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ABSTRACT

Using the N=4 super-Yang-Mills theory softly broken by
supersymmetric N=1 mass terms for the matter superfields, we
compute the one-loop chiral + chiral » antichiral + antichiral
scattéring-amplitude directly in superspace. By suitable choices
of the mass parameters, one can endow the model with a hierarchy
of light and heavy particles, and the decoupling of the heavy
sector from the light-light physical amplitude is studied. We
also analyze the high-energy limit of the cross-section for a
two physical scalar scattering and find a (logs} behaviour,

which then respects the Froissart bound.

Key-words: Finiteness; High-energy behaviour; Supersymmetric
gauge theories,
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1. INTRODUCTION

Renormalization of wave functions, masses and coupling
constants by the ultraviclet infinities encountered in |
perturbative calculations in guantum field theory has always
been an enigma. With the advent of supersymmetry this situation
has changed for the better. A large number of supersymmetric
quantum field thecories that are free from ultravioclet divergences
have been discovered. The first to be proved ultraviolet finite
to all orders in perturbation theory was the N=4 super-Yang-Mills
theory [l]. The gauge and chiral matter superfields are in the
adjoint representation of the gauge group G. Ancther class of
finite field theories are theorieé with N=2 supersymmetry {2].
The matter representations (R) are chosen to satisfy the group
theoretic relation

02(G) - :% Cz(R) =0

where G is the gauge group and 02 is the second Dynkin index.
Finally the N=3 super-Yang-Mills theory [3] was also shown to be
finite with the heop of harmonic superspace techniques [4].

It has been proved further that the N=4 and N=2 finite theories
remain ultravieolet finite in the presence of explicit mass terms
for the fermions and scalars of the theory. These mass terms
are required to satisfy the mass relation

2s5+1

-1) (2s+1)-m§ -0

B
0

s=0,

_'.\'il'_'— ——

Depending on whether the gauginos have mass terms or

not, the N=4 and N=2 finite theories have either no supersymmetry
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or N=1 éupersymmetry.

None of the aforementioned finite theories contain
gravity., More recently it has been demonstrated that ten-
~dimensional local field theories for extended one-dimensional
objects are very likely to be another example of ultraviolet
finite field theories with the important feature of containing
the gravitational interaction. These theories are the type
I (N=1) superstrings [5] and the heterotic strings [6]. One
important aspect of this development is that consistency of the
theory demands the gauge group to be either S0(32) or Eg X Eg.
It is interesting to note that the N=4 super-Yang-Mills theofy
emerges from the open type I superstring as an effective theory
in the limit of zero slope and zero radius of compactification
of the extra six dimensjions. In this limit all the massive
models of the striﬁg.acquire infinite masses.

Just like in ordinary quantum field theory, it is of
interest to calculate physical quantities in these ultraviolet
finite field theories. In conventional field theories, bare
magses and couplings are not physicélly measurable quantities.
In' ultraviolet finite theories, bare masses and bare couplings
are in principle measurable. Quantum corrections give finite
renormalizations of the bare gquantities. Inherent in these
corrections are energy scale at which new physics occurs. The
energy scale isolate the theory into an "effective" theory
decoupled from new physics at low energles. This and related
issues are discussed in what follows. As a specific example we

take the N=4 super-Yang-Mills theory with soft breaking N=1

supersymmetric mass terms for the matter multiplets. We calculate

one loop corrected two particle scattering amplitudes in the
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N=4 theory. This is done through the use of superfields from
which all two particle scaﬁtering émplitudes are extracted.
In the past, superfields have only beén employed to discuss the
formal aspects of field theory e.g. renormalization. Cohside;
ing the number of diagrams to be evaluated in component form
for two particle scattering processes, the merits of using
superfields for calculating physical processes becomes only too
trangparent, We start with the superfield scattering ¢¢ -+ ;;
in the preceeding section. | |

