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1 Introduction

Homogeneous Gödel-type spacetimes in the framework of Hehl’s nonpropagating torsion

theory [1] were discussed by Oliveira et al. [2]. To solve the Einstein-Cartan (EC)

equations, they assumed a Weyssenhoff-Raabe (WR) fluid [3] as curvature source and

vanishing cosmological constant. Imposing spacetime homogeneity, they found hyperbolic

and circular metrics, but the intermediary case known as Som-Raychaudhuri’s metric in

fact reduces to a Minkowskian metric endowed with torsion. Amongst the hyperbolic

metrics, they found a subclass which is stably causal [4]. Here we intend to generalize

the above work and discuss what the behaviour of charged test particles in Gödel-type

spacetimes would be.

In Section 2, we modify the hypotheses of Oliveira et al. by adding to the Einstein-

Cartan equations the cosmological constant and superposing to the energy-momentum

tensor of the WR fluid the contribution of a sourceless electromagnetic field. Then it

turns out that spacetime homogeneity is a consequence of the EC-Maxwell equations and

not an a priori requirement. As a particular solution, we find a diagonal circular metric.

Although this be just a mathematical possibility, since it demands a very high spin density,

it survives in the Riemannian limit as an electrovac solution with cosmological constant.

Furthermore, the electromagnetic field may as well eliminate causal hyperbolic metrics.

In Section 3, we perform a duality transformation in the electromagnetic field and show

that those spacetimes, except the ones with diagonal metric, can also be interpreted as

resulting from a charged WR fluid. In Section 4, we discuss the qualitative features of

charged test particle trajectories in hyperbolic spacetimes. It is found that, contrary to

the case of geodesics, trajectories unbounded in the r coordinate are possible for noncausal

metrics. A summary of the main results and some comments on the quantum dynamics

of charged test fields in such backgrounds are presented in Section 5.

2 Solutions to Einstein-Cartan-Maxwell Equations

A Gödel-type spacetime, whose line element is (c=1)

ds2 = [dt+H(r)dϕ]2 − dr2 − [D(r)dϕ]2 − dz2, (1)

is homogeneous if, and only if, the functions D and H satisfy the conditions [5, 6]

d2D

dr2
= 4l2D ,

dH

dr
= 2ΩD, (2)
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in which Ω and l2 are real constants. Moreover, Maitra’s regularity conditions — limr→0D =

r and limr→0H ∝ r2 — permit to interpret r, ϕ and z as cylindrical coordinates and in-

tegrate Eqs. (2) to obtain

D =
sinh(2lr)

2l
, H =

Ωsinh2(lr)

l2
. (3)

The metrics are called hyperbolic if l2 > 0, circular if l2 < 0 and, for Ω �= 0, the limit

l → 0 gives the Som-Raychaudhuri metric [7]: D = r,H = Ωr2.

The parameters Ω and l will be determined from the EC equations of Hehl’s nonprop-

agating torsion theory:

Gµν + Λgµν = kTµν and Tµνσ = kSµνσ. (4)

In the first set of equations Gµν is the Einstein tensor built from the Riemann-Cartan

connection Γµ
νσ, Tµν is the canonical energy-momentum tensor and k is the gravitational

constant. In the second set Sµνσ is the spin tensor and Tµνσ is the modified torsion. The

latter is related with the torsion tensor τµνσ, here defined by

τµνσ :=
1

2
gµρ(Γ

ρ
νσ − Γρ

σν),

through

Tµνσ = τµνσ − τλ
µσgνσ − τλ

νσgµσ. (5)

(a colon followed by the equal sign means “equal by definition”). We assume that the

torsion is generated by the spin Sµ
νσof a WR fluid, that is,

Sλ
νσ := uλSνσ, Sνσu

σ := 0, (6)

uµ being the fluid four-velocity and Sµν = −Sνµ the spin density. Then, Eqs. (4- 6) and

the metric postulate imply that the full connection is given by

Γµ
νσ = Γ̃µ

νσ + k (uµSνσ + uνSσ
µ − uσS

µ
ν) , (7)

where Γ̃µ
νσ is the Christoffel symbol of second kind. On the other hand, the WR fluid

energy-momentum tensor, Tw
µν , is given by

Tw
µν = (p+ ρ)uµuν − pgµν + 2uσuρ∇ρ(uσSµν), (8)

p denoting isotropic pressure, ρ energy density and ∇ρ the Riemann-Cartan covariant

derivative operator. Thus, taking Tµν = Tw
µν + tµν , Eqs. (4) can be written in the “quasi-

