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Abstract

Two points are randomly selected inside a three-dimensional euclidian cube.

The value l of their separation lies somewhere between zero and the length of a

diagonal of the cube. The probability density P(l) of the separation is constructed

analytically. Also a Monte Carlo computer simulation is performed, showing good

agreement with the formulas obtained.
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1 Introduction

An important problem in geometry and statistics is: given a convex compact space en-

dowed with a metric, and randomly choosing two points in the space, Þnd the probability

density P(l) that these points have a speciÞed separation l. The study of this problem has
a long history [1], and recently gained considerable impetus from researchers in cosmic

crystallography [2]-[19].

In a recent paper the functions P(l) corresponding to 2D disks and rectangles were

obtained [20]. The methodology introduced in that work is here extended to a 3D euclidian

cube.

2 Preliminaries

An euclidian cube with side a is assumed, occupying the location 0 < x, y, z < a in

a cartesian frame. Randomly choosing two points A and B in the cube, we want the

probability P(l)dl that the separation between the points lie between l and l + dl. The
probability density P(l) has to satisfy the normalization condition

! √
3a

0
P(l)dl = 1. (1)

The calculation can be shortened if one considers the symmetries of the cube. Really,

if the points A and B have been chosen, imagine the oriented segment A#B# parallel to

AB, with the tip A# coinciding with the origin O. The other tip B# then lies inside a

larger cube, with side 2a. Since the probability density P(l) clearly does not depend on
which octant of the large cube contains B#, there is no loose in generality in restricting

the calculation to the cases where B# is in the octant 0 < x, y, z < a.

With this assumption, the point B# has cartesian coordinates

B# = (l cos θ cosφ, l cos θ sinφ, l sin θ),

where both angles θ,φ are bound to the interval [0, π/2]; here φ is the azimuthal angle,

while θ is the polar angle measured from the z = 0 plane. The corresponding tip B in
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the original segment must lie inside a parallelepiped with sides (see Þgure 1)

lx := a− l cos θ cosφ, ly := a− l cos θ sinφ, lz := a− l sin θ. (2)

Figure 1 The endpoint B of the segment AB must lie inside the parallelepiped with a corner

at B#(l,φ, θ).

The probability P(l, θ,φ)dl dθ dφ that the segment AB has length between l and l+dl,
azimuth between φ and φ+ dφ, and polar angle between θ and θ + dθ is then

P(l, θ,φ)dl dθ dφ = k lx ly lz l2 cos θ dl dθ dφ, (3)

where k is a constant and where the assumption 0 < φ, θ < π/2 stands. Performing the

angular integrations we shall obtain

P(l) =
! !

P(l, θ,φ)dθ dφ, (4)

and we Þnally Þx k using the condition (1).

To calculate P(l), three cases need be separately considered, depending on the value
of l relative to a: namely the cases 0 < l < a, a < l <

√
2a, and

√
2a < l <

√
3a.

3 The case 0 < l < a

As is seen in the Þgure 2, in this case we effectively have φmin = θmin = 0, and φmax =

θmax = π/2. Then

P(l < a) = k l2
! π/2

0
lz cos θ dθ

! π/2

0
lx ly dφ (5)

=
k l2

8
[4πa3 − 6πa2l + 8al2 − l3], (6)
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where k = 8/a6 as will be Þxed later on.

Figure 2 The triangular intersection of the 2D sphere with radius l and centre O with the 3D

cube having side a > l.

4 The case a < l <
√

2a

In this case the intersection of the 2D sphere (with radius l) with the 3D cube (with side

a) is an hexagonal surface as in Þgure 3.

Figure 3 The hexagonal intersection of a 2D sphere with radius l and centre O with a 3D cube

with a vertex in O and having side a such that a < l <
√

2a.

We note that the arcs of circle drawn on the faces x, y, z = 0 have radius l, while those

drawn on the faces x, y, z = a have radius
√
l2 − a2.

For convenience of integration we divide the intersection into two regions. In region I

we have cos−1(a/l) < θ < sin−1(a/l) and 0 < φ < π/2.