The outline of our work is as follows. In Section 2,
we organize and compute all contributions to the ¢¢ -~ 393
scattering while working in superspace. Our results and their
consequences for the decoupling of the heavy sector and the.
asymptotic hehaviour of cross-sections are the subject of

Section 3.
2. SUPERSPACE CALCULATION OF $¢ -+ §¢ SCATTERING

The action of the N=4 super-Yang=Mills theory in terms
of N=1 superfields ¢i and V in the adjoint representation of

the gauge group G is:

tr[jd“x d*e e~V N eV by o+

[74]
[}

1 4 i s 3 :
-l-mrjd!(d 0 WWG. +
+_§% Jd x Eijk(d 9¢iF¢jf@k] +
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A=
. 27 T - -
where
e p~2(e” Y D, %),

To the action (2.1), we add the following gauge

invariant N=1 mass terms for the chiral superfields ¢, :

S, = - %t’r [Jd"x a%e ¢, my 5 ¢ + h.c.] (2.2)
In the presence of these mass terms the N=4 theory possesseé

a residual N=1 supersymmetry and remains finite. This method
ensures that the finiteness condition relating masses is

satisfied, i.e.,

)y m 2 =2 3 m ? (2.3)
all ,.scalars all fermions '
scalars fermions

Without loss of generality the mass matrix mij in eq. (2.2) is

taken to be diagonal,

m,. =m,6,. (2.4)

Our rotation and conventions are the same as in ref. [7]. The
Feyman rules we use are given in ref. [8].
The tree-level diagrams describing the superfield

scattering are shown in figure 1.
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L a -c
'ﬁ? 2 2 by
b 34 b ~-d
o 3 3 | *;
(a) (b)
Fig. 1

Tree-level graphs describing the ¢¢ - 9% scattering.

As in ref. [9], we also consider the case in which

-all particles are disﬁinct, simply to avbid introducing additional

crossed diagrams in the calculation; considering them would

not change our final conclusions.  Next, we draw all the

Feynman graphs that contribute to the scattering we are going

to study. They include one-particle irreducible diagrams and
also graphs which contain one loop corrections té propagators
and vertices. The introduction of masses brings new graphs
contributing to a particular Green function, as new propagators,
namely <T¢¢> and <T$¢>, show up with respect to the méssless case.
Though-sbme of the new graphs may individﬁally diverge, the

overall contribution to the Green's function under consideration
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is finite. These new graphs can be easlily individuated from
our answers, as they carry multiplicative mass factors in the
amplitudes. The latter have been considered in ref. {10].
The one-loop corrections to the diagrams in figi 1
can be divided into the following parts:
(i) oné-loOp self-energy insertions for each chiral
and anti-chiral superfield in the diagrams of fig. 1. The

diagrams contributing to the one-loop self-energy of ¢ are

shown in figs. 2 and 3.

(b)

Fig., 2
One~-loop corrections to the ¢¢ - propagators.

k
b
TN N
K+p P _
(a) (b) {c)

Fig. 3
One-loop corrections to the ¥¢ - propagators.
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The contributions of fig. 2 vanish due to the algebra of the

covariant derivatives. The contributions of fig. 3 are:

d'p J aPx 1 1 .

E_ 2
- ngs C,(G)§_, & J - ; .

. i .
. 255y
. _Jd“e ¢§(p;9,9)-¢?(p;9,6), for fig. (3a),

zero (due to the dimensional regularization scheme) for fig.

3b) and
B D _
% ¥Eg? Cz(G)GabGi.J d-'P--J 4 kﬁ[ 1 1 .
: 2 3T (2m)*d (2m) K+ mZ (k +pl+md
(2.6)
1. | - - -
+ . 1 2][&"8@2(1‘):3,9) @?{p;e,e) ,

2 2 (. 2
k +my {(k + p) +my
with k # & = 1, for fig. {(3c¢}.