Riemannian” form [8],

G̃µν + Λgµν = kΣµν + ktµν . (9)
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G̃µν is the conventional Einstein tensor and

Σµν := (p+ ρ− 2kS2)uµuν − (p− kS2)gµν + 2(uσuρ − gσρ)∇̃σ

[
u(νSµ)ρ

]
, (10)

where S2 := SσρS
σρ/2, ∇̃ρ is the Riemannian derivative operator and the parentheses

enclosing indices mean symmetrization in these indices.

As usual we choose the inertial frame of reference defined by the differential 1-forms

Θa, Θa := eaµdx
µ,

Θ0̂ = dt+Hdϕ, Θ1̂ = dr, Θ2̂ = Ddϕ, Θ3̂ = dz, (11)

or, equivalently, by the tetrad basis

e0̂0 = e1̂1 = e3̂3 = 1, e0̂2 = H, e2̂2 = D, (12)

where t, r, ϕ and z were numbered as 0, 1, 2 and 3, respectively, and the hats denote tetrad

indices. For an observer comoving with the fluid, viz., uµ = δµ
0 , the only nonvanishing

kinematical parameter, computed with the connection given in Eq. (7), is the rotation

vector ωµ whose tetrad components are

ωa = (0, kS2̂3̂, kS3̂1̂,Ω+ kS1̂2̂) .

We assume that Ω and Sab depend solely on the coordinate r and, in order to have the

same symmetry axis as in General Relativity (GR), we take S1̂3̂ = S2̂3̂ = 0. Then, putting

S(r) := S1̂2̂, it follows that

ωa = [Ω(r) + kS(r)] δa
3 . (13)

Now we shall suppose that tµν in Eq. (9) is due to an electromagnetic field. Considering

that in Hehl’s theory the electromagnetic field does not couple to torsion, in the sense

that fµν := ∂µAν − ∂νAµ, the Maxwell equations are formally the same as in GR, i. e.,

∇̃νf
µν = jµ, ∇̃[σfµν] = 0, (14)

the square brackets and jµ standing for antisymmetrization and four-current, respectively.

So, taking for granted that tµν = Eµν in Eq. (9), where

Eµν := fµσf
σ

ν +
1

4
gµνfσρf

σρ, (15)

we find that the only nonvanishing components of fab compatible with the EC equations

are f1̂2̂ and f0̂3̂. The sourceless Maxwell equations then yield

∂µf1̂2̂ = ∂µf0̂3̂ = 0 (µ = 0, 1, 2),
df0̂3̂

dz
− 2Ωf1̂2̂ = 0,

df1̂2̂

dz
+ 2Ωf0̂3̂ = 0. (16)
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and these equations require that Ω be constant. Hence we obtain

f0̂3̂ = b0 sin[2Ω(z − z0)], f1̂2̂ = b0 cos[2Ω(z − z0)], (17)

in which b0 and z0 are integration constants. Accordingly Eab is given by

Eab = diag(ρem, ρem, ρem,−ρem), (18)

where ρem := b20/2 is the electromagnetic energy density. The expressions (16-18) have

the same form as in GR, but now Ω takes into account the torsion since the 0̂2̂ component

of the EC equations gives

dΩ

dr
= −kdS

dr
or Ω = Ω0 − kS. (19)

Ω0 is an integration constant to be determined, but from Eq. (13) we get

ωa = Ω0δ
a
3 (20)

and, by this reason, Ω0 must be interpreted as the magnitude of the rotation vector. In

view of Eqs. (18, 19), the remaining EC equations lead to

kρ = Ω2
0 + kρem + Λ, kp = Ω2

0 − kρem − Λ, 2l2 = Ω2
0 − kρem − kSΩ0. (21)

From the last equation it comes out that not only Ω but also l2 is constant. Therefore, the

spacetime homogeneity is consequence of the EC-Maxwell equations by themselves. In

the absence of electromagnetic fields, inhomogeneous solutions are also possible (if S �= 0)

because we do not have Eq. (16) to assure that Ω and S are constants in Eqs. (19)

and (21). It follows as well that the rotation vector (covariantly defined through the EC

affinity) is not affected by the the torsion and/or electromagnetic field since Eqs. (21)

imply the same expression for Ω0 as in GR, that is,

Ω2
0 =

k

2
(ρ+ p) (22)

