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Abstract

The role of s-channel unitarity screening corrections, calculated in the eikonal approx-

imation, is investigated for soft Pomeron exchange responsible for elastic and diffractive

hadron scattering in the high energy limit. We examine the differences between our

results and those obtained from the supercritical Pomeron-Regge model with no such cor-

rections. It is shown that screening saturation is attained at different scales for different

channels. We then proceed to discuss the new HERA data on hard (PQCD) Pomeron

diffractive channels and discuss the relationship between the soft and hard Pomerons and

the relevance of our analysis to this problem.

∗Permanent address
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Regge-pole theory was introduced into high energy physics some 35 years ago and was soon after

followed by a very rich phenomenology[1]. The two key ingredients of this approach are the leading Regge

trajectories

αR(t) = αR(0) + α′
Rt (1)

where αR(0) = 1 − η � 0.5 and α′
R � 1GeV −2.

These are accompanied by the Pomeron

αP (t) = αP (0) + α′
P t (2)

where we take a supercritical intercept αP (0) = 1 + ∆ to account for the growing total cross sections.

Wheras the Regge trajectories extrapolate nicely in the time like sector through the mesonic singularities

(see Fig.1), the Pomeron is a more mysterious entity. Its existence is necessitated so as to maintain a self

consistent theory and reproduce the high energy data. However, no mesonic singularities have been found

in its time like sector. Also, in as much as the Pomeron plays a fundamental role in strong interactions,

our understanding of its dynamics in terms of QCD is very partial at the best.

Regardless of the above reservations, we have seen, over the past few years, some very vigorous

phenomenological investigations of the Pomeron through the study of forward elastic scattering and total

cross sections. In particular, Donnachie and Landshoff (DL) have promoted [2] an appealing and very

simple Regge picture in which

σtot = X(
s

s0
)∆ + Y (

s

s0
)−η (3)

with universal ∆ = 0.0808 and η = 0.4525, see Fig.2. This study is supplemented by the analysis of

Block, Kang and White [3], who examine the nuclear slope of high energy pp and p̄p elastic scattering.

They get an excellent reproduction of the data with B = b0 + 2α′ln( s
s0

) where α′
P = 0.25 GeV −2. Even

DL offer a global fit to all available hadron-hadron and photon-hadron total cross sections, it should be

noted that in reality only p̄p and γp reactions have attained high enough energies in which the Pomeron

parameters can be unambiguously tested, provided experimental errors are small enough.

Elastic scattering and diffraction dissociation are similar processes which have predominantly forward

imaginary amplitudes corresponding to the exchange of vacum quantum numbers in the t-channel. As

such, both are dominated in the high energy domain by Pomeron exchange and are expected, in a simple

Regge model, to exhibit rather similar dependences on the kinematic variables. Indeed, in the triple

Regge limit we have for high enough energies
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M2dσsd

dM2dt
= σ2

0(
s

M2
)2∆+2α′tGPPP (

M2

s0
)∆ (4)

where σ0 = σ(s0) and GPPP is the triple Pomeron vertex couplings. The virtue of this formalism is that

it makes a strong correlation between the energy dependences of σtot, σel and σsd, as well as with the

mass dependence of σsd, i.e. dσsd

dM2 . The asymptotic predictions expected from a simple DL supercritical

Pomeron model are summarized in the first column of Table I.

Table I. Asymptotic predictions of the Supercritical Pomeron and Eikonal models

Supercritical Eikonal

Pomeron model

σtot s∆ ln2( s
s0

)

σel
s2∆

ln( s
s0

) ln2( s
s0

)

σsd
s2∆

<ln( s
M2 )> ln( s

s0
)

σel

σtot

s∆

ln( s
s0

)
1
2

σsd

σtot
s∆

<ln( s

M2 )>
1

ln( s
s0

)

dσsd

dM2 (M2)−(1+∆) (M2)−(1+∆)

Clearly, the simple model we have presented is bound, eventually, to violate s-channel unitarity.

This has obvious experimental consequences as σel

σtot
and σsd

σtot
, which are expected to behave like s∆,

cannot grow with energy indefinitely. The theoretical problems at stake are easily identified in an impact

parameter b-space formalism which is outlined below.