In expressions (2.5) and (2.6), C:(G) is a Casimir coefficient

defined in terms of the group structure constants so that

famnfsmn = C2(G) 8, (2.7)

and p is an arbitrary parameter with the dimensions of mass
which has been introduced to keep the coupling constant, G,

dimensionless,

(i1) one-loop self-energy insertions for the vector
superfield Vv in fig., 1. The diagranms contributing;to the

one-loop self—enefgyiof V are shown in fig. 4.
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—f=
-~
/. \
qu }-&f\~v-¢
\ /
Ny "
(b) {c)
¢ ¢
{(d) (e) {f)

Fig. 4
One-loop vector supeffield.self-energy diagrams.

Their contributions are:

: D. . -

1 . € 2 : dhp dk 1 1 25 v

1 1892, (6) 6 J J 1-———st (-p,8,8) .
2 abj om ) 2mP k? (rep) 2 |

5 1. =
37,3 7 )V°(p,8,0) (2.8)

for fig. (4a), zero for fig. (4b),

d‘*p'J aPx 11

1 . € 2 . . 2 a., =
Z° 2 ab o) 2mP k2 (k#p) 2

S % yf - % nu)vb(p,e;ﬁ) (2.9)
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for fig. (4c), where the projection operators o and T az2 are

1

To= —— (D?D?+ D2D?Z) (2.10)
16 ]
and
Nija= - — 5% D (2.11)
/2 _8[:] Yo ! -
ufg2c, (G) 8 J-d“p de--I ! ! Jd"e
ab 5 ’

0} (2m)% (2m P y k%em? (kep) 24m?

v(-p ;0,8 [~k 3 k* (p)D,tp) + fg D2 (PIDZ ()] .

(2.12)

Vb(prﬂga)., where kaB'E k..caﬂ .

for fig. (4d). This contribution also survives in the case of

massless N = 4 super-Yang-Mills theory.

- 7 .a'p .aPx 1 1 [
: E 2
-.gC(G)G-j. —= I m — 4% .
Y 2 ab, (2r)" (2‘")D {1 k2+mi (k+p)2+ mi '
V3(-p;0,8)v(p:0,8) (2.13)

for fig. (4e) and



CBPF-NF-068/87
=10

: & D : - -
1 %32C5 (G) § bJ d*p J 4k 5 1 Jd‘*ava(-p;e,e).vbtp:s.e).
: avJ) e2m*! n? i k?+m? !

(2.14)

for fig., (4f).

By then adding up the contributions of all'diagrams
depicted in fig. 4 we obtain

. : . D
1 U g2C, (G) 6 J d’p f'd k (o3 —1 o g1
zHem abJ (amyv ! (2mP k2(k+p)? i k2+mJ?~
(2.15)
X 1y la*ev®(-p;0,8)p> T, (p)VP(p;6,8) ,
‘k""P)z"'mi 1/‘2.

To get expression (3.15), we have used that

j Pk 1 1 15 J,dk .
(20 k2+m? (kep)?+m? 2 2 7aj (2mP
(2.16)
1 1

N . . I 4
2 2 : 2 2
k +my (k + p) +my

which can readily be obtained by shifting variables twice and by

performing a symmetric integration.

All diagrams representing the self-energy insertions



. CBPF-NF-068/87
-1l=-

to ¢¢ + ¢¢ scattering are shown in fig. 5.

% \
— >

(a) (b)

(gi

. _ Fig. 5
Tree-level graphs corrected by one-loop self-energy insertions.
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Their evaluation gives the following contributions:

4 1
g € .s Lo £ f C: (G) - ; —
abe “cde p2 + mi (py +paf 2+ mi

[1_ d“k 1 1
. I3 -

: . + (m_<++m.) +
(2'rr)"k2+mk (k+p)2a+m’ "k 2

L

w1 1 wy ,a b
- J a'k -~ . - IJ a‘e o3 o5

, , Ei 34 , (2.17)
kz '(k'l'pl)z'l'mi . 3

k # 4 # 1, for fig. (5a). The answer for the supergraphs of
figs. (5b), (5¢) and (5d) can be directly read off from the
answer of fig. (5a) by suitably exchanging the external
momentum and the internal indices. For figs. (5e), (5f) and
{5g) we obtain respectively

(-ge d).