Besides this, the positivity of ρ and p together with the state equation 0 ≤ p ≤ ρ imposes

limits on the values of the cosmological constant,

−kρem ≤ Λ ≤ Ω2
0 − kρem, (23)

and then, again like in GR [9, 10, 11], the minimum value of Λ is associated with a stiff

fluid and the maximum value corresponds to zero pressure. However, although the torsion

does not modify the rotation vector and the interval for Λ, it alters the expressions for
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the metrical parameters Ω and l (and consequently for the electromagnetic field) as we

see from Eqs. (19,21).

For circular metrics (l2 < 0), the last equation in (21) implies that we must have

kSΩ0 > Ω2
0 − kρem or kS >

√
k(p+ ρ− 2ρem)√

2(p+ ρ)
,

where the second inequality was obtained by supposing Ω0 > 0 and by using Eq. (22).

Hence circular metrics without electromagnetic field would require a very high spin density

in comparison with the matter density, namely: kS2 > (p+ρ)/2. The same would happen

in the case of a diagonal circular metric (Ω = 0) in the presence of electromagnetic field

since we would have 2l2 = −kρem and kS2 = (p + ρ)/2. However its Riemannian limit

gives a diagonal electrovac solution with Λ = −kρem.

Predominance of spin effects would also be required in the case of Riemannian flatness

and hyperbolic metrics with l2 > Ω2. Indeed, rewriting the last of the Eqs. (21) as

2l2 = Ω0Ω − kρem, we see that the condition to Riemannian flatness (Ω = l = 0) is

equivalent to ρem = 0 and kS2 = (p + ρ)/2. Moreover for ρem = l = 0 we also obtain, as

it was stated in the Introduction, the previous flat metric and not the Som-Raychaudhuri

one, unless we had admitted a spin density in absence of matter (Ω = −kS, p = ρ = 0) or

negative pressures (p = −ρ,Ω = −kS). On the other hand, Oliveira et al. [2] have pointed

out that the torsion allows Gödel-type spacetimes to cover the region of parametrization

l2 > Ω2, in which there is no causality problem. However, for this class of hyperbolic

metrics, Eqs. (19,21) require that

kS ε

(
3Ω0

4
− 1

4

√
Ω2

0 − 8kρem ,
3Ω0

4
+

1

4

√
Ω2

0 − 8kρem

)
. (24)

When 8kρem increases from zero to Ω2
0, the lower bound of the above interval increases

from Ω0/2 to 3Ω0/4 and, therefore, we always must have kS2 > (p+ ρ)/8 and this means

a very high spin density as before. The interval becomes meaningless if 8kρem ≥ Ω2
0, that

is, on this condition the electromagnetic field eliminates the mathematical possibility of

hyperbolic metrics with l2 > Ω2.

Now we derive some relations to be used afterwards. From Eqs. (1,12,17) we find that

the components of the electromagnetic field, fµν , and of its dual,

∗fµν := − 1

2
√−g ε

µνσρfσρ,
∗fµν :=

1

2

√−gεµνσρf
σρ,
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are given by

f03 = b0 sin[2Ω(z − z0)], f12 = b0D(r) cos[2Ω(z − z0)], f23 = b0H(r) sin[2Ω(z − z0)],
∗f03 = f12/D,

∗f12 = −Df03,
∗f23 = Hf12/D,

f 01 = Hf12/D
2, f 03 = −f03, f 12 = f12/D

2,
∗f 01 = −f23/D,

∗f 03 = −f12/D,
∗f 12 = −f03/D.

