CBPF-NF-066/87

MOST PROBABLE MASSES OF ISOTOPIC DISTRIBUTIONS
AND SYSTEMATICS OF PHOTOSPALLATION YIELDS

Ву

J.B. Martins, K. Aspetaki¹, V. di Napoli¹*
and aG. Thiery¹

Centro Brasileiro de Pesquisas Físicas - CBPF/CNPq Rua Dr. Xavier Sigaudy 150 22290 - Rio de Janeiro, RJ - Brasil

¹Dipartimento di Chimica - Universit**a** di Roma La Sapienza Piazzale Aldo Moro 5, 00185 Roma - Italia

^{*}Author to whom correspondence should be addressed.

ABSTRACT

A Z-dependence of the most probable mass number A_{mp} for isotopic distributions of spallation residuals is proposed. The modified five-parameter semiempirical formula thus deduced seems to reproduce fairly well most of the experimental data of photospallation yields.

Key-words: Photospallation; Spallation; Isotopic distributions;
Photo nuclear reactions.

Charge-Distribution-Mass-Distributions (isotopic distributions) of spallation residuals are described well enough by multiparametre semiempirical formulae ($^{1-18}$) that, without any need of expensive and time consuming computer calculations (10,20), have been proved to be suitable in reproducing the cross sections (or yields) of spallation residuals as a function of the mass- and atomic number (A_t, Z_t) of the target element and those of the product (A_i, Z_i), and of the nominal nucleonand proton loss ($\Delta A_i, \Delta Z_i$).

Almost all these formulae contain, as a <u>free parametre</u>, the most probable (\underline{mp}) mass, $A_{\underline{mp}}$, of a given isotopic distribution on the mass-yield plane.

Due to the fact that $A_{mp}(Z)$ appears in the argument of a gaussian (or almost-gaussian) function, A_{mp} becomes an extremely critical parametre.

The aim of the present paper was to search for an analytical form of $A_{mp}(Z)$ that could give better results and cover much wider range of atomic numbers than do other formulae, especially in the case of photon-initiated spallation at intermediate energies (up to a few GeV).

Regardless of the experimental irradiation conditions,

Amp has always been shown to assume values which differ very

little from the A values of the most abundant naturally occurring

isotopes (with only a very few exceptions, within 0.5 to 1 A units)

for any peculiar distribution (at fixed Z).

More precisely, A_{mp} seems to be very close to the average A value (A_{sw}) of the <u>n</u> existing stable masses for a given Z, <u>weighted</u> over the percent natural isotopic abundance w

$$(\sum_{j=1}^{n} w_{j} = 1)$$
.
For each Z_{i} , $A_{mp}(Z_{i})$ is consequently written as

(1)
$$A_{mp}(z_i) \approx A_{sw}(z_i) = \sum_{j=1}^{n} [w_j A_{sj}(z_i)]$$
,

s standing for "stable", even if one or more Asj are radioactive in nature.

Following the hypothesis analitically expressed by eq. (1), A_{sw} should represente <u>centre of gravity</u> of the <u>n</u> A_{sj} masses, and $A_{mp}(Z_i)$ the top of the distribution of isotopes having atomic number Z_i .

A careful regression analysis, with some data rejection, based on eq. (1) gave, from $Z=6\,$ up to Z=83, the following Z-dependence

(2)
$$A_{sw(fit)} = \alpha Z^{\beta}$$
,

with

(3)
$$\begin{cases} \alpha = 1.590 \\ \beta = 1.103 \end{cases}$$

and a coefficient of correlation: $r^2 = 0.985$.

To verify the goodness of the fitting procedure and the homogeneity of the two-sample data $(A_{sw}, A_{sw}(fit))$ both parametric statistics were used.

Statistical Goodness of Fit (GOF) tests showed strong evidence as for homogeneity and correlation of the two samples were concerned (e.g., $R_{xy} \approx 1$, Spearman's $\rho = 0.999$, and reduced $\chi^2_{\nu=75} = 1.1$ as deduced from the Bartlett's criterion with a

confidence interval of 90%).