!b) (-g’zCz(G)) (-g’Eii; £

ii’3faa jfcar

{1 1 J a'k 1 1

(p,+p,) *+mi, (p + p )%+ mi, ' (2m" k* (kp +p )?n},

2 a.b«c=d ] 41 2

(pl+pé)2+ n, (p;§_§212+ mg . (271)4

p 1 d*k
. (-geii’jfaa'd) 2 » J

p—r 1 L1 1

2 2 - .232 2 2 ° 2, 2
k<+ I (k+pl+pz) +m£ k +m£ (k+p1+p2) +lnk

L d



CBPF-NF-068/87

~13-

NI R J a*e ¢;‘¢’§¢§a‘§ } for k # 2 # i,

= - 2 E

1 i LA s J a‘k 1
(p +p ) *+m{, (p1+p2)2+m;7_,

. vo,a . bac.d
(k+p1+p2)2 +mjz-' | e¢i¢j$i¢j +

- Y. (= )
+=gey gy Eaprp) (79555 05E0404) (39°C, (6))

it m

- . i J d'% y_1
(p,*+p,)*+mi, (p 4p )%mi, | (2m)* k’4m

1l
(ko +0,) oy

for k # & # i’

and
(igfcara) (igfda:b) (_1) - . (-1) -
'(pl-p3) (Pl-pS)
| f a'k -3 .r_1 1
(20" k(tp -p )2 L kP4mI  (kp -p ) +md

. (P;‘Pé)z.(%gzkl) J d*e¢§¢?$§$§ :

2m* x?

+ (m m£)] J d“6¢g¢?$§¢? }

(2.18)

(2.19)

(2.20)
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(11i) one-loop vertex corrections to the diagrams in
fig. 1. There are two types of vertices; the Vé¢¢ vertex and

the ¢¢¢ vertex. The one loop corrections are shown in fig. 6

and fig. 7.

i

(a) (b) - O

)
(d) {e)

{f
)}\
$ 4 _
(1

(h) )

{g)

Fig. 6
One-loop corrections to the 33V - proper vertex.
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{a) {b)
(c) (d)
Fig. 7
One-loop contributions to the ¢® - proper vertex.

The contributions of the individual diagrams are:

Jde_ 1 1 1

a*o {45 (D2 (-p)32] .
(2mP k2+mi (k+p) 2 (k+q)? ] 32 i

c

. [D* (@) 25 + %(p+q-2k)aBIDB(-p)E?][D(q}Gj] +

+ 3 [R(p+@) -p.ql 3 o5} P (2.21)

for fig. (6a), (6b) and (6c) both possess a vanishing group-
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-theoretical factor,

J a® 1 1 1 Jd"e{--l’-'

(2m® k% (c+p) 24m2  (k+q) 2+m2 32

"D (-p)e] D2 (@05} - £ ¢ (pvark) Py (-p) oS 1" b, (@) 0]+

+ 1 [(p+a+k) 2 +m? 132 '«b‘; } v (2.22)

2

for figs. (6d) and (6e),

3 rcde_ 1 1 1

1 (2m) D k2+m2 (k+p)? (ktq) 2

o [{k+p) 2+ (k+q) 2 ) fd“e'ii‘vbtpg
i

(2.23)

for fig. (6f) and (6qg),

Ide 1 1

+ (m +m,)]
{(2m) kz-i-mk (k-l-p) +m£ (k+q)2+mi " %

> sar. 1 rR2,_ & T2 N2 c 1 af S for) 38 c
I_d 81 35 [D%( pi)¢j][D (q)éj] +3k [DB( p)@i].[Du(q)ﬁj] +

1 ,z27a,¢C
+ 3 k20265 1P - (2.24)
for fig. (6h) and
[ SO N W B
(2m) k'2+m]2t (k+pf 2+mi (k+q) -"+mi

+ (mk > mz)]Jdes?'V?“@?N-, (2.25}
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where k # 2 # i,
for fig. (61).
The contribution of fig. (7a) vanishes due to the

algebra of the covariant dérivatives.