(25)

A suitable choice for the vector potential Aµ is

A0 = −b0
Ω

sin2[Ω(z − z0)], A2 =
b0
2Ω
H(r) cos[2Ω(z − z0)], (26)

where the integration constants were chosen so as to have a finite limit for the diagonal

metric, namely,

f12 = b0D(r), A2 =
b0
2l2

sinh2(lr). (27)

Finaly we find that the two invariants of the electromagnetic field are given by

f1 :=
1

2
fµνf

µν = b20 cos[4Ω(z − z0)], f2 :=
1

2
fµν

∗fµν = −b20 sin[4Ω(z − z0)]. (28)

3 Duality Rotation in The Electromagnetic Field

Now we can show that the solutions we have presented may also be interpreted as resulting

from a WR fluid with a charge distribution Jµ = σδµ
0 . In effect, the Som-Raychaudhuri

metric was firstly found as a limit of cylindrically symmetric solutions to Einstein’s equa-

tions having a charged perfect fluid as curvature source and, later on, it appeared as

a particular case of Gödel -type spacetimes with a perfect fluid and a sourceless elec-

tromagnetic field. Based on this fact, Raychaudhuri and Thakurta suggested that this

duality would be true for the whole class of Gödel-type metrics. The validity of such

supposition may be demonstrated by starting from the Maxwell -Einstein equations for a

charged perfect fluid, but in place of this we prefer to perform a duality rotation in the

electromagnetic field following a procedure due to Gopala Rao [12]. Thus, if we define the

complex field wµν by wµν := fµν + i ∗fµν , the Maxwell equations and energy-momentum

tensor, Eqs. (14,15), are written respectively as

∇̃νw
µν = jµ, Eµν = wµ

σwνσ/2,

in which wνµ stands for the complex conjugate of wνµ. The dual rotated fieldWµν , defined

by

Wµν := eiθwµν , (29)
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where θ is a real scalar function depending on the coordinates, does not change the value

of Eµν and therefore does not modify the solutions to the EC equations. The requirement

that Jµ := ∇̃νW
µν be real and divergence-free provides a set of differential equations,

namely,

cos θfµν∂νθ + sin θ(jµ − ∗fµν∂νθ) = 0,

Jµ = − sin(θ)fµν∂νθ + cos θ(jµ − ∗fµν∂νθ).
(30)

The first set of these equations gives the condition under which Jµ is real and may be

used to determine θ. However, here we are dealing with non-null fields with vanishing

Lorentz force and f2 �= 0. In such a case θ can be determined from [12]

tan(2θ) = −f2/f1. (31)

Then, by means of Eq. (28), we obtain

θ = 2Ω(z − z0) + nπ (n =integer) (32)

and, on account of Eqs. (25,30) with jµ = 0, we get

Jµ = (−1)n2Ωb0δ
µ
0 , (33)

Thus the charge density is given by σ = (−1)n2Ωb0. The expressions for the transformed

fields Fµν and ∗Fµν ,

Fµν = fµν cos θ − ∗fµν sin θ,
∗Fµν = ∗fµν cos θ + fµν sin θ, (34)

are obtained by equating the right hand side of Eq. (29) to Fµν + i ∗Fµν . Then, using

Eqs. (25), we get [B := (−1)nb0]

F12 = BD, ∗F03 = B, ∗F23 = BH, (35)

and, putting Fµν := ∂µAν − ∂νAµ, the only nonvanishing component for Aµ is

A2 =
B

2Ω
H(r). (36)

From Eq. (34) we find

F1 = f1 cos(2θ)− f2 sin(2θ), F2 = f1 sin(2θ) + f2 cos(2θ),

and consequently the new electromagnetic invariants now are

F1 = B2, F2 = 0. (37)
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Eq. (31) does not hold for Ω = 0 (f2 = 0) but for this particular case we can use Eqs. (30)

to find θ =constant and Jµ = 0. This trivial transformation is precisely what we would

expect on the basis of Gopala Rao’s formalism. It reduces to the identity transformation if

we take θ = 0 and, in this case, it is included in the preceding equations. In this manner,

we have found the expressions for the dual-rotated electromagnetic field in Gödel-type

spacetimes. We repeat that the results of this section may be obtained by starting from

the EC-Maxwell equations with a charge current given by Jµ = σδµ
0 . Note, moreover,

that we can take n = 0 in Eq. (32) since for an even n the results are the same as for

n = 0 and for an odd n the only modification is the change of the sign of B. With this

proviso, we can also put B = b0.

4 Charged Test Particles in Hyperbolic Spacetimes

The ambiguity in the electromagnetic field concerns only the spacetime geometry, inas-

much as the behaviour of charged test particles and fields will be different in both cases.

