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ABSTRACT

Dimensional regularization is introduced in configuration space by Fourier transforming
in D-dimensions the perturbative momentum space Green functions. For this transfor-
mation, Bochner theorem is used, no extra parameters, such as those of Feynman or
Bogoliubov-Shirkov are needed for convolutions. The regularized causal functions in x-
space have v-dependent moderated singularities at the origin. They can be multiplied
together and Fourier transformed (Bochner) without divergence problems. The usual
ultraviolet divergences appear as poles of the resultant analytic functions of v. Several
example are discussed.
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I Introduction

When using Feynman diagram techniques in perturbative quantum field theory, the bare
propagators are Feynman causal functions, A(z) (with or without mass). For reasons
of simplicity one usually works in momentum space where the well known convolution

theorem takes the fprm

(2r) F{A1(z)As(2)} = F{Ai(2)} * F{Aq(z)} =P+ P 1)
P = / Pz Az)e

P, =propagator in momentum space.

In (1) the singular behaviour at the origin, of A, (z)Ay(x) manifests itself as the famous
“ultraviolet divergence” present at high momentum in the convolution integration.

To deal with (1) in momentum space, use is made of Feynman parameters [1] or
Bogoliubov-Shirkov method [2] to get an expression which is spherically symmetric. The
integral is then regularized to obtain sensible results.

We will here use a different method. The propagator will be regularized in configura-
tion space where no use will be required of extra parameters to get spherically symmetric
functions.

The singular character of the convolution in (1) has a different aspect if we have the
number of dimensions v as a free regularizing parameter [3][4]. In this case, the Fourier

anti-transform of the propagator in momentum space is an analytic function of v.

FH{P} = Az;v) @
F~YP, » B} = (2n)"Ay(z; v) Ag(z;v) (3)
Py x Py = (2pi)" F{81(z; v) Aq(z; v)} (4)

The form of the propagators given by eq. (2) in coordinate space given by eq. 92)
implies that the singularity at the origin has been “tempered” or “moderated”. The usual
ultraviolet divergences appear as poles of the analytic function of v defined by (3) or {4).

-(Note that the right hand side of (3) is a product of distributions).
The Feynman or Bogoliubov-Shirkov trick is a simple an elegant way to cast the
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convolution integration into a spherically symmetric expression, leaving the complications
to a final integration over the extra auxiliary parameters.

We want to show that by the use of the regularized expressions in configuration space
(right hand side of (2), (3) and (4) we can obtain sensible (and correct) results. Further-
more we have also the possibility of using a simple treatment for the case of more than

just two propagators (see below).

II Fourier Transform of Spherical Functions

First, we want to point out that the quantum causal propagators in configuration space
are functions of t2 — 72 + i¢. Their Fourier transforms are functions of E? — p? — i¢
in momentum space. Then, we can do all calculations in euclidean metric. When the
final expression is obtained a time dilatation Kt must be done followed by an analytic
continuation in the coefficient K to the value K = i+ ¢ (see ref. [5]). In euclidean metric,
the propagators are spherically symmetric functions. They depend only on the distance.

For the evaluation of the Fourier transform of spherically symmetric functions we will
sistematically use the well known Bochner theorem [6]; namely.

If a function f(z1z:2---z,) depends only on the single variable
z= (22 + 23+ +22)/2
then its Fourier transform
s ---w) = [ da” f(a)es )

depends only on
y=(@i+m+---+9)"?

and can be written as a Bessel transform (7]

a(y) = "

Jo being the Bessel function of the first kind and order a.

g 1@ e Q
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To take advantage of these properties of spherically symmetric functions we will pro-
ceed in the following way; starting in momentum space with a causal function of p we

take its Fourier antitransform with the aid of (6).

flz,v) = i )_1., fo g(p)p*ig-l(xp)dp ]

In (7) the singularity at the origin depends analytically on ». For example, using ref.
[8] we get the following results. {Note that, when using (6) for F', the factor (27)” has to
be suppressed for F-1).

a) massless propagator g(p) = p~?

f(z,v) = 25705 — 1) 8
more general, g(p) =p~* o
_ap—al(E—0) 4,
f(z,v) = JI‘(T z* 9
(vef. [9] p. 365).
b) massive propagator
o) = (6 + m)
f(z,v) = mi~ 25Ky _y(mz) - (10)
(K o=DBessel function of the third kind) or, for arbitrary powers g(p) = (p* + m?)~>
- o
f(z,v) = mj"ﬁ A5 Ky _s(ma) - Q.