1 . —-—
(p-q)zj. dk 1 __ 1 — 1 fd“e¢?(4p:e,e) .
Jo(2m* k? (k+p) 2+ m? (k+q) ?+ m} _

. 02(q:8,8) ¢S (p—q; 8, 8) (2.26)

for fig. (7b),

pzjl a°k 1 1 1 .J'd29@?¢2¢€
(21} * k2+e-m? (k+p) 2+ m? (k+gf2!

(2.27)

for fig. (7c) and

{ dk. e
a*l 4 -2‘1 2 1 2 v 12‘ zJIdze¢?¢E¢?
(27)* k¢ m] (k+p)® (k+q) ®+ m3:
{2.28)

for fig. (74)

1

with the common factor 3 gBCZ(G).ei.k and integralsover p and .

]

All vertex correction insertions to 9% > 03 are

shown in fig.. 8.
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(a) b)

SN
NS

(C) (d)

Fig. 8
Supergraphs with cne-loop corrected propagators and vertices.

Their evaluation gives the following contributions:

Fig. (8a):

4

-
®

' & : :
{ 1 Jdk 1 1

(p1-ps) 2¥ (21 kZ+m? (k-pa)?

. (k-;s) ;! %J d"B(Bch‘;) (thb?) “’?5;1 _%(P:L + Ps + 2k) %6 |

..Jd“q(ﬁéag)(Da¢§)¢?$?*~%k;uh +Pa)+p1.p3}&%¢?¢?52531 +

- 1. -.Jdk 1 1 . 1 )

(pr-psF27 (2n)* k? (k-py)*+md  (k-p,)? +m?
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e 1 sun m27Cy 2.8, b=d iy 2B - a, .b-d

- 5| 4°8 (575 (026216555 + F(p 4p k) Jd‘*e(nsq:i) (5,43 6335 +
d
J

1 - a,bzcs
+3 ((pi+p‘fK)2 + m}) 1 d“8¢1 3 ¢ +

1 (_.3',J a*k 1 .. 1 .

(pyp,)* 2m* (k-p)?  (k-ps)?  k*4m}

P ey 2 a,bzc=d
. lkep)? 4 (k-p ) [ateefdlaTE «

: 4
" P Idk[ 1 1 1 +

(e,-p,)? ! (2m* k4mZ (k-p )P4m (k-p ) *+m}

+ (mee> mp)] L[ - -317 f a*e (5239) (%02 )<1> 39 +

L...l

. ) - = - b=4d @ 1 a b=c=-q4
Kaf Jd'_‘e(Déd:i) (0,3D033 + 3k* Jd 605653765  +

-hll-'

Wy :
1 Jdk!mzl 1 1 .

+ DR - -
(pi-p,)* ’/ (2m" & kP+mp  (k-p ) P+m]  (k-p ) *+m]

bcd}

+ meemy) 1 [a000305555 (2.19)

for k # 2 # 1 (but k or % may be equal to j);
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Fig. (8b):

the same answer as above, by suitably exchanging momenta and
internal indices;

Fig. (8c):

1
(p1 +p2)? +mf,

(% 93 CZ (G) eﬁtjfaarb’ (—geiilj-fca!d)--

- at*k . 2 1 1 , 1 :
: (tp2+pe)?t — I —— il
(2nf™ k? (k+p1)? +m,  (tk~p2) -l-mj
+ pz 1 . 1 . 1l +

1 " 2.2 2,2 - }2
k +mj (k+pl) "'mi: (k pz_)

) 1 . 1 4o bre=d {(2.30)
+p? ]Id 005 0 b .
* k*+m} (k+pl)2 (k-p2)2+m2: 17377

Fig. (84):

it is just the complex conjugate of fig. (8c¢).