In this section we discuss the dynamics of charged test particles in spacetimes with hy-

perbolic metrics. We shall suppose the electromagnetic field results from a charged fluid.

The equations of motion for a charged test particle, with mass M and charge q,

interacting with a gravitational field gµν and an electromagnetic field Aµ, can be obtained

from the Lagrangian function L [13],

L =
1

2
gµν
dxµ

dσ

dxν

dσ
+ Aµ

dxµ

dσ
.

As gµν and Aµ do not depend explicitly on the parameter σ, the problem presents a

constant of motion which we identify with the mass according to

gµν
dxµ

dσ

dxν

dσ
=M2,

what amounts to taking τ =Mσ, where τ is the proper time. The Hamiltonian function

H corresponding to L is

H =
1

2
gµν(pµ − qAµ)(pν − qAν), (38a)

where the pµ are the momenta conjugate to xµ and the constant of motion now reads

H =
M2

2
. (38b)
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For Gödel-type spacetimes with Aµ = (A0, 0, A2, 0) we get

H =
1

2

{
(pt − qA0)

2 − p2
r − p2

z −
1

D2
[(pt − qA0)H − (pϕ − qA2)]

2

}
. (39)

Restricting to the potential given by Eq. (36), where A0 = 0 and A2 := A2 is function

of r uniquely, H does not depend on the coordinates t, ϕ and z. Thus the momenta pt,

pϕ and pz are constants of motion and the the Hamilton equations along with Eq. (38b)

lead to 
M2

(
dr
dτ

)2
= p2

t − p2
z −M2 − 1

D2

[(
pt +

qB
2Ω

)
H − pϕ

]2
,

M dz
dτ

= −pz,

M dt
dτ

= pt − H
D2

[(
pt +

qB
2Ω

)
H − pϕ

]
,

M dϕ
dτ

= 1
D2

[(
pt +

qB
2Ω

)
H − pϕ

]
.

(40)

Replacing D and H in the first equation by their expressions given in Eq. (3), we have

M2

4l2ρ(ρ+ 1)

(
dρ

dτ

)2

= p2
t − V (ρ), V (ρ) := β2 +

W 2

l2
(ρ− α)2
ρ(ρ+ 1)

, (41)

where we have also used the definitions

β2 :=M2 + p2
z, α :=

l2pϕ

W
, W := Ωpt +

qB

2
, ρ := sinh2(lr). (42)

A necessary condition for the motion is that the right hand side of Eq. (41) be zero or

positive. Particularly, if the function V (ρ) has a minimum value Vm with respect to ρ, we

must have

p2
t ≥ Vm. (43)

Effectively there is a minimum for V only if −1/2 < α < ∞ (for α = 0, V increases

monotonously) and then we find

Vm =

{
β2, in ρ = α, if α ≥ 0

β2 − 4W 2

l2
(α2 + α), in ρ = − α

1+2α
if − 1

2
< α < 0

(44)

Note that when α decreases in the interval −1
2
< α < 0, Vm increases spanning the interval

β2 < Vm < β
2 +

W 2

l2
. (45)

For α ≤ −1
2
, V is a dereasing function of ρ. Furthermore, for any α, V (ρ) has the same

expression for its asymptotic value, Va, that is,

Va := lim
ρ→∞

V (ρ) = β2 +
W 2

l2
, (∀α). (46)
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We find as well that

lim
ρ→0

V (ρ) =

{
β2, if α = 0

∞, if α �= 0
(47)

From the previous results, we can sketch the graphs below where in the ordinate axis,

instead of V (ρ), we have plotted the the function U(ρ),

U(ρ) :=
(ρ− α)2
ρ(ρ+ 1)

. (48)

From these graphs it becomes clear that, for α > −1/2, Va works as a potential barrier

and we shall have motions bounded in the r coordinate whenever

Vm ≤ p2
t < Va := β2 +

W 2

l2
(bounded motion). (49a)

As a matter of fact the lower limit for α depends on pt since, using Eqs. (43-44), we find

−1

2
+

1

2

√
1− l2

W 2
(p2

t − β2) ≤ α <∞ (bounded motion). (49b)