A Student t-test (with ν = 74 degrees of freedom and a probability of 0.975) was employed to obtain the errors effecting α and β

(4)
$$\alpha = 1.590 \pm 0.010$$

and

(5)
$$\beta = 1.103 \pm 0.009$$

From eqs. (1-5) we can write

(6)
$$A_{mp} = A_{fit} = (1.590 \pm 0.010) z^{(1.103\pm0.009)}$$

(to avoid excess of symbols Afit takes the place of Asw, (fit)).

Table I shows a comparison between A_{sw} and A_{fit} (* A_{mp}) for 13 values of Z (plus other two values out of systematics).

Plotted in Fig. 1 are the values of $A_{\mbox{fit}}(Z)$ (filled squares, from eq. (2)) and those of all naturally occurring isotopes $A_{\mbox{s}}$ (open squares) *.

Following the hypotheses which eqs. (1) and (2) are based on, the filled squares of Fig. 1 should represent the bottom of the stability valley.

It is now very interesting to consider some of the $A_{\rm mp}$ dependences on Z proposed in ($^{1-18,21}$) and in the present paper (eq. 2) in order to see how well they match the most abundant $A_{\rm S}(Z_{\rm i})$.

There are, from ${}^{12}_{6}$ C to ${}^{209}_{33}$ Bi, 274 natural elements for 76 Z values. About 15% of such element are radioactive, nevertheless they were included in the course of the analysis and in Fig.1, for they contribute to some extent to A_{SW} .

In doing this, we chose the R test, that is

(7)
$$R = \exp(\varepsilon)$$
,

with

(8)
$$\varepsilon = \left\{ \frac{1}{m+n} \sum_{k=1}^{m} \sum_{i=1}^{n} \left[\ln (A_{s,ik}/A_{mp,ik}) \right]^{2} \right\}^{1/2} =$$

$$= \left\{ \frac{1}{274} \sum_{k=1}^{m} \sum_{j=1}^{n} \left[\ln (A_{s,jk}/A_{fit,jk}) \right]^{2} \right\}^{1/2}$$

for grouped sets of m Z values (see later in Table II).

The quantity R takes, of course, values greater than unity. The greater the R value is, the larger is the difference $\ln A_{s,ik} - \ln A_{mp,ik}$ (or $A_{s,ik} - A_{mp,ik}$) and R allows a suitable test to be made in order to compare different A_{mp} dependences with each other.

Table II lists the results of such a comparison. More-over, Fig. 2 shows the histogram of frequency distribution of $A_{mp}-A_s \quad \text{for the whole set of 274 A}_s \quad \text{values (6 } \le \text{ Z } \le \text{ 83). A reduced}$ $x^2 = 1.2 \text{ was calculated.}$

At this point we are likely to analyse some expected changes of the values of parametres in our previous cross section formulae (4,5,11), due to the introduction of the present analytical form of A_{mo} .

As reference cross section formula for isotopic distribution we chose that reported as eq. (15) in Ref. $(^{11})$, which is written as

(9)
$$\overline{\sigma}_{i} = a\overline{\sigma}_{N}K_{A} \exp \left[-b(A-A_{mp}(Z_{i}))^{2}\right]$$

with

$$A_{mp} = cZ_i - d$$

and

$$\begin{cases}
a = 3.30 \pm 0.08 \\
\overline{\sigma}_{N} = 260 \text{ } \mu \text{b} \\
K_{A} = (1.67 \pm 0.03) A_{t}^{-}(0.0580 \pm 0.0010) \\
b = 0.243 \pm 0.005 \\
c = 2.28 \pm 0.07 \\
d = 2.18 \pm 0.09
\end{cases}$$