In region II we have θmin = 0 and θmax = cos
−1(a/l). To have φmin(θ) we note that
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the circle drawn on the face x = a satisÞes the equation cosφ cos θ = a/l, so

φmin(θ) = cos
−1
"

a

l cos θ

#
=: φ1(θ). (7)

On the other hand, the circle drawn on the face y = a satisÞes sin φ cos θ = a/l, so we

have

φmax(θ) = sin
−1
"

a

l cos θ

#
=: φ2(θ). (8)

We then Þnd

P(a < l <
√
2a)

= k l2
$! sin−1(a/l)

cos−1(a/l)
cos θdθ

! π/2

0
dφ+

! cos−1(a/l)

0
cos θdθ

! φ1(θ)

φ1(θ)
dφ

%
lxlylz (9)

=
k l

8

&
2l4 + 6a2l2 − a4 − 2πa3(4l − 3a)− 8a(2l2 + a2)

√
l2 − a2

+24a2l2 cos−1(a/l)
'
, (10)

where k = 8/a6 as will be Þxed later on.

5 The case
√

2a < l <
√

3a

In this case the 2D sphere with radius l intersects the 3D cube with side a in the triangular

surface shown in Þgure 4.

Figure 4 The triangular intersection of a 2D sphere with radius l and centre O with a 3D cube

with a vertex in O and having side a such that
√

2a < l <
√

3a.

As before, the circles drawn on the faces x, y, z = a have radius
√
l2 − a2. The azimuthal

integration is performed between φ1(θ) and φ2(θ) as in the region II of the preceding
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case, and again sin θmax = a/l; but now cos θmin =
√
2a/l. We then Þnd

P(
√
2a < l <

√
3a) = k l2

! sin−1(a/l)

cos−1(
√

2a/l)
lz cos θdθ

! φ2(θ)

φ1(θ)
lxlydφ (11)

=
k l

8

&
8a(l2 + a2)

√
l2 − 2a2 − (l2 + a2)(l2 + 5a2) + 2πa2(3l2 − 4al + 3a2)

+24a3l sec−1(l2/a2 − 1)− 24a2(l2 + a2) sec−1
(
l2/a2 − 1

'
, (12)

where k = 8/a6.

This value for the constant k derives from the normalization condition (1), namely,! a

0
P(l < a)dl +

! √
2a

a
P(a < l <

√
2a)dl +

! √
3a

√
2a
P(
√
2a < l <

√
3a)dl = 1. (13)

6 Graphs of P(l)

In Þgure 5 we present a graph of the dimensionless function aP(l) against the dimension-
less variable l/a.

Figure 5 The probability density P(l) of separation l of pairs of randomly distributed points

inside a cube with side a. The irregular curve is the output of a corresponding computer

simulation.

We note that the function and its Þrst derivative are continuous in the whole interval 0 <

l <
√
3a. Nevertheless the second derivative is discontinuous at l = a, as discussed in the

next section. In the Þgure a normalized histogram corresponding to 150,000 separations

between pairs of points randomly selected in the cube is superimposed, for comparison;

the agreement of the two curves evinces the correctness of the calculation.
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7 Comments

The integration to Þnd P(l) in eqs. (5)-(6) is almost trivial; however, not the same can
be said about the two other cases, namely in going from (9) to (10) and from (11) to (12).

A computer assistance appears paramount in these two cases, to conÞrm every short step

in the calculation and simpliÞcation of expressions.

Similarly as in [20], the probability density P(l) and its Þrst derivative are continuous
throughout the entire range 0 < l <

√
3a. But the second derivative shows a Þnite

discontinuity at l = a, although it is continuous at l =
√
2a.

A remarkable feature of P(l) is its behaviour for large values of l; really, near l =√3a
we Þnd

aP(l) = 9

5
(
√
3− l/a)5 +O((

√
3− l/a)6), (14)

so P(l) is essentially a Þfth power of √3− l/a. We Þnd that 91% of the separations lie in
the range l ∈ (0, a), 9% lie in the interval l ∈ (a,√2a), and only 0.04% have l >

√
2a.
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