(iv) the rest of the one loop corrections to ¢¢ -+ ¢

are shown in fig. 9.
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{b)

(4)

i

(£)

(1)
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“ ¢
J 4
{ [
$ | »

(k) (1)
)
)
)
!

{m) (n)

{o) (p).

(qQ) {r)

Fig. 9

One particle irreducible graphs contributing finite corrections
to the ¢¢+$¢ scattering.
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Their evaluation gives the following contributions:

Fig. (9%a):

L . % .
%f (pdbde , jadbe J .d_k 1 .l .
(2m)* k? (k+p) *+m}

. 1 vy 48,bzc=d | s
(k+p ~p.}2 Jd ° ¢i¢j¢i¢j d (2.31)
1 t
Fig. (9b):
"
g (73cdb . pachd, J dik 1 1 .
2 {2%) 4 kz_ (k+p) z._'_m;
1 a,bwczd
(k+p -p, e I a%6 0y 05919 | (2.32)
Fig. (9<):
s ,abde . .
g A eiiuin Eii‘i“' Ejj'i“ Ejj'im I d'k i
{gﬂ]" k2+mi,
1 mi"' 1 2 bec=d
k+p ) 2+m? : (k+p -p ) Z+m2" ’ (k-p ) *+m? J 9¢i¢ ¢1¢
1 if i 2 5

(2.33)
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Fig. (94):
4 abcd n
g' A Egyrim €14r9m Egirqn sjj'i"J da'k . 4" ‘_
(27) ¥ k2+mi“
1 Myn 1 J a b-c=d
(etp ) 24m?, (k+p -p )2+m2, (k-p )2+m? a%0e; 95919y
- b | i 1 L j" Z J'
Fig. (9e):
v ,acbd " .
g' A Eii'i" Eii'j" Ejj'j" ejjljuJ d’k . 1
- (2m)* k2 +mi,.
1l 1 1 .
{(k+p )2+mi. {k+p;-p2)2+m§“ (k+p“)2+m§,
o { =l 2 a b-c-d 4 2 2 b-d
{-k Jd 9¢i¢j¢i¢ +Jd 6D2 [ (D ¢i)¢i] ¢J¢J +
—4k°‘é [ a*ob; [(D_¢5) 35 ]¢ 391 ;
J BT - A RS | j d
Fig. (9f):
| a1 1 1
glI-| ﬂabdc J . o"""zc 2. 2 L _ 2
(27) k (k+p9 +my (k+P1 sz

(2.34)

(2.35)
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b-c—
{—(px-fpz)zljd“e¢§¢j¢§¢§ ;

1
tk+p;-pa-pn2+m§

(2.36)

Fig. (99):

wpadbc( d*k 1 1 e 1 . 1
i 2

(21)* k* (k+pi)?+m? (k+pi=ps)? (k+p1+pa-paems

N LU AT D

—4(k4p1+pz-pai“BJd“eEé[(na¢i)$f1¢?$§.}-s_ (2.37)

Fig. (9h):

guﬂacde a‘k 1 . oy IR .

(2r1)* k2 (kepa) *+ m?  (kK+p2+pa)*

m .
. i J wq.a,brczd
: a6¢2p 0 0 ; -
(k+ps) 2+ mi 1737173 (2.38)
Fig. (9i):
guﬂadch d*kx 1 . ' : 1 .

(27)* k2 (kipy)? + m; (k+py+p2) ?

. ! a*002425%5¢ (2.39)
194%1%5 7 1e-

(k_+pa.’2 + mi

y Fig. (9)):

j3rir %3373

« ,acdb J d*k (- 19 1
(2m) " k2 (kep1)? +mi.
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. 1 » 1

(k+pr+p2) 2 4m;' (k+p1+p2—pu) 2 4m3?..

