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ABSTRACT

A fundamental prebiotic stage of the appearance of life on Earth
(and/or possibly elsewhere) is the formation; from a random assem-
bly of ocligomers, of information -~ containing DNA-like macramolecules.
By assuming a autocatalytic polymerization mechanism essentially
based in tﬁe complemetarity of the Crick and Watson base-pairs, we
develop theoretically a chemical equilibrium picture which suggests
that this stage may have occurred as a critical phenomenon. We re-
view a renormalization group approach worked out in collaboration
with R. Ferreira, as well as a computer simulation performed in col-
laboration with H.J. Herrmann. Both techniques, in 3pitg of tﬁeir
differences, converge onto a Darwinian-like scenario which naturally
incorporates biologically relevant aspects of diversity and selec-
tion, and which suggests that polymers like ADN double-chains might

have been more primitive than proteins.

Key-words: Biogenesis; Critical phenomena; Renormalization group;
Computer simulation.



Everything already existed begone {Ben Akiba).
Nothing atready existed before [Konrad Lonenz).

I- INTRODUCTION

The most primitive living organisms whose traces have been found
on Earth are photo-bacterias dated of about 3.8 x10° years. Since
the Earth itself was formed about log_jears ealier, several and cam
plex prebiotic stages were overcome during that period until the
(péssibly spontaneous) appearance of these organisms occurred. A-
mong the various prebiotic stages which were probably followed (see
[1] for an overall review) during the transition from inanimate
to living matter, one of great importance (and still badly under-
stood) certainly is the growth of codified macromolecules of the
DNA-type (i.e., with potentiality for self-replication). starting
from a random assembly of oligomers (dimers, trimers, tetramers, etc.)
possibly fluctuating in a primordial soup. This is an important step
of the chain which joins;Organic Chemistry to Biology. It is  the
central scope of the works [2-6] which are going to be re-
vieﬁed here. In spite of its crucial role, this step remains quite
enigmatic. This is due in.part to the fact that little related ex-
perimental work has been done (see Refs. [7,8] and references therein),
at least not enough to provide an enlightening and comprghensive
view of the problem. This situation is, in some sense, in contrast

19-111 ¢ a more primitive step, namely

with the present knowledge
the formation of nucleotides (which, in long chains, form the nu-
cleic acids) and aminoacids (which, in long chains, form the pro-
teins), starting from HZO, CO, methane, etc. (the transition from
Inorganic to Organic Chemistry, generally speaking). This step 1is
now considered to be based on scientifically reliable grounds, the

scenario being violent non-equilibrium phenomena (electrical dis-~

charges, light, heat and radiation flashes, etc.) occurring in re-
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latively simple (and possibly molecular-oxygen-less) atmosphere. Many experi-
ments done along the lines of S. Miller's pioneering ones support this picture.

The growth of codified self-replicating macromolecules  (DNA
- or RNA or their precursors} has recently attracted quite intensive

¢ [12-19]

theoretical effor within thermodynamic and/or statistical

mechanic frameworks. The central groﬁth mechanism is assumed to

be autocatalysis based on a Crick and Watson-like cmplenentaritylzo],

A-T and C=G thus constituting the two complementary base- pairs. ILet
us make clear at this -point that, although we shall use along the
present work the notation A-T and C-G, we do not necessarily refer
to the well known nucleotides (adenine, thymine, cytosine and gﬁa—

nine): the notation might refer to their precursors as well. More-

[10,21-25]

over, if the basic macromolecule is a RNA-like one ; rather

than a DNA-like one, the notation A-T would then refer to the A-U

pair.

[26] [27]

Alternative growth mechanisms, using clay and

[28]

« protein

aminoacid pairing as basic ingredients, have been-proposéd.Hq!

ever, autocatalysis based on A-T and C~G complementarity is very ap

pealing and this is the standpoint we adopt herein.