Cross section formula (9) gives the mean cross section $\frac{\text{per}}{\sigma_N}$ photon (energy range from about 0.2 GeV to about 1 GeV; $\overline{\sigma}_N = 260~\mu \text{b}$ for 0.3 GeV - 1. GeV range) of a spallation residual (A_1, Z_1) from a (A_1, Z_1) target. It contains the five parameters: \underline{a} (a normalisation factor), K_A (slope of the yield-surface ridge $(^{1}, ^{16-18})$ for isotopic distributions), b (which is related to the full-width-at-half-maximum $\Gamma = 2(\ln 2/6)^{1/2}$), and c and d (wich define A_{mp}). The $\overline{\sigma}_N$ is the mean cross section $\underline{\text{per}}$ photon of the elementary gamma-nucleon interaction $(^{4}, ^{5})$.

If one substitutes A_{mp} of eq. (2) in eq. (9), the following equation is obtained for the natural log of the normalised cross-section (4,5) $\overline{\sigma}_i^*$

(11)
$$\ln \overline{\sigma}_{i}^{*} = \ln [\overline{\sigma}_{i}/(K_{A}^{-\Delta Z_{i}} \times \overline{\sigma}_{N})] = \ln (\zeta a) - \eta b (A_{i} - 1.590Z_{i}^{1.103})^{2},$$

with ζ and η factors accounting for the changes in the parametres \underline{a} and \underline{b} (no change in $K_{\underline{A}}$ was espected, for $K_{\underline{A}}$ is much less sensitive to changes in $A_{\underline{mp}}$).

A new regression analysis was thus carried out with a

set of 112 measured mean cross section <u>per</u> photon for spallation residuals from V, Mn, Fe, and Co targets $(^{22,23})$, and for 23 Na and 24 Na photoproduction from various targets $(^{4,5})$.

The regression line gave

(12)
$$\zeta a = 3.89 \pm 0.11$$

and

(13)
$$\eta b = 0.247 \pm 0.007$$

(coefficient of determination $r^2 = 0.92$; Spearman's $\rho = -0.925$; reduced $\chi^2 = 1.71$).

The calculated trend of $\overline{\sigma}^*$ from eqs. (11), (12), and (13) is plotted in Fig. 3 (full line marked with \underline{a}). Fig. 3 also reports $\overline{\sigma}^*$ from (^{9,10}) (full line \underline{b}) and the experimentally determined $\overline{\sigma}^*$ values.

Reduced χ^2 of 1.5 and 2.7 were obtained from statistical treatments of experimental data calculated ones from eq. (11) and eq. (9), respectively.

From eq. (11), eq. (12) and eq. (13), $\overline{\sigma}_i$ is written as

(14)
$$\overline{\sigma}_{i} = 3.89 \, \overline{\sigma}_{N} \, K_{A}^{-\Delta z_{i}} \exp \left[-0.247 \, (A_{i}-1.590 \, z_{i}^{1.103})^{2}\right]$$
.

We tested eq. (14) further on by a set of cross sections \underline{per} equivalent quantum (bremsstrahlung end-point energy E_0 =1GeV) of gold isotopes from a 209 Bi target (24,25). Shown in Fig. 4 is the trend of eq. (14), modified for bremsstrahlung irradiations, and the experimental yields (note that the best-fit curve reaches its maximum a A = A_g = 197).

In concluding this note, we wish to put some stress on

what follows:

- i) eqs. (2) and (6) reproduce fairly well the A_{sw} and A_{mp} values (see Table I and Figs. 1 and 2);
- priate one to give a Z-dependence of A_{mp} (from Table II it is readily seen that eq. (2) gives the best result, also in consideration of the fact that it covers the whole range of Z; although very good results are also encountered for (12), especially for the ICSD-not-gaussian Rudstam's formula (12), the Z range is smaller than that covered by eq. (2));
- iii) eq. (14) seems to reproduce experimental spallation yields with a fair approximation (reduced $x^2 = 1.5$; see also Figs. 3 and 4);
 - iv) all the gof tests furnish clear evidence for paired samples homogeneity and correlation.

The work is presently being carried on for isobaric distributions and charge-dispersion curves of photospallation residuals, also at photon energies above 1 GeV.