Furthermore, writing Eq. (41) as

M2

4l2

(
dρ

dτ

)2

=

(
p2

t − β2 − W 2

l2

)
ρ2 +

(
p2

t − β2 +
2αW 2

l2

)
ρ− α2W 2

l2
(50)

and equating its right hand side to zero we obtain the turning points ρ(±) for confined

motions,

ρ(±) =
p2

t − β2 + 2αW 2

l2
±

√
(p2

t − β2)
[
p2

t − β2 + 4W 2

l2
(α2 + α)

]
2(W 2/l2 + β2 − p2

t )
. (51)

As expected, this gives ρ(−) = 0 when α = 0 while for p2
t = Vm we have

ρ(−) = ρ(+) =

{
α, if α ≥ 0

− α
1+2α

, if − 1
2
< α < 0

that is, ρ(−) = ρ(+) and then there is no radial motion.

On the other hand, it is also clear that unbounded motions may occur if

p2
t > β

2 +
1

l2
W 2, (unbonded motion) (52)

or, equivalently, if

g := (Ω2 − l2)p2
t + qBΩpt +

q2B2

4
+ l2β2 < 0. (53)
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and in this case there are no restrictions on α. The motion, if any, is unbounded in the

sense that there is a lower bound ρ0 for ρ,

ρ0 :=
β2 − p2

t − 2αW 2

l2
+

√
(p2

t − β2)
[
p2

t − β2 + 4W 2

l2
(α2 + α)

]
2(p2

t −W 2/l2 − β2)
, (54)

but there is no upper bound. For α = 0, ρ0 = 0 and unbounded motions would cover all

the possible values for ρ. Moreover, from the plots it follows that we may as well have

unbounded motions if p2
t = Va, provided that α > −1/2. The radial velocities of these

motions, dr/dτ , approach to zero when ρ→ ∞. Mathematically we can express that by

writing the Eq. (50) as

M2

4

(
dρ

dτ

)2

=W 2
[
(1 + 2α)ρ− α2

]
.

As the motion is possible only when the right hand side of this equation is zero or positive,

we must have

ρ ≥ α2

1 + 2α
and α > −1

2
(if p2

t = Va). (55)

Now we are ready to analize the possibility of unbounded radial motions in hyperbolic

spacetimes. For the sake of comparison, note that for q = 0 or/and B = 0 we have the

following situation:

Ω2 < l2 :

{
bounded motions, if Vm ≤ p2

t <
β2l2

l2−Ω2 ,

unbounded motions, if p2
t ≥ β2l2

l2−Ω2 ,

Ω2 ≥ l2 : bounded motions only, p2
t ≥ Vm.

(56)

Therefore, there are no unbounded geodesic motions when Ω2 ≥ l2.

In any consideration we have to remember that for both kinds of motions there is a

prohibited range for the energies:

Ωpt  (− | Ω
√
Vm |, | Ω

√
Vm |). (57)

Furthermore, from Eq. (53) it is also clear that in the case of interaction: i) if Ω2 < l2

unbounded motions are possible regardless the relative signs of Ωpt and qB; ii) if Ω
2 ≥ l2

we may have unbounded motion only when Ωpt and qB present opposite signs. Here we

are concerned mainly with the occurrence of unbounded motions in the second case; they

will be possible because, for opposite signs of Ωpt and qB, Va can be smaller than the

corresponding quantity for the case without electromagnetic interaction. In others words,
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the electromagnetic interaction can diminishes the height of the “potential barrier” which

is responsible by the confinement. Hence, a necessary condition for unbounded motion,

when Ω2 ≥ l2, is that Va < Ω2p2
t/l

2 + β2 or, equivalently,

ΩptqB < −q
2B2

4
. (58)

We shall discuss separately the cases l2 > Ω2, Ω2 = l2 and l2 < Ω2. We fix the sign of the

charge by supposing qB > 0.

Case I: l2 > Ω2. In this case the function g presents a maximum value with respect

to Ωpt, gmax,

gmax = l2
[
β2 +

q2B2

4(l2 − Ω2)

]
, in Ωpt =

qBΩ2

2(l2 − Ω2)
,

and g ≤ 0 (unbounded motion) if

−∞ < Ωpt ≤ − Ω2

2(l2−Ω2)

(
−qB +

√
∆

)
,

Ω2

2(l2−Ω2)

(
qB +

√
∆

)
≤ Ωpt <∞,

(59)

where the equal sign holds only if α > −1/2 and

∆ := q2B2 +
4(l2 − Ω2)

Ω2

(
l2β2 +

q2B2

4

)
. (60)

On the other hand, g > 0 if

− Ω2

2(l2 − Ω2)

(
−qB +

√
∆

)
< Ωpt <

Ω2

2(l2 − Ω2)

(
qB +

√
∆

)
This together with the condition (57) imply that for bounded motion we must have

− Ω2

2(l2−Ω2)

(
−qB +

√
∆

)
< Ωpt ≤ − | Ω√Vm |,

| Ω√Vm |≤ Ωpt <
Ω2

2(l2−Ω2)

(
qB +

√
∆

)
.