With the collaboration of R, Ferreira we have developed, since
1983, a chemical equilibrium critical phenomenon picture which ena
bles the understanding of the growth of codified self ~replicating

polymers. The theoretical framework we have used is the renormali-

[29,30]

zation group (RG)  more precisely a real space version of

[31-33] for

it, similar to those available in the literature stan-

p 2]

dard polymerizations. Our first approac assumed a single base-

pair; it provided polymeric growth consistent with diversity, but

p [3]

with no sefectfion in it, Our second approac generalized the

first one in the sense that the fugacity KAT of the A-T link (Hy-
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drogen bridge) in general is different from the fugacity K.. of the
C—G link (Hydrogen bridge); it came out that if two different base-
pairs are assumed in the autocatalysis, both diveasity and sefe-
tion become possib%e, thus satisfying in a natural way the’ basic
requirements for Darwinian evolution. However, at that level the
treatment was not exempted from unsatiéfactory results, namely, al-
though we had selection, we had what we tend to consider the bad
selection, in the sense that the most priviledged codes were those
containing, along the chainsg, exclusively A-T pairs or exclusively
C-G pairs, which do noif exis nowadays! We then argued that  the
fugacities afong the chains {i.e., nol the complementary pairs, but
the strong covalent-like links)} being different among them, the
plausible codes (4equences of A-T and C~G links) could easily bew
come those which indeed exist in nature, i.e., ratios of numbers
of A~-T and C=-G links not too different from unity. In .this way,
the good selection can be recovered in the picture, In fact, .the
importance of having foux, énd not two, different nucleotides (ca
pable consequently of formingl two, and not one, complementary pairs)

has also been recently emphasized by Anderson[19]

.  Reference [4]
is a comprehensive review of our RG approach and results.

Very recently} with the collaboration of H.J. Hernmnuﬁsl, we
have implemented the same physical ideas in a computer by simula-
ting the diffusion and linking of cligomers in a "soup" in order
to observe the possible growth of polymers. The grewth does occur
in a way which is essentially consistent with the results cbtained
with RG. The second approach (computer simulation, CS) was done in
order to check the invariance of the main concepts and results un-

der changement of theoretical techniques. In fact, both RG and SC

preserve and reinforce the chemical equilibrium critical phenomenon view-
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point. They present, however, some differences, namely the CS§ . ap-
proach does not deteriorate the fact that the growth we have worked with
is essentially one-dimensiocnal, whereas the approximative RG approach does, as
will be seen through the type of phase diagrams that are obtained.
However, none of the approaches takes into account the fact that
DNA-like macromolecules might be seriéusly folded and present a cer
tain amount of cross-links. This fact could transform the system
into a fractal with fractal dimensionality higher than one. This
could have as a consequence, as argued in Ref, [6], for the phase
diagrams to be closer to those resulting within the RG approach than
to those resulting within the CS one. We- are presently working a-
long this line, |
The integrated and pedagogical review of the above theoretical
studies constitutes the scope of the present lectures. In Section
I we present the model, the RG formalism and the corresponding re
sults; in Secticn IITI we present the CS approach and the comresponding

results; we finally compare both and conclude in Section IV.

II~ MODEL AND RENORMALIZATION GROUP APPROACH

The monomers (nucleotides) A,T,C,G can form double strings

through {ntrachain strong (covalent-like) bonds (noted in the
illustration which follows) and {nferchain weak (hydrogen-bridge-like)

bonds (noted ....) as illustrated below:

A G. T A C G
A W
T c a T e QU |
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Let K,, and K., be the fugacities (or bonding constants} respecti-

AT
vely associated with the 4interchain A-T and C-G camplementary bridges

(KAT'KCG >0). K and KCG depend, in a complex unknown manner, on

AT
all the thermal equilibrium (or quasi-equilibrium) external para-
meters (temperature, pressure, humidity; concentrations of various
salts, etc.) which characterize the piﬁmd&dialpéaup; assumed to con
tain arbitrary amounts of randomly c¢odified oligomers (dimers,tri
mers; etc.) like that of scheme (1) (which represents and hexamer) or, more pro
bably, smaller ones. We further assume that oligomers can grow through the au-
tocatalytic process illustrated in Fig. 1. Notice that we have obtained, as a
final product, the hexamer of sdheme (1), whereas at the initial stage,

we had nothing longer than fetframers. In the present il}ustration,

(A-G=T-A) and (C~G) play the role of growing gragments, and (A=-T<G=-C)
plays the role of catalysing fragment. We are assuming that the in
trachain condensation (characterized in the example of Fig. 1 by
the fugacity IJAC of the A-C covalent bond) between the two growing
fragments is greatly favoured (JAC>>1) in the presence of the ca-
talysing fragment bonded, to both growing fragments, through the
interchain bridges.