Acknowledgments

The authors thank Dr. I. Aspetaki for critically reading the manuscript and for stijulating discussions during the course of this work.

FIGURE CAPTIONS

- Fig. 1 Trend of N (number of neutrons = A-Z) \underline{vs} Z.

 Open squares: $N_s(Z)$ for naturally occurring isotopes (mass A_s).

 Filled squares: $N_{mp}(Z)$ (i.e. $A_{mp}-Z$) \underline{vs} Z from eq. (2).

 For Z=43 (T_c) and Z=61 (p_m), and for 83 < Z < 90, calculated values have only been plotted (the same for Z > 92). The dashed lines at Z=83 (Bi) indicate the upper limit of validity of eq. (2).
- Fig. 2 A_{mp} - A_{s} frequency distribution (histogram) and best-fit gaussian frequency distribution (dashed curve). Histogram data: mode = 0.00 (dashed straight line), median = 0.42, mean = 0.56, Γ = 6, and area = 274 (a total of 274 elements having been considered). For the gaussian-shaped curve: μ = 0.533 and Γ = 5.83.
- Fig. 3 Normalised cross section $\overline{\sigma}^*$ vs $A_s A_{mp}$. Curve a represents $\overline{\sigma}_i^* = (\overline{\sigma}_i/K_A^{-1} \overline{\sigma}_N a) = \zeta \exp[-0.247(A_{si} A_{mp,i})^2]$, with $A_{mp,i} = 1.590 z_i^{1.103}$ and $\zeta = 1.18$ (see text). Curve b represents $\overline{\sigma}_i^* = (\overline{\sigma}_i/K_A^{-1} \overline{\sigma}_w a) = \exp[-0.243(A_{si} A_{mp,i})^2]$, with $A_{mp,i}(z_i) = 2.28 z_i 2.18$. Experimental points from Ref. (22) (open circles) and Ref. (23,4,5) (filled circles). As for the FWHM, $\Gamma_a = 3.35$ and $\Gamma_b = 3.38$ were obtained.
- Fig. 4 Yield of gold isotopes from 209 Bi at E $_0$ = 1 GeV. Open circles: data of Ref. (24). Filled circles: data of Ref. (25). For 195 Au (filled circle in parentheses)

some uncertainties in the decay scheme and difficulties in radioactivity measurments were met. The curve represent Eq. (14).