(ref. 9, p 365).
Equations (9) and (11) are appropriate for analytically regularized propagators [5].
Note that in all these cases, the singularity at the origin in configuration space is

proportional to a v-dependent power of 2. This analytic dependence allows the definition

of a product in a certain region of the v-plane and the subsequent extension - by analytic

continuation to other regions. According to the method adopted in ref. [9].

Let us now take two (causal) functions ¢,(p) and g:(p). We can multiply together the

Bochner transforms eq. (7)

. falzv) = fl(-’b‘:V)fz(x,V)—I _/ dp: g/ 91(P1)J"(P1$)/ dp2 ;" 92(pe)J5-1(pa7)
| (12)
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This procedure defines directly the distribution f3(z,v) in a convenient region of the
v-plane. By analytic continuation we can define f3 for other regions.
Since fa(z,v) depends only on = we can use again eq. (16) to find the convolution of
g1, and g2 in momentum space.
In this way we obtain
0(0)+ ) = 22 JACE R IR
(2m)* Jo

{/ow dp P'i'flgl(Pl)J;.-l(P1$) ./:o dps pz% gg(pg)Ji_l(pzx)} (13)

But in ref. [8] p. 696 (657-9) we find that:

f " dz 2 L (az) o (be)o(cx) = i (14)

0 (abe)>T(a + H){(a)T (3)
where A = A(abe) is the area of the triangle whose sides are a,b and ¢c. When a,b and ¢
cannot form a triangle the integral is zero. (Do not ask us about how the mathematicians

got this result!). It is not difficult so see that
A= %(2a2b2 + 20°c* + 2c%a? — a* — b — )2 (15)
Formula (14) allows us to write
2%—27r—1{2p2-v o o0
q1(9) * 92(p) = ——=773 / dp1 p1 f dps p2 pi(p1)ea(pe)A¥™* (16)
(2myT (“2—) 0 o

Eq. 16 can be considered an extension of Bochner theorem to the convolution of two

spherically symmetric functions.

If we choose to integrate first with respect to p; we can write
A= 7I53— - 21+ 2 - B an
so that o

§-2,-32v oo (p+p1) |
o= o g ), o) [ o= ) -3
2 o 1
08)

where we took into account that A = 0 when p; < (p — p1), or p2 2 p+p1.

If we take for example g, = p3* we have to evaluate

b?
[= dq2 qzx(qz _ az)L;é(bz _ qz)!-;-!
2
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Or, changing variable to z = ¢* — a?
e -

I= dmx_’l_(x+a2)‘\(b’-a —z)7 T
0

whose value can be found in ref. '[8] p. 287 (3.19-8). Note that for the evaluation of
the convolution (egs. (16) or {18) no extra parameter needs to be introduced. Now we
have two equivalent ways for the evaluation of the convolution in momentum space. One
of them operates in p-space {eqs. (16) or {18)). The other consists in the use of the
Bessel transform (eq. (6)) of the product of the dimensional regularized (eq. (7)) f(z,v)
functions in coordinate space. The latter is a better method when there are more than

two functions to be multiplied together.

III Some Applications

Here we shall illustrate how the method works in some particular cases
a) massless propagators.

A massless propagator p~? in p-space has the form given by (8) in z-space. If we have
to evaluate the self-energy of a particle for which a simple loop is to be considered then, in
coordinate space the square of (8) is involved. More general, if the coupling is such that
at the first vertex n massless quantum are produced which are anhilated at the second
vertex, then in coordinate space we have f*(z,v) for the self-energy.