(61)

For qB → 0 the inequalities (59) and (61) reduce to those in (56).

Case II: l2 = Ω2. When l2 → Ω2 and qB > 0 we have

√
∆ → qB +

2(l2 − Ω2)

qB

(
Ω2β2 +

q2B2

4

)
. (62)

Thus the limit for unbounded motion, obtained from (59), gives

−∞ < Ωpt ≤ − 1

qB

(
Ω2β2 +

q2B2

4

)
, (63)
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since the second inequality affords an empty set. This latter fact is what we would expect

since for Ω2 ≥ l2 unbounded motions require opposite signs for Ωpt and qB. Note as well

that the right hand side of the above inequality satisfies the condition given in (58). For

bounded motions the limits of (61) are

− 1
qB

(
Ω2β2 + q2B2

4

)
< Ωpt ≤ − | Ω√Vm |,

| Ω√Vm |≤ Ωpt <∞.
(64)

The limit of the interval (63) when qB → 0 is an empty interval.

Case III: l2 < Ω2. The function g presents a minimum gmin with respect to Ωpt,

gmin = l2
[
β2 − q2B2

4(Ω2 − l2)
]
, in Ωpt = − qBΩ2

2(Ω2 − l2) , (65)

and consequently a condition for unbounded motions is

β2 ≤ q2B2

4(Ω2 − l2) . (66)

In this case the energies are comprised in the interval

− Ω2

2(Ω2 − l2)(qB +
√
∆) ≤ Ωpt ≤ − Ω2

2(Ω2 − l2)(qB −
√
∆) (unbounded), (67)

where ∆ is the same as in Eq. (60) and again the equal sign holds only if α > −1/2. Ωpt

and qB have opposite signs as expected, on the contrary of bounded motions for which

we find

−∞ < Ωpt < −max
{
| Ω√Vm |, Ω2

2(Ω2−l2)

(
qB +

√
∆

)}
− Ω2

2(Ω2−l2)

(
qB −√

∆
)
< Ωpt ≤ − | Ω√Vm |

| Ω√Vm |≤ Ωpt <∞.
(68)

Observe that Ωpt in (65) and (67) satisfies the condition (58). On the other hand, if

β2 >
q2B2

4(Ω2 − l2) and p2
t ≥ Vm, (69)

the only possibility is the occurrence of bounded motions. The results for Ω2 = l2 may be

reobtained by taking the limits of (66-69) when Ω2 → l2. The limit of the first interval in

(68) gives a empty set; the same is true for the limit of (69) since it would require infinite

values for β2 and p2
t .

Thus, through a qualitative analysis of the motion, we have seen that it is possible to

have unbounded motions in the r coordinate for hyperbolic metrics Ω2 ≥ l2 > 0, that is,
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for noncausal hyperbolic spacetimes. When q = 0 or/and Aµ = 0 that is not possible [14],

but in our case we have a Lorentz force acting upon the particles and that could favour

or inhibit this kind of motion, depending on the sign of q. If A0 = 0 and A2 depends only

on r, as we supposed in this section, then pt, pϕ and pz are constants of motion and we

may readly integrate the Hamilton equations. However, when the potential Aµ depends

on z, as in Eq. (26), pz is not constant, but the Hamilton-Jacobi equation corresponding

to Eq. (39) is separable and a constant of separation take the place of pz. Solutions to

the equations of motion would lead to elliptical integrals but a qualitative analysis of the

motion can be carried out once more and preliminary computations suggested us that the

Lorentz force can give rise to motions bounded (periodic) in the z coordinate, in addition

to motions unbounded in r when Ω2 ≥ l2 > 0.