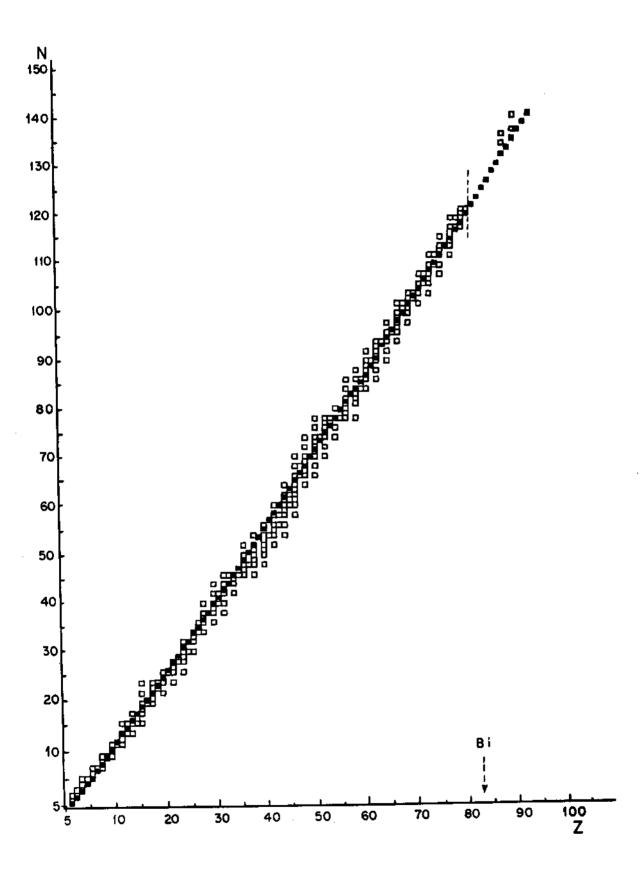


Fig. 1

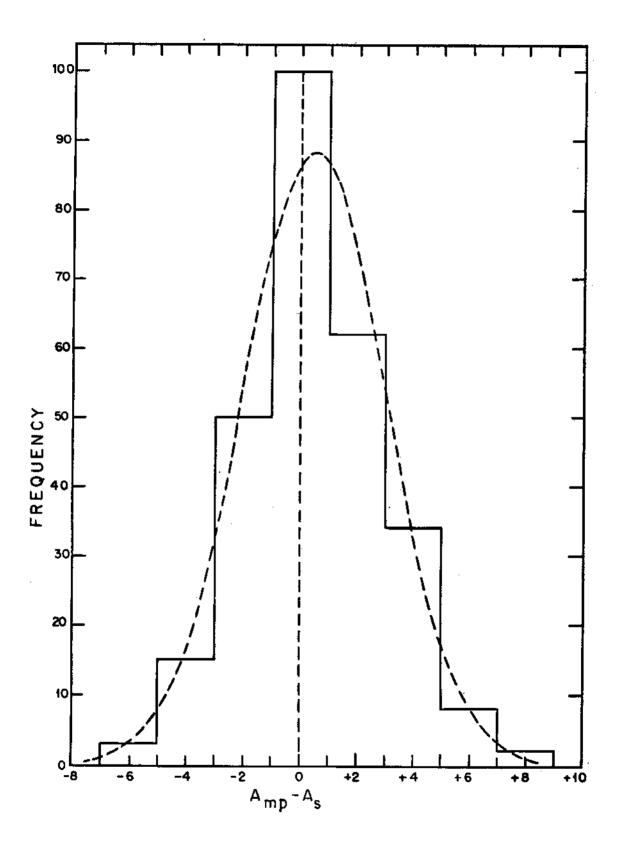


Fig. 2

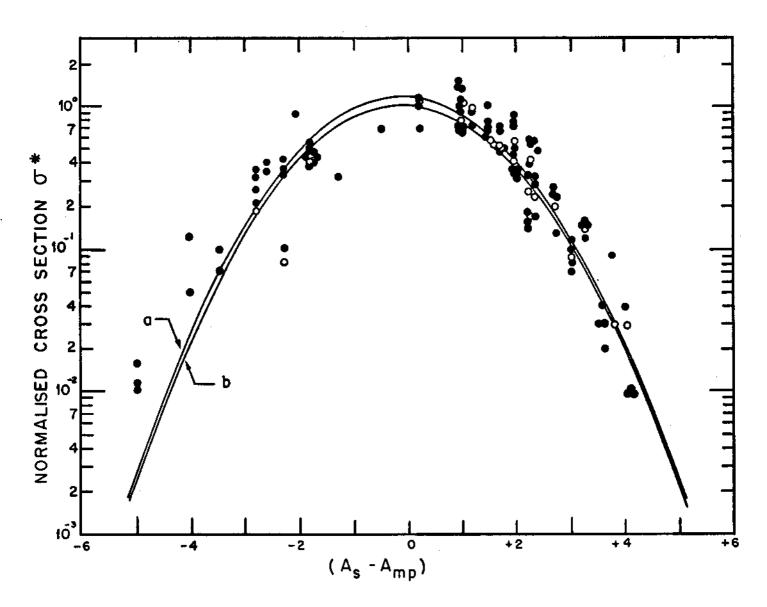


Fig. 3

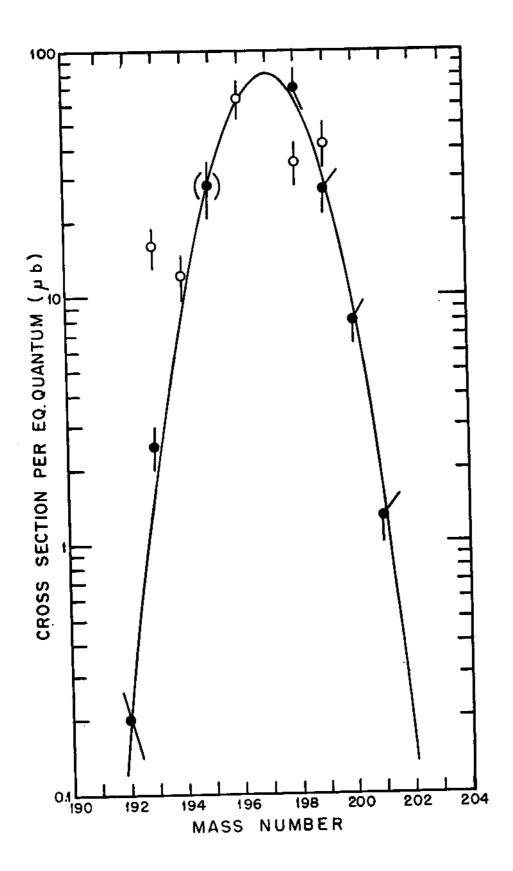


Fig. 4

TABLE I. - Comparison between A_{sw} and A_{fit} .

ELEMENT	Z	Asw	A _{fit}	∇୫ (*)	Spread (eq.6)			
		Eq. (1)	Eq. (2)		A _{fit,min}	A _{fit,max}		
С	6	12.01	11.47	+4.5	11.26			
0	8	16.00	15.76	+1.5	15.43	16.09		
Ne	10	20.18	20.16	+0.1	19.71	20.61		
Al	13	27.00	26.92	+0.3	26.27	27.58		
Cl	17	35.49	36.19	-2.0	35.26	37.15		
Ar	18	39.99	38.54	+3.6	37.53	39.58		
Sc	21	45.00	45.69	-1.3	44.44	46.97		
V	23	51.00	50.51	+1.0	49.10	51.96		
As	33	75.00	75.22	-0.3	72.94	77 . 5 7		
I	53	127.00	126.85	+0.1	122.59	131.24		
Sm	62	150.35	150.80	-0.3	145.59	156.20		
Au	79	197.00	197.01	(-)0.0	189.87	204.40		
Bi	83	209.00	208.04	+0.5	200.43	215.92		
