ) 6y, sin) gy, ]
(B-36)

- 0 (V=

G, v icPu(p,n) =-2"1N “‘b(mB-x%) [ZACOS(%) é)“—sin(g) Sy ]
(B-37)

-+

.01 B : (-2 ¢ 6
u(p' ,N)ioc “u(p,r) _—2()\(13—)\ (14) {e [cos (5) 6)\, o

6. I B 6 . B '
+2)\sm(5) Oyt ,A]—Zl sm(i)e [2Acos (3)6)\,’_)\+ Sm(a)é)\')\]} " (B-38)
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a ) ' -1 (X'=}) 8
u(p',2') ico ulp,r) = (ar—4x Aaz){—e ('b[2>\cos(-5)c3)\,’__A +
LBy . R P ) 6 .6 _

+ Sm(.z—) é’x‘)\] + 21 Sm(‘é—) = [cos(z) 6>\| ,_)\‘f' 2>\Sln.("2‘) 6}\1)\]} (B 39)
Using the spin one wave functions (B-20) with 5':5'(e,¢) and
p,= (E,0,0,-p), we have,

' H 1 ' '
e*(p',0)p" = —(p'E-E'pcosb)
u o'
and
_ o *id
e*(p',*1) p” = ¥ p sinb . (B=40)
H VT

In the particular situation in which E' is in

i.e.,

T(p', M) Yulp,\) =

+273cos (g) 16, + [ (% +21)9) cos (g) _5 sin(g) S )

And with spin one particle

useful relations,

eX(p',0) p"

' u
* ,il
eu(p )p

11
pe, (p,0)

U .
P Eu(p':l):i

the xz-plane,

choosing ¢ = 0, we obtain from (B-24)

Z(Aa3+Nu4){H2X§-+i§)sin(%) +

(B-41)
wave function we obtain the very
l ) 1
— (p'E-pE' cosb)
ml
(B-42)
7 -2 sine
V2’
l 1 ¥
—(pE'-p'E cos?8)
m
(B-43)

.ol

\',4-21

siné6
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and the scalar products,

Eﬁ(p',O) eu(p,o) - 4 (pp'-EE' cosg)

e (p',0) e (p,21) = sin¢

m'yy2
ex(p',:1)e¥ (p,0) = T —E_ sing (B-44)
H m/—2_'
* ' M 1
Eu(Plil)E (p,£1) = - =(1+cosb)

2

* | I H 1
EU(P 1) €7 (p,t1) = - =(1-cosd)

2
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APPENDIX C
CURRENTS AND COUPLINGS

Fig. Al presents the graphs corresponding to the (T CDM)
which contains a set of vertices associated to the m-exchange,
+

I +—exchange and p-direct-pole. In this Appendix we analyse

the (pr AY"), (nPw), (NPN) and (APA) vertices.

(pn~AYY) VERTEX

This vertex has the spin-parity gP=(1/2%,07,3/2"). The
simplest form'?¢ of the current associated to it, compatible

with P-invariance, time-several and charge conjugation is,

J(P'p) = gy, ¥, () a" ulp) (c-1)

where INTA is the coupling constant associated to it and g=p'-p,

(see Fig. Cl). The subsidiary conditions (B-2) make possible

to rewrite (C-1l) as,

J(P',P) = =gy ¥, (PY) p" u(p) (C-2)

In the P-hadrons coupling calculations for reaction

(1) we have taken into account:

(i) The vectorial coupling hypothesis or (yPA)°.

(ii) The (SCHC)’

In fact, in this Appendix C we consider only the con-
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dition (i) to obtain the general form for the three vertices
(TP7, NPN and APA) and in the next Appendix D we take into ac
count the condition (ii). These vertices can be represented by
a general notation (a P a'). The momenta associated to these
vertex are defined in Fig. C2, by p, g and p' respectively. For
convenience we define a useful 4-vectors PESl(p-+p').