{ = (k+p1+p2-pu) zfd"%i@ﬁ? +

+ [a*0 02621655585 - 4 (kepasp2-p 1) ¥ [a%on; L1043 6310585 )-

(2.40)
Fig. (9k):

it vanishes due to the algebra of covariant derivatives;

Fig. (91);

it vanishes due to the algebra of covariant derivatives;

Fig. (9m):

w yadchb J a“x 1 Myr .
-gﬁ Essnznk; oy n"'_(""—, - :
ji'i" " iis 3 (2m) * k? (k+p1)2 + mi'
-~ mo“ m-' iy
p— ”! _ ' 1 Jd?e(nzq:i)cp%‘i’qa. :
(k+p1~ps) 2 [ (k+p1-pu) 2 + m; w]l  (k=pz) %+ mj?. 37373

{2.41)
Fig. (9n):

it vanishes due to the algebra of covariant derivatives;

Fig. (90):

— abed| d*k 1 1
9‘ ejjrileijrinﬂ "'-"‘"_""(""-— " PR 2 .
(2m)* k?  (képa) «m?,
. 1 . R .1.

: ‘ . - " {~(k+p1+p2-ps) ? I
(k+p1+p2)2i-m§, (k+py +pa=pa) * + mi,

a . bTctd b a2 a, 7¢ b-d
. Jd“e¢i¢5¢i¢j + Jd )] [(D2¢i)¢11 ¢j¢j +
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_4(k+pl+p_2 ps) J da‘e D4 [(naqai)qsi 1 ¢j¢j} (2.42)
Fig. (9p):
g“ €iivim Exepu Aacdb'[ d“k . 1 . 1 . (‘I)
11l 1 11 J (21")“ k2+mj2-" (k+pl)2+mj2-l (k_pz)z

1

(k4p1fpsjz+m§'

_ 2 4o, 8,brc=rd
(-2 [ @t 002653533 +

+ Jd“aﬁzt(nzd{ﬁ‘i’l ¢?$§1 - 4kaéJd"95éf (Ddei)Eij ¢?$‘;}; (2.43)

Fig. (9qg):

L

g Eji'j" Eiiljl

“ 2 2402
(27) k (p2+k) +mj,

@4k -
nbachdk (=1, 1

1 1
4p +k) 24m?, +p_+k~p ) Z+m?
(p +p +k)"4my,  (p +p +k-p ) +me,

_ 2 a b-c-d
(-(p, ) | a*003433735 +

= a,zc ,,.bzd af = sayzc o b=d .
+J a'eb? (%3 FF 14335 -4 (p,+k)® Jd“GDé[(Dacbi)dbi 143851 3

Fig. (9r}):
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Aacbdj-d*k (oL By .
(2m)*  k*  (pi+k)* +m],

2

m ] -y - .
. - Jd“e¢i¢?¢§¢@ . {2.45)
(pg+k)2+mj, 3"+

ki and ﬂabcd are group-theoretical quantities so defined that

1

7 K fape = farab' Tp'berfcrear (2.46a)

Aipea = farap'fbibetforcarfataar (2.46b)
with

Aabed = Mpade = cdab = tdcba (2.46c)

In evaluating the diagrams contributing to ¢¢;t$$ no
use was made of the equations of motion for the superfields ¢
and 5. The sum of all the diagrams gives the off-shell four-
-point function ¢¢dd. It is to be noted that the sum of the
individual contributions in figs. 5 and 8 is ultraviolst
finit. However all contributions in fig. 9 are individually

ultraviolet convergent.

3. PHYSICAL AMPLITUDES, DECOUPLING AND HIGH-ENERGY
BEHAVIOUR '

To read off the physical processes described by the

whole sit of graphs calculated in the previous section, the
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first step is to express our results in the component form.

By parametrizing a chiral superfield by the @8-expansion
$(x,0,8) = exp i(606.3) (z + 6% + 62h), | (3.1)

where z is a physical complex scalar, y is a physical fermion
and h is the complex auxiliar component of ¢, the above
superspace integrals can be worked ocut in their component
version.