5 Final Comments

In Section 2 we have found that, in the absence of electromagnetic fields, circular metrics

and hyperbolic ones with l2 > Ω2, in Hehl’s theory, are just mathematical possibilities

since physically they require a very high spin density in comparison with the matter

density. Furthermore, the spacetime homogeneity must be imposed a priori and the limit

l → 0 gives a flat metric endowed with torsion instead of the Som-Raychaudhuri metric.

As expected, the presence of the electromagnetic field eliminates these problems, except

for the fact that we again would have high spin density as a condition for hyperbolic

metrics with l2 > Ω2; by continuity this must also be true for l2 ≤ Ω2 when Ω2 tends

to l2. However, if 8kρem ≥ Ω2
0, that class of metrics is ruled out. The presence of

an electromagnetic field allows as well a circular diagonal metric which, in the limit

of vanishing torsion, survives as an electrovac solution to the Einstein equations with

cosmological constant.

In Section 3, we have shown that the electromagnetic field admits a dual interpretation:

it can be envisaged as a free electromagnetic field or as resulting from a charged rotating

fluid. An exception is the diagonal metric for which only the first viewpoint is admitted.

In both cases we have found the expressions to the electromagnetic fields aiming future

applications. In effect, the dynamics of test particles and fields will be different in both

situations due to the different dependence of Aµ on the spacetime coordinates.

In section 4, we have dealt with trajectories of charged test particles. Our analysis

was restricted to hyperbolic metrics and to electromagnetic field not depending on the

z coordinate. We found that motions unbounded in the r coordinate are possible when
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Ω2 ≥ l2 > 0. Therefore, for this class of metrics, charged particles can reach regions

inaccessible to neutral particles as light rays, for example. That is not surprising, since

it is known that null and timelike geodesics can never go beyond a critical radius in a

noncausal hyperbolic spacetime, but timelike trajectories of accelerated particles can do

[15]. Thus what we have done was to show that the interaction of a charged particle with

a cosmological electromagnetic field is a mechanism responsible for that acceleration. We

have also mentioned that, for the case in which the electromagnetic potential depends

on the z coordinate, a qualitative analysis of the motion, based on the Hamilton-Jacobi

formalism, suggest that motions periodic in the z coordinate can appear, in addition to

motions unbounded in r.

We note that in Hehl’s theory the spin is directly related with the torsion, vanishing

in the Riemannian limit. Thus the solutions of Section 2 may not be confused with the

solutions found by Vaidya et al. [16] to Einstein’s equations in the presence of a spinning

fluid and a sourceless electromagnetic field. Nevertheless, the results of Sections 3 and 4

stand even for this case.

Now, some comments on the behaviour of test scalar fields. It is known that in Gödel-

type spacetimes there is the following analogy between geodesic motions and the dynamics

of neutral scalar test fields minimally coupled to gravity [17]: to geodesics bounded in

r correspond discrete energy levels for the scalar field and to geodesics unbounded in r

corresponds a continuous energy spectrum. Now, extrapolating this correspondence to

charged test particles and scalar fields, we have beforehand an idea about the properties of

the solutions to Klein-Gordon equation: we must for example expect to find a continuous

energy spectrum in the case of hyperbolic metrics with Ω2 ≥ l2 > 0. This analogy also

suggests asking what would be the quantum analogue to motions peridic in z, if any,

when the vector potential Aµ depends on z. For this case, we may show that, parallelly

to the separability of the Hamilton-Jacobi equation, the Klein-Gordon equation is also

separable and its z dependence is governed by a generalized spheroidal wave equation

containing a separation constant. Spheroidal wave equations admit formal analytical

solutions [18, 19, 20] but we have also to solve a characteristic equation which in principle

can affords discrete values to that separation constant. Thus the quantum analogue to

motions periodic in z would be the quantization of a constant of separation; inversely,

this fact lends further support to think that it is possible to have motions bounded in

the z coordinate. Concening the Dirac equation we just remark that, if Aµ depends on z,

a constant of motion found by Soares and Tiomno [17, 21], used to decouple the spinor

components, is no longer valid. These are some problems to be examined elsewhere.
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Figure 1: (a) For α ≥ −1/2 there is a minimum value for U(ρ) and both kinds of motions

may be possible; (b) for α ≤ −1/2 there is no minimum value for U(ρ) and only unbounded

motions may occur.