2

(mPr) OR J'=(0~,17,0 ) VERTEX

With g and P momenta defined above we can construct

the vectorial current,

3% (' ,p) = 29,P% 4 g, g
but, from current conservation we have
B 2 _

agJ (P+pP) = 29, P-q + g,g" =0

As P-g=0 we have then 9, = 0 and the current is

B

38 (p',p) = 2gP (C=3)

where g=9, is the respective coupling constant. This is the
most general vector current compatible with P, and charge con

jugation (or{% -parity) and time reversal invariances.

(NPN) OR JP=(1/2+,1_,1/2+) VERTEX

To this vertex we can build the vector current from
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£

P and g momenta and Yy~ Dirac matrices, as

3% (p'p) = ﬁ(P')(91Y8+92P8+93q8)U(p) (C-4)

Other terms can be formed from Yg= —iyoy and the antisym-

172Y3

metric tensor Ep\)(ﬁp (

nated from Gordon identities valid for Rarita-Schwinger and

€y123 = +1), but these terms can be elimi

Dirac spinors, i.e.,

v
i OU\) q = 2 (mYu_Pu) (C=5)
. v 1
P = -= C-6
io,, q, ( )
r = -q?y +2mio _q’ (C=7)
i v @

. vV A O .
where r, = -21i € VAo P gy Ys = (Yupq - qmu) . Since we have e-
qual masses (ma= ma.=mproton) then, u(p')d u(p) =0 and P-q = 0,

therefore the current conservation qBJB(p' ,P) =0 will be ful-
filled if gy = 0. So the vector current nucleon-nucleon compati

ble with P, time-several and é invariances is,

B B B

J (p',p) = ul(p") (le +g2P ) u(p) (C-8)

(APA) OR J'=(3/2%,17,3/2%) VERTEX

For this vertex the most general vector current, taking

into account the subsidiary conditions (B-2,3) and Gordon identities

(C-5,6,7), are formed from P, q, Y%, g™V as,
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— . v B v Vv
3ptp) = T (p ){919“W“ +929“ qe+g3qU p® +
u
; BV ] V)
+g4PUgB\ + gngBPv + g6Puy P+ g7PJq8P +
+g8PuPBPv} v (p) (C-9)

For equal mass particles we have $U(p')ng(p)=0 and

and P-q =0, and so the current conservation qBJB(php)=0 gives,
= v o 1 Hoyvo 1 U,V (TRNRVIpS _
P, (P 19,97 g *D 9PP -7 9P +9, P P gt p) =0

This condition is satisfied when 9, =9y = 0 and 9, =95 SO the

current takes the form,

B _

' _ ' uv_B uv_B8
(p'yp) = ¥ (P') {997y +9,97 P

J +g4(PUng +

+g"FpY) 4 g6P“pr“ N gsPuPBPv}wv(p) (C=10)

But if the vector field is a massless one, we have the fol-
lowing identity for Rarita-Schwinger spinors,
Bv BV 1 v_B

3! 1 2gUY

pHyBpV . p
2

N B
(%)
g o=
O
+
Vo]
Lol
+

(C-11)

]
(S RNE=
(o]
el

In this case the current has four independent terms,
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et p) = T 00 {9y e VP v g VP 4 gy (PR
HB_ Vv y oo BV
*g""P’) + g,PTP"P } v, (p) (C-12)

where the g'1 9 3 4 9Te real constants.The above current is then
14 7 14

compactible with P, time-several andé - parity invariances.
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APPENDIX D