Once this'is done the elimination of the auxiliary
fields through then tree-level equations of motion is the next
step towards the obtention of the physical processes
accomodated by the scattering ¢¢ = EE. The h?ls are to be
eliminated through |

h, =m,z, +k;&

ia i“ia ijkfabczjbzkc

{3.2)

One can verify that the two-particle scatterings with the
supergraphs of the previous section taken into account are the

following:

scalar + scalar ~ scalar + scalar

scalar + scalar + fermion + fermion

scalar + fermion -+ scalar + fermion

fermion + fermion + fermion + fermion
and

fermion + fermion -+ scalar + scalar

As our working example, we shall focus our attention
on the purely scalar scattering just to avoid polarization

factors which do not alter the essence of the conclusions we
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shall draw. By projecting into components and making use of
the equations of motion (3.2), we can individuate all
contributions to this process. If then we use the on-shell
condition for these scalars, we finally get the physical
amplitude for the purely scalar scattering under consideration.
In possess of the results obtained in the previous
section, the first question we would like to discuss is that
of decoupling. As already mentioned, the mass parameters of
(2.2) can be so chosen that a hierarchy of light and heavy
sectors is introduced into the model. Let us take for
instance, m; = m2 = 0 and my; very heavy, and let us suppose
that the supérgraphs of figures 8 and 9 carry the zero mass
superfields in their external legs. So the heavy sector
contributes to this process only by circulating inside loops.
"By then.;aking the limit m; »+ « and keeping only those
contributions that diverge wiEh ms. We find that the graphs

My -

of fig. 8 exhibit a log behaviour, in agreement

(p1492)2
with expectations based on power-counting together with
Lorentz and gauge invariance. As for the graphs of fig. 9 we
find that they are ali suppressed by powers of the heavy mass.
The net conclusion is that the heavy mass effects signal a
violation of decoupling as physical amplitudes for the
light-particle scattering diverge in the limit the heavy mass
goes to infinity. This therefore confirms the results of
reference [11]. To give a meaning to the effective light
theory one\has to absorb the heavy mass effects into a

redefinition of the parameters of the Lagrangian through a

finite renormaiization, as already discussed in reference [11].
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Coming now back to the physical scalar scattering,
we would like to discuss the question of the high-enerqgy
limit of the cross-section for such a process in the _
framework of a finite theory in order to compare with the
usual log2behaviocur of ordinary renormalizable theories [12].
The first step we followed was the derivation of the large
s(=(p1+p2)?) behaviour of the physical scattering amplitudes.
For this, we have used the kind of technigue described in
reference [13]. We found that their overall asymptotic limit
grows as an (s log s) for s ~ w, To get this behaviour we had
not only derived the high s-limit of the loop integrals
appearing in the supergraph answers but also took dinto
account eventual powers of s arising when projecting the
scalar-scalar scattering in components. From this, and by
using the optical theorem, whicﬁ relates the forward
scattering amplitude to the total cross section for the
process [14], we conclude that the physical scalar scattering
is described by a c¢ross-section which behaves as a (lég 8).
This behaviour does respect the well-known Froissart bound
for the cross-section which based on unitarity and in a
completely model-independent way states that the cross section
should be bound by a (log s)?. This raises again the discussion
on the possibility of defining an effective coupling parameter
which accounts for the effécts of some physical process.
Though in the case of a finite theory no reqularization is
needed and no subtraction point has to be introduced, the
definition of an effective coupling constant out of the bare
one should be done at a certain energy scale, E. In the usual

case, where the Froissart bound governs the high s-behaviour
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of the cross-section, one would find a (log E)lfé. In our
casa, we get a different behaviour, as conjectured by Namazil,
Salam and Stralhdee in reference {15]. Our analysis reveals
a factor (log E) Y in the definition of the effective
coupling parameter defined in such a way'to take into account

the scalar-scalar scattering of the N=4 model.
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