Our amplitude is normalized so that

dσ

dt
= π|f(s, t)|2 (5)

σtot = 4πImf(s, 0) (6)
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The scattering amplitude in b-space is defined as

a(s, b) =
1
2π

∫
dq e−iq·bf(s, t) (7)

where t = −q2 .

In this representation

σtot = 2
∫

db Ima(s, b) (8)

σel =
∫

db |a(s, b)|2 (9)

The properties of a(s, b) are demonstrated in Fig.3. s-channel unitarity implies that a(s, b) ≤ 1.

This is actually just the black limit. We also have the analiticity/crossing limit. The position of this

limit depends on the lightest relevant exchange we can make in the t-channel. Froissart[4], at the time,

considered it to be a π meson. Our present thinking tends to consider it as the lightest glue-ball we can

exchange. We can combine the two limits and obtain the well known Froissart bound[4]

σtot ≤ C ln(
s

s0
) (10)

where C depends on the exchanged mass.

Taking the DL parameters, it is an easy excersise to see that such a model will violate the unitarity

limit for small b just above the present Tevatron energy. Indeed, CDF reports[5] that a(b = 0,
√
s =

1800) = 0.96 ± 0.04. ∗ The experimental problems associated with the simple supercritical Pomeron

approach, outlined above, are demonstrated in Fig.4 and 5. In Fig.4 we see that σel

σtot
keeps growing

through the ISR-Tevatron energy range, compatible with our simple expectations. This is not the case for
σsd

σtot
which is lower in the Tevatron range than in the ISR range. This observation is further demonstrated

in Fig.5 where we see that the ratio between the mass averaged (dσsd

dt )t=0 and (dσel

dt )t=0 goes down with

energy. We are reminded that, by virtue of the factorization theorem, this ratio is just the ratio of the

relevant coupling constants. As such, we expect it to approach, rather quickly, a constant value. Actually,

since we average over M2, this ratio should increase very slowly with energy. The energy dependance

shown in Fig.5 is very different. This ratio reaches its maximum at the ISR range and is decreasing rather

rapidly at higher energies.

The purpose of this review is to demonstrate that the above difficulties, theoretical and experimental,

can be resolved once we take into account the screening corrections necessitated by unitarity. Moreover,

such a picture is very suggestive in a QCD motivated model where we wish to associate the total cross

section growth with the small x increase of the projectiles gluon densities. In order to catalog the

differences between a non screened supercritical Pomeron model and a similar model which includes

screening corrections, let us specify their features side by side. I wish to present a model calculation

which is reasonably realistic but also as simple as possible. To this end I present the Pomeron amplitude

in an exponential form and calculate the screening corrections utilizing the eikonal approximation. This

approximation accounts for elastic rescatterings which are the leading contribution to the screening

process.

∗To avoid this difficulty, DL have introduced a weak P-P cut correction which extends appreciably

the domain of applicability of their model at the cost of ∆ becoming eventually s dependant.
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As stated, the introduction of screening rescattering corrections is greatly simplified in the eikonal

approximation where at high energy a(s, b) is assumed to be pure imaginary, and can be written in the

simple form

a(s, b) = i(1 − e−Ω(s,b)) (11)

where the opacity Ω(s, b) is a real function. As we shall utilize Regge parameterizations, analyticity and

crossing symmetry are easily restored by substituting sα → sαe−iπα/2, where α denotes the exchanged

Regge trajectory.

In previous publications [6-8], we have shown that the eikonal approximation can be summed ana-

lytically for a Gaussian input

Ω(s, b) = ν(s)e−
b2

R2(s) (12)

which corresponds to an exponential representation in t space. This is a good approximation for Regge

type amplitudes where we get

ν(s) =
σ0

2πR2(s)
(
s

s0
)∆ � σtot

4πBel
(13)

R2(s) = 4[R2
0 + α′ln(

s

s0
)] (14)

where σ0 = σ(s0) and Bel = 1
2R

2(s). With this input, we obtain in the eikonal approximation

σtot = 2πR2(s)[lnν(s) + C − Ei(−ν(s))] (15)

σin = πR2(s)[ln2ν(s) + C − Ei(−2ν(s))] (16)

σel = σtot − σin (17)

where Ei(x) =
∫ x

−∞
et

t dt , and C = 0.5773 is the Euler constant.