Th (**)	90	232.00	227.47	+2.0	219.03	236.23		
บ(**)	92	237.97	233.05	+2.1	224.37	242.06		

 $^{(*)^{\}Lambda } = [(A_{sw} - A_{fit})/A_{sw}] \times 100$

^(**)Out of systematics.

TABLE II. - R-values for different Amp formulae.

Cumulative Z ranges	83 62-92 (*) 6-40 6-60 6-83 6-92 (**)	013 1.013 1.038 1.032 1.030 1.029 21, 4, 5	1.034 1.047 4, 5	- 1.038 1.045 9,5	1.035 1.045 4,	1.038 1.048 12	1.038 1.047 12	1.045 1.047 12	1.033 1.037 12	((C) and) there are a coop a coop of the c
Partial 2 ranges	83	1.013	1		1	ı	ı	1	1	1.006
	41-60	1.019	1.005	1.057	1.060	1.063	1.061	1.049	1.044	1.017
	21-40	1.023	1.028	1.025	1.026	1.037	1.034	1.032	1.031	1.023
	6-20	1.052	1.041	1.051	1.044	1.040	1.044	1.059	1.035	1.038

(*) Same Z values as in column 4, plus Z=90 and Z=92 (out of systematics). (**) Same Z values as in column 8, plus Z=90 and Z=92 (out of systematics).