BEHAVIOUR OF HADRONIC CURRENTS AND HELICITY CONSERVATION AT

HIGH ENERGY AND LOW MOMENTUM TRANSFER

To obtain effective forms of the couplings in each
hadronic vertex, we must consider the (SCHC) to the currents
from Appendix C. For this, we determine the high energy and
low momentum transfer behaviour from those currents. For con-
venience we calculate first the diffractive limit from some
products of the Appendix B. As we know, at high enerqgy, the
total energy and momentum (E = E +E  and E:E; §b) in (CMS)

are E = ]E] = Vs/2. For the 4-momentum P = 1 (p' + p) (we recall

2
that we have chosen p and p' in xz-plane as was seen in (B-41))

we have the approximation,

po - V8 (1+0(1/s))
2
(D-1)
P = [Sin —e—)ﬁ + cos {—e—)i-]x Ys [l+—t—+0 L
L 2 21 ] 2 2s s2
and for the momentum transfer g = (p'-p) we have
p :[cos(—e—}i - sin(g\ ‘} VT . (D-2)
2 2]

To evaluate the expressions (B-33-41) in (H E A) we have first

calculated the expressions,
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a. + o, = Vs'[1+0(1/s)]

o, = o, = (m+m)[l+0(1l/s)]
(D-3)

Vs [1+0(1/s)]

Q
+
Q
It

(m'-m) [1 +0(1/s) ]
From 4-momentum transfer definition,
t = (p'-p)? = m?+m'?~2(EE'-|p|]|p'| coss) (D-4)

and at the (H E A) we have,

1 + 2t + 0(1/s?)

S

2\/5v + 0(1/s)
Vv s

cos(6/2) = 1 + £ 0(1/s?)
2s

sin(e/z):\ £ + 0(1/s)
. S

Then the products of Dirac spinors (B-33) and (B-34) with ¢ =0,

It

cos®H

It

sin®

(D-5)

m=m' and (B-41) at (H E A) are,
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A(p', *1/2) u (p,*1/2) = 2m
Q(p', F1/2) u (p,+1/2) = +V-¢°
(D-6)
—_— £ g
ul(p',*1/2) vy ul(p,+1/2) = 2P
ulp',+1/2) YBu(p,il/z) =0

The wave function of spin 1 (B-20) with p = p(0,0) and p'= p' (8,0)
in the diffractive region and m=m', can be written in the

form,

'\

efp,0) = & p8{14.o\/—2)j

m S
R R Y L
e (p,*l) = v P [+ 681 1682}

(D-7)

e pr,0) = & P8{1+0\/i)}

m S
58*(p',t1) = \/i"(: 681+1682:2 -t 583}

2 [

And the expressions (B-42), (B-43) and (B-44) can be approxi-

mated by,

ex(p',0)p" = == [1+0(1/5)] (D-8a)

2m

eﬁ(p',il)p“ = ?‘/:E [1+0(1/s)] (D-8b)
2
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p'¥z (p,0) = == [1+0(1/s)] (D-8¢)
2m
pte (p,11) = i\/:E [1+0(1/s)] (D-84)
2
ex (p',0) ¥ (p,0) = = (1 +—) + 0(1/s?) (D-8e)
H 2m?

=

4

s;(p',0)5“<p,t1):

\/i [1+0(1/s)] (D~-8F)
m 2
-t

\ /=8 11 v 0(1/8)) (D-8q)
m 2

-1 + 0(1/s) (D-8h)

| -

"
+ 1|

e;(p',il)e“(p,O)

e;(p',i1>e“<p,rl)

sﬁ(p',:l)squil) 0(1/s) (D-81)
We use those approximations to determine the couplings at high
energy with (SCHC).

As it is well known® the currents which conserve s-channel
helicity in the (NPN) vertex is

(NN)

JB (>\'I)\) = glﬁ (p'l)\') YBu (Pr)\) (D-9)

and taking into account (D-6) we have,

(NN)()\I )\) ~

J = 29, Pg 8, (D-10)

B

where P -1 (p+p') .
2

We proceed now similarly with the diffractive reaction A(p) +

m(g) ~ A(p') + T(g'). We have the current Jiﬂ(q',q) = 29 QB for
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(tP1) vertex where Q:=l (g+qg') and for (AP A) vertex, JﬁAQf,N;p,A)

(eg. C-12) obtained frgm (yPA). In section I were calculated
the diffractive limits of this current (C-12) for several heli
city states, in order to obtain the coupling satisfying the
(SCHC) . For this calculations, it is useful to consider some ap

proximations in spin 1 wave function.