For the single diffraction channel with screening corrections we obtain[8]

M2dσsd

dM2
=

σ2
0

2πR̄2( s
M2 )

(
s

M2
)2∆GPPP (

M2

s0
)∆a

1
(2ν(s))a

γ(a, 2ν(s)) (18)

where

R̄2(
s

M2
) = 2R2

0 + r20 + 4α′ln(
s

M2
) (19)

r0 ≤ 1GeV −2 denotes the radius of the triple vertex and can safely be neglected.

a =
2R2(s)

R̄2( s
M2 ) + 2R̄2(M2

s0
)

(20)

γ(a, 2ν) denotes the incomplete Euler gamma function γ(a, 2ν) =
∫ 2ν

0 za−1e−zdz . In the high energy

limit the above expression simplifies to

M2dσsd

dM2
= πR2(s)[GPPP (

M2

s0
)∆ + GPPR(

M2

s0
)−

1
2 ] (21)

The remarkable differences between the non screened and eikonalized versions of the supercritical

Pomeron model are best illustrated in the asymptotic region and are summarized in Table I. As can
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be readily seen, the most dramatic change takes place for single diffraction where a s2∆ divided by a

lns term is replaced by R2(s) which behaves as lns. Problem is that the Value of ν in the ISR-HERA-

Tevatron energy range is of the order of unity, which means that we are well below the asymptotic region.

Consequently, the information summarized in Table I, as interesting as it may be, is of no practical use

as long as we do not specify the appropriate energy scales at which the screening corrections saturate

and become appreciable.

To this end we define a damping factor[9]

D2 =
σi[with SC]

σi[with noSC]
(22)

which reads for σtot and σel

D2
tot = 1 −

∞∑
n=1

(−1)n+1 νn

(n + 1)2 n!
(23)

D2
el = 1 − 4

∞∑
n=1

(−1)n+1 νn (2n+1 − 1)
(n+ 2)2 (n + 1)!

(24)

For the inelastic channels the damping factor is defined

D2 =
∫
db ai(s, b) P (s, b)∫

db ai(s, b)
(25)

where ai(s, b) is the b-space amplitude of interest, and P (s, b) = e−2Ω(s,b) denotes the probability that

no inelastic interaction takes place at impact parameter b.

For M2 dσsd

dM2 we get

D2
sd = 1 − a

∞∑
n=1

(−1)n+1 (2ν)n

(n+ a)n!
(26)

where a was defined in Eq.(20).

The damping parameters in the ISR-Tevatron energy range have been studied in detail in Ref.[9].

The important conclusion reached is that the above energy range is too low so as to enable an assessment

of the importance of the screening corrections in total and elastic cross sections. The success of the

DL model is thus understood. The emerging picture is that we expect σel

σtot
to start its rise, behaving

approximately as s∆, and at the energy scale where screening becomes important to temper its rise

approaching 1
2 from below at exceedingly high energies.

On the other hand, a careful study[8,9] shows that the scale at which screening saturates for the

diffractive channels is appreciably lower, about
√
s � 50 − 100GeV . This is, indeed, the scale suggested

by the SD data shown in Figs.4 and 5. This is compatible with the Pumplin bound[10]

σel + σdiff

σtot
≤ 1

2
(27)

Our remarkable conclusion is that whereas we have not reached, as yet, the screening saturation scale

corresponding to elastic p̄p scattering, the single diffraction scale is considerably smaller at c.m. energies

of about 50-100 GeV. Consequently, SD cross sections behave differently than the elastic cross sections

above an energy scale which is in the 50-100 GeV range.
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A very exiting new window of information through which we can examine our ideas on Pomeron

physics, has been opened recently when the second generation of HERA results became available. Ac-

tually, we have two avenues of new knowledge. To begin with, and as we have already noted, real

photoproduction is the only channel, in addition to p̄p, where our c.m. energies exceed 100 GeV. Clearly,

a very important element in non screened Regge models is the universality of ∆. The analysis of the global

data on σtot(γp) and σ(γp → ρp), including the HERA points, is therefore crucial for our understanding

of the role of screening below saturation in soft Pomeron processes[11].