For the simplest case (n = 2) we get from (8)
2 _ov—dp2 (¥ _ 4-2u
fiz,v) = 2T (2 1)::: (19)

In momentum space, the convolution of the two propagators can be found by a Bessel

transformation of (19) (cf. eq. (6))

1 1 242n)~
A R eyt f do 54~ 24 Jy_ (pa) (20)

From ref. [8] p. 684 we get

-+

f ™ 4z 2 (az) = Par-1Llt) (21)
o ? T (252)
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So, with appropriate substitutions we obtain

1 rz(z—1
Z* ;2—2 e ( ))1“(2——)10’" (22)

It costs practically the same effort to evaluate the contribution in p-space of n massless

propagators joining two vertices
f‘"(I, V) = 2%v—2nrn (_;_ —_ 1) x(z—v)n (23)

whose Fourier transform is

24T (5 1)

= " dz 20k g, 24
olp) = i [ da ety (em) (24)
so, with appropriate substitution we obtain

11 r2(¢-1) v

S*—=2752r "”—3--—1"2—- v—4 25

1t costs practically the same effort to evaluate the contribution in p-space of n massless

propagators joining two vertices
f(z,v) = 28-m (-'21 - 1) Z2-m (26)

whose Fourier transform is

g(p) - 23"(—2:])::‘15; . 1) f dx z@-v)nx;-‘f* 1(3:1)) (27)
And, with (21)
g(p) = 2'7T" (% _ 1) r (%) T (% - l)n)p(n—l)v—2n (28)

Eq. (27) gives the result of the composition of n massless propagators in p-space. It
is evident that we can also find the composition of any number of analytically regularized
massless propagators (eq. (9))

b) massive propagators.

A massive propagator (p* + m?)~*

is given in coordinate space by eq. (10). The
second order self-energy produced by a massless quantum is obtained by multiplying

together (8) and (10). To evaluate the self-energy produced by the simultaneous emission
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and reabsortion of n massless particles, we have to take the n-the power of (8) together
with (10)
flz,v) =289 2t 0% Ky (ma) (29)

For the Bessel transform of (28) we need the formula (ref. [8], p. 693-6.576.3):

- ¥ T (p—x+ﬁ+1) I (p~l-p+1)_
-\ — 2 2
B -/0 dz 7" K,(az)J,(bx) "' ap—A+l 22+HIT(1 + p)

p-A—p+l p=A—p+l B
F ( B e (30)
For the simple convolution (n =1) we get.
1 1 meriT(E-1)re-3) vy P y
A A R G BN
For the convolution (29) with n massless particles, we get from (28) and (29): | |
27§ I (2 -1) (2—(u—2)n) (2-(u-2)n
= amv=2n-2 2 T r )
9p) =m @y T(3) 2 ) 2
v(1 - n) 2—v v P -
F(—~——2—-——-+n, ~In+ 15 mz) (32)

In (30) (31) and (32) F(a,b; ¢; z) is the Gauss hipergeometric function.

IV Discussion

In a way, the method adopted above is the most natural one. It is based on the generalized
Fourier transform of causal distributions and the systematic use of Bochner’s theorem.

Usually, one works in momentum space and the integration needed to evaluate loops
in Feynman diagrams are regularized to get sensible results. Here, all causal functions in
p-space are Fourier transformed in a v-dimensional space. So that propagators (causal
functions) in configuration space are v~-dependent. This is a natural procedure, the form
of the p-propagator is kept fixed or v-independent. For example (p*)~! or (p* + m?)~L.
This means that the equations of motion are respectively the wave equation and the Klein
Gordon equation, whatever the dimensionality of space-time.

Bochner theorem provides us with a simple tool for the v dimensional Fourier transform

of spherically symmetric functions; namely the Bessel transform.
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We can also handle, at practically no extra cost, the simultanecus presence, between
two vertices, of several massless quanta. Furthermore, no need to be made of auxiliary
parameters, such as those introduced by Feynman or Bogoliubov-Shirkov.

The principal property of the dimensionally regularized causal functions in z-space is
the fact that the singularity at the origin is reduced or moderated in a v-dependent way.
The choice of an appropriate region of the v plane allows the definition of products (or
powers) that can be transformed to p-space without divergences problems; of course, the
usual ultraviolet divergences appear as poles of the analytic functions of v, for » = 4. Or,
more general, for integer v (although somé diagrams that are divergent with » even, are

convergent in v odd).
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