In order to better understand the RG framework within which we
shall perform calculations, let us first discuss the single base-
pair particﬁlar case (K, =K,.=K; both A and C denoted by A;«: both
T and G denoted by T). We perform the configurational analysis as-
sociated with the growth of a small oligomer (e.g., a dimer in Fi-
gure 2(a)), according to the following rules: (i) we consider all
the growth-active configurations of all the catalysing fragments
whose size is not longer than twice the growing fragment under con
sideration (we want to retain only the most probable mechanisms, and

the probability of occurrence of catalysing fragments much fonger than



CBPF-KF-065/87
-6 —

the growing fragment is rather poor): (ii) the "weight" equals 1
when the catalysing fragment. is unambiguously'associated with the
growing fragment under consideration, equals 1/2 when it can equal
ly well be associated with the other growing fragment, and eéuals
0 (and is therefore absent from the figure; wha1itjs'mﬁmbiqxxmly
agssociated with the other fragment (t6 be more precise, when the
number of non-connected residues at any given end of the catalysing
fragment exceeds the number of its residues actually connected to
the growing fragment under cdnsideration); (i1ii) the number  of
growth-active ends (1 or 2) of_the cétalysing fragment can be d;g
garded (precedurne I) or taken into account (procedure II) by in-
troducing a "growth efficiency" which equals the number. of growth-
active ends; (iv) the interchain bonds are assumed.. independent
{hence the effective fugacity of a given set of simultaneous bonds
is just the product of the corresponding fugacities); (v) maltiple
catalysing processes ({(involving more than one catalysing fragment)
or similar complex processes are neglected because of a presuma-
bly low probability of occurrence. These set of rules olwiously in—
volve a certain degree of arbitrariness; however we believe that
any other "reasonable" set of rules would lead to results not es—
sentially different from those we shall present.

Figure 2(a) yields, through the sum of (weight) x (growing effi

ciency) x (fugacity), the following effective fugacities:

Ri(K) = K + 4K? {procedure I) (2)

REI(K) = K +5K? {procedure II) {2*)

The subscript 2 stand for dimer. We now repeat the eonfigurational
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analysis for the growth of a longer oligomer (e.g., a frimex in

Fig. 2(b)). We obtain the followlng effective fugacities:
R; (K) = K +3K? +8K® (procedure I) (3)
and also
R;T(K) = K +3K? +;1_K? (procedure II) ©(3Y
We can now write down the RG recursive equation, namely
RO(K') = R2(K) (a=I or II) (4)

Both recurrences admit the trivial (stable) fixed points K=0 (cor-
responding to lack of infinite growth, and characterizing the {ini
te growth (FG) phase) and K == (characterizing the infinite growth
(IG) phase). They also admit a critical (unstable) fixed point, name
ly K*=1/8=0.125 for procedure I, and K*=2/11 = 0,18 for procedure II.
The present calculation provides further iﬁformation: -while ap-
proaching the critical value K*, the mean fength £ of the growing
fragment diverges as & ﬁ(K*—K)-v, where the critical exponeht v is

given (within the present RG approximation) by

v o fnb/bY) __ tnib/bY) | (5)
tn(%%%) o dr,, (K} /dK
K* dr,, (K) /@K
K*

where b(b') is the size of the original (renormalized) oligomer un
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der analysis (in our present example, b=3 for the trimer and b"=2
for the dimer) and R, (K) (R, ((K")) the corresponding effective fu
gacity. We obtain v 27,0 for procedure I, and v #3.3 for procedure
II., The smaller and ﬁore satisfactory (because more axmimxmtvﬁth
related calculations in polymer physics) value ofitobuﬁned1jmowﬁl
procedure II, is to be attributed torthe higher realism introduced
by the growth efficiency. Anyhow it is complefely oﬁt of the scope
of the present very crude approximations to obtain reliable num-
bers for K* or v: our arguments concern only the qualitative facts
of the picture.