On a more profound level, we should re-assess what do we actually mean when we refer to the

”Pomeron”. Our discussion, thus far, was confined to soft processes, within the domains of conventional

Regge physics. In PQCD a hard Pomeron, called the BFKL Pomeron, can be perceived[12] through the

summation of gluon ladder diagrams. As a result, we obtains a series of poles in the complex j plane above

unity. These poles sum to an effective ∆ = 12
π αsln2. Inserting a reasonable value for αs we get ∆ � 0.5

which seems, at first sight, rather high. It is, therefor, convenient to re define the Pomeron as an effective

exchange with no colour flow, which has therefor a clean experimental signature of a large rapidity gap.

Such a definition is compatible with both the Regge soft and the BFKL hard Pomerons. The above

definition leaves opened the more fundamental problem of the relationship and transition between the

soft and hard phenomena associated with the ”Pomeron”. We shall return to this after reviewing the

relevant data.

A unique property of HERA is that its kinematics are such that we can explore Pomeron physics in

domains that are accessible to PQCD calculations. Since at very small x, σtot(γ∗p) = 4π2α
Q2 F2(x,Q2),

we can actually carefully scan the experimental dependence of ∆ on Q2. We are reminded that a pre

HERA analysis by ALLM[13] of F2(x,Q2) predicted a fast variation of ∆ as a function of Q2. Namely,

ALLM obtain a ∆ ≤ 0.1 at Q2 ≤ 1GeV 2 which is changing to ∆ � 0.4 at Q2 ≥ 10GeV 2. The ALLM ∆

variations with Q2 are shown in Fig.6. This information is supplemented by inclusive channels like real

photoproduction of heavy vector mesons such as J/ψ and γ∗p → V p, where V stands for a light vector

meson.

A summary of HERA new data[14] is presented in Figs.7,8 and 9. σtot(γ∗p) data are shown in

Fig.7 which displays a dramatic Q2 dependance. Real photoproduction and small Q2 data show a very

moderate dependance on energy, suggesting that ∆ ≤ 0.1. As Q2 is increased the total cross sections

become more and more energy dependant making ∆ � 0.3 − 0.4 at the highest Q2. ALLM lines are

added to this figure to guide the eye. A strong energy dependence is also shown in Figs.8 and 9. Fig.8

shows the x dependance of σ(γ∗p → ρp). The hatched area corresponds to a soft Pomeron prediction

and is obviously not adequate. The shaded area corresponds to a PQCD calculation[15]. Fig.9 shows the

energy dependance of σ(γp → J/ψp). The solid line is a VDM (soft) prediction while the shaded area

corresponds to the PQCD calculation of Ryskin[16]. The theoretical ambiguities in Figs.8 and 9 originate

from experimental ambiguities in the input gluon density.

The new HERA data indicate clearly the existence of hard Pomeron phenomena with an energy

dependance which gets pretty close to the BFKL prediction. Moreover, as is evident from Fig.6 the

transition from the soft domain to the hard domain is rather fast. We shall mention here two obvious

possible theoretical interpretations of these observations.
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1) We have actually two Pomerons. A soft Pomeron with a fixed ∆ � 0.1 and a hard BFKL Pomeron

with ∆ � 0.5. Wheras the small Q2 data is dominated by the soft Pomeron the higher Q2 data is domi-

nated by the hard Pomeron. The net effect of the two added contributions is an effective Pomeron whose

intercept is Q2 dependant. Intuitively, such a scenario presumes the decline of the hard Pomeron in kine-

matic domains that are not accessible to PQCD, and screening suppression of the soft Pomeron at high Q2.

2) We have only one soft or semihard Pomeron which, due to PQCD dynamics and screening, devel-

ops[17,18] a strong Q2 dependance. The basic assumption is that the bare Pomeron has ∆ � 0.25. For

real photoproduction and low Q2 this value is suppressed due to screening. For higher Q2 values, the

important observation is that the GLAP evolution equations push the value of ∆ upward with increasing

Q2.

In order to differentiate between the above theoretical options and explore some new ones, additional

data is needed. To my opinion the key element is to understand the relatively fast transition between

Q2 = 1GeV 2 and 10GeV 2. Unfortunately, this Q2 interval is relatively poor with experimental data.

These should become available in the near future, and I believe, should help us to resolve the Pomeron

mystery.
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