In the helicity amplitudes for the reaction above,

m

)(N,A)a J (A',X)JB(WM, it appears expressions like

Aoan [

E*B(p‘,)\'l)QB and ¢ (p,xl)QB. Using (D-7) where p=p(0,0) and

B

5':§we,0) we have,

e (0,0)0° = = .o
m
eg 0,410 = L (+ 0%+ i 0?)
V2
(D-11)
eg* 0,000° = 2 po
m
eg* (210" = (in—in 7o [7E o)
8 % s |
where P.Q::l-s. In the (C M €) we have §==-5 and a'==—5',
2 R
then,
1 1, . - 1
Q' = —=p'sin® = -= V£ (1+0(1/s))
2 2
Q* =0 (D-12)
Q3 = —gl(p'cose-+p) = -zg(l-+0(l/s)).
2

2
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|
|92
wn
1

And the expressions above become

Ep(pIO)QB - i
" 2m
Vamrs|
e, o,e10Q° = 7 Y=t
2V (D-13)
ea* (000" = =
2m

e*(p',+1)0 =

S
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APPENDIX E

USEFUL FORMULAE AND TABLES

We put in this Appendix a set of useful formulae and

results for simplification of the text.

In section IV we need the expression

— 2 — 2 —_ —_—
with the tensor R (Yqu__YVYU) we obtain
2
_ o uv _
B3Py, = PPy = 1Py PO (E-2)

In the (G J S) defined in Appendix A we have,

uv

o 01
Py, Ppy 0 = —[p3|51na(E3—Eb)o -

31

03 .
~[(E,;- E) |§3|cosa_E3|§a|] o+ |§a| |i—§3| sino o (E-3)

. >
Using (A-32) and Eb—E3 =\/s£—Ea'=-|pa|cosa, (E-1) bg
comes,

I, |

p
(¢b+¢3)(¢ﬂ-¢3) = —isg a sinabcnsa001+sim1603+031]. (E~4)
V'S
We define now,
1 0 0
E = 0 ;7 X = 1 and 27 = 0 (E-5)
0 0 0
0 0/ 1
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|
wn
<
|

and using (B-20) in the (G J S8) we have,

->
5, |
e*(p,,0) . E =
™
e*¥(p,,*1).E = 0
El
E*(pl,O) .2 = - — cos®b (E-6)
M
_ otid
E*(pl,il).Z = + - sinb
2
El
E*(pl,O). X = — sinb cos¢
|
_ eIi¢
E*(pl,il)->(= + = (cosb cos¢ + i sing)
2

In the (G J S) the product of Dirac spinors (B-33) to (B-39)

reads

ﬁ(plil/Z)ll(pa,il/Z) E cos(6/2)

(p,F1/2) u (p,,+1/2) = Te™"®E sin(o/2)

d(p,,*1/2) y°ulp,,*1/2) = E_cos(6/2)

3(p,¥1/2) Y ulp,,*1/2) e ¥ B sin(8/2)

§(py,#1/2) Yrulp_,#1/2) = e**®G sin(e/2)

G(pyIl/2)Y1u(paﬁﬂj2) * G_cos(6/2) (E-7)
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ﬁ(pl,il/Z) “{3u(pa,il/2)
u(p,,+1/2) \’3u(pa,il/2)
d(p,,*1/2) ioOBu(pa,il/2)
d(p,,71/2) i003u(pa,il/2)
ﬁ(pl,il/Z) iomu(pa,tl/Z)
G(p,,¥1/2) iGOlu(pa,il/Z)
(p,,*1/2) io31u(pa,il/2)
G(p,,71/2) i031u(pa,il/2)

where,

= G+cos(8/2)