REFERENCES

- 1) V. di Napoli, F. Salvetti, M.L. Terranova, H.G. de Carvalho and J.B. Martins: Phys. Rev. C, 8, 206 (1973).
- 2) L. Husain and S. Katcoff: Phys. Rev. C, 7, 2452 (1973) (see also the literature quoted therein).
- 3) G.V. Arustamyan, G.A. Vartapetyan, A.S. Danagulian and A.G. Khudaverdian: Soviet J. Nucl. Phys., 32, 601 (1980).
- 4) V. di Napoli, M.L. Terranova, J.B. Martins and O.A.P. Tavares: Lett. Nuovo Cim., 21, 83 (1978).
- 5) M.L. Terranova, P. de Chiara, V. di Napoli, J.B. Martins and O.A.P. Tavares: Lett. Nuovo Cim., 28, 44 (1980).
- 6) J.B. Martins, V. di Napoli, O.A.P. Tavares, R. Portanova and M.L. Terranova: Gazz. Chim. Ital., 109, 131 (1979) (see also the literature quoted therein); G.J. Kumbartzki and U. Kim: Nucl. Phys. A, 176, 23 (1971).
- 7) M. Foshina, J.B. Martins, O.A.P. Tavares and V. di Napoli: Radiochim. Acta, 35, 121 (1984).
- 8) A.A. Arakelyan, A.R. Balakebyan, A.S. Danagulyan, S.S. Danagulyan and A.G. Khudaverdyan: Soviet J. Nucl. Phys., 44, 6 (1986).
- 9) S. Shibata, M. Imamura, T. Miyachi, M. Mutou, K. Sakamoto, Y. Hamajima, M. Soto, Y. Kubota, M. Yoshida and I. Fujiwara: Phys. Rev. C, 35, 254 (1987).
- 10) G.G. Jonsson and K. Lindgren: Phys. Scripta, 7, 49 (1973), 15, 308 (1974).
- 11) V. di Napoli: Gazz. Chim. Ital., 113, 659 (1983).
- 12) G. Rudstam: Z. Naturforsch., 21a, 1027 (1966).
- 13) D.N. Schramm: Phys. Lett. B, <u>38</u>, 363 (1972).
- 14) B.K. Gupta, S. Das and M.M. Biswas: Nucl. Phys. A, 160, 237 (1971).
- 15) F.D.S. Butement, H.M.A. Karim, U. Myint U. and M.B. Zaman: J. Inorg. Nucl. Chem., <u>33</u>, 2791 (1971).

- 16) I. Halpern, R.J. Dess, J.T. Eisinger, A.W. Fairhall and H.G. Richter: Phys. Rev., 97, 1327 (1955).
- 17) C.B. Fulmer, C.S. Toth, I.R. Williams, T.H. Handley, G.F.Dell, E.L. Callis, T.M. Jenkins and J.M. Wyckoff: Phys. Rev., 2, 1371 (1970).
- 18) V. di Napoli, A.M. Lacerenza, F. Salvetti, S.M. Terenzi, H. G. de Carvalho and J.B. Martins: J. Inorg. Nucl. Chem., 35, 1419 (1973).
- 19) T.A. Gabriel and R.G. Alsmiller, Jr.: Phys. Rev., <u>182</u>, 1035 (1969).
- 20) V.S. Barashenkov, F.S. Gerenghi, A.S. Iltinov, G.G. Jonsson and V. Toneev: Nucl. Phys. A, 231, 462 (1974).
- 21) R.D. Evans: "The Atomic Nucleus" (New York, N.Y., 1969), p. 292.
- 22) B. Bülow, B. Johnsson, M. Nilsson and B. Forkman: Z. Physik A, 278, 89 (1976).
- 23) V. di Napoli, F. Salvetti, M.L. Terranova, H.G. de Carvalho, J.B. Martins and O.A.P. Tavares: J. Inorg. Nucl. Chem., 40, 175 (1978).
- 24) V. di Napoli, A.M. Lacerenza, D. Margadonna and S.M. Terenzi: Radiochem. Radioanal. Letters, 11, 99 (1972).
- 25) V. di Napoli, unpublished results (1976).