- TG sin(e/2)

= -G _cos(6/2)

= + "% G_sin(e/2)
= _e:i¢G_sin(6/2)
= I(3+cos(6/2)

= —e:i¢E_sin(6/2)

IE+cos(e/2)

—
m

I+

E = VE_+ VE +m
1 a a

i+

and

@
"

I+
1+

VE,+m., VE ~m "
1 1 a a

-1 -m
VE1 m VEa s

VEl_nH,VEa+nB

With the definitions (E-5) we have in the (GJS),

ke
i
3
'Y
t
=
+
o
o]

(E-8)

(E~9)
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and at (HEA) (a-6),
pp = p} = 3 (E¥ + sina X" + cosa z¥) (E-10)
ZL/Sf
In the limit t2==0, sina = 0, cosa =-1 and
p, = Py = (p"-pl) . (E-11)
S1—ma

We give now a table of formulae used in the text.
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FIGURE CAPTIONS

Fig. Al -
Fig. A2 -
Fig. Cl1 -
Fig. C2 -
Fig. v-1-~
Fig. V-2 -
Fig. v-3 -
Fig. v-4 -

These graphs represent the (T CDM) described in the
text for pp*’pA++ﬂ_ reaction. (a) is the ﬂ—exchangé
or the T-component term, (b) the A-exchange or the
U-component and (c) the "direct"-pole-exchange = or
the S-component. Here the S, T and U components are

referred to the s t, and u, channels of the pP~ AT

17 "1

subreaction.

. > >
Gottfried-Jackson system for R1255p1+-p2= 0.
Vertex pﬂ—A++ with their 4-vectors associated to
each particle involved.
General structure of the (aPa') vertices and their
associated momenta.

P-factorization in the (T CD M).

t2 distributions integrated in several cosec'J' and

MAﬂ regions. The values of the parameters are (see

. _ -2 _ ~2 _ -2,
text).bﬂN— 10. (Gev 7), bNN— 9. (Gev 7), bNA— 8. (Gev 7);

OTO? (TN)= 25.0(mb), oToi’(NN) =50 (mb) and OTO?(AN):SO(mbL

do/dcoseG'J'distributions for the same set of pa-

rameters used in Fig. V-2. (a) for 1.37 < MA++n

_ <1.40(Gev)
and (b) for 1.4 <M,,, _<1.45(Gev).

dc

d¢G'J'

used in Fig. V-2.

distribution for the same set of parameters
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FIG. A2
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FIG. C1
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FIG. C2
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Table E-1 - Useful expressions for simplifying formulae ancd

results given in the text

i r, vy 65
1 myj+m, |, | /m, siné cos (8/2)
2 | m-m E,/m sin® sin(6/2)
3 ma/ m; l/EI—Ea cosf cos.(6/2)
4 2m1+ m_ 2\/?‘1—Ea cosf sin(6/2)
5 zml_ m_ FlE—/VrSTi+ F2E+/m1
6 1+ ma/m1 F1E+/l/5_11+ FZE_/H\1
vi 1-m_/m; (E_—G_coscx)/\[s_l‘
8 2+ ma/m1 (E+—G+COSOL)/l/_S—1'
9 | 2-m_/m, Ty B, ~E_|/s)/m
10 | (r{-mj)/m, rgE_-E,|/5]/m
11 (llmi— mi +3m,m - 8m§) + 2E_E, -mj —mé
+r4 (m2 - Zmi— 2mm - mé)
12 | [(5mi+ 4mi- 3mm - 8m’)/3+ 2|ga] |gz|
T, (mi+ mz— mg) ] /mf
13 | (5/3+r,)/m]
14 mi/3— m§+ m,m_+ mé
15 (2m§— 3mym_+ Bm; - 3m§) /3}[1;
16 | 1/m]

|