Summarizing, we have seen that the autocatalytic mechanism
might lead, when approaching a critical value for the ‘interchain
fugacity, to the gréwth of codified self-replicating polymers. This
already seems to us a very suggestive conclusion. However, if a
single base-pair is assumed, all codes grow, and all do so at the
same value of K: this ig fine regarding diversity, but, from the
biological standpoint, completely unsatisfactory in what concerns
selection! We shall next see that the (realistic) assumptions of
Zwo (or more) different base-péirs, will lead to a remarkable im-
provement is this sense.

The parameter space of our problem will now be a two-dimensicnal
one; namely determined by KAT and KCG (all intrachain fugacities
are assumed infinite at this level of approximation). The RG flow
will now be determined by (explicit or implicit) recursive rela-

tions of the following type:

]
Kar = Eppr, o Farr¥eg) (6a)

L] -
Kee = Jbb',0 KegrKar! (6b)
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where £ ., and g, , are functions which will in general de-
bb',o bb',0 _

pend on the respective sizes b and b’ of the original and renorma
lized oligomers we have chosen to work with; as well as on the par
ticulan code which 4is growing (and which is denoted by the  index

¢). Examples of such codes are the fqllowing: oo oKyoK nK qKypeos

(o=1), co K Koo Ko Koo (0=2), e o KyrFoaKar¥oe - - (0=3) ,

- a °K ' = - ‘e = -
ATKATKCGKCGKATKATKCGKCG (0=4), KATKATKCGKATKATKCG (0=5)

The single base-pair particular case can be obtained through three

different limits, namely: (i) K, =K. =K and arbitrary o, therefore

CG

f o (K/K) = gbb',o(K'K) =EFp, (K): (11) K, =K, arbitrary KX

bb*,
- and o=1, therefore £

CG’

1(K,KCG) =F, . (K}; (iii) K..=K, arbitrary.

bb’, CG
KAT' and o0=2, therefore-gbb,’z(K,KAT) Ebe.(K). Furthermore, for

codes which are invariant through KATz'KCG permutation (e g., 0= 3,4,

but not o0=5) the following pfoperty must be satisfied:fmﬂ U(X,Y)=
Ipb 0(X,Y) for arbritary (X,Y). Several of the above properties

can be verified on the feollowing examples.

16t example: growth of the "‘KATKCGKATKCG"‘ sequence (6=3). The

RG equations are given by

Rﬁl(KiT'Kéc'Kir'xéc’ = R;I(KAT'KCG'KAT'KCG) (7
and
R§I(KEG'KRT'KEG'KLT) = R;I(KCG'KAT’KCGfKAT) (8)
where
REI(KAT'KCG'KAT'KCG) =K,q + 3K, g Koo + SKA Koo + TR Koo+ 29K Ke o

{9)
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and

) = K, +3K._K.. «5K2 K

II
Ry (K, prK AT * ¥arRee € PKarKee

cerXarr¥ce

2 2 ) E] 2- : 3 3.
+ 7KATKCG +9KATKCG +11KATKCG

4 3 ) 4 [P 5 L -
+ 13KATKCG +15KATKCG +89KATKCG (10)
See in Figuré 3 the associated RG flow, which determines the corre
“sponding critical line, and also exhibits that the two base -pairs
case belongs to the same'university class as the single base-pair

case,

‘Znd example: growth of the oo oK oK oK Ko oKy oKy KoK oo Sequence

(c=4). The RG equations are given by

BT (RyprKiprKigoKie) = Ry (Kyp Kyp Koo Keo) (11}
and
R (k! K. LKYL,K' ) = RED(R..L,K. K, ., K, ) (12)
5 ‘NCGITCG AT AT 9 Ve tcerNAT NaT .
where
F;I(KAT'KAT'KCG'KCG’ = KAT'*% K;T*'% KaTKCG'+% Rirfee
+ 3 K,qKio + TK2 K2 .+ 29K3 K2 (13)
and

11 _ 3 L2 3
Rg (RyqpeKypeKogrKeg) = Kyp +3 Kyp +5 KpKeo

K.. + % K. _K2 +7K? K2

+ 2 g2
2 TAT CG at"ce ¥ "Tartce
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3 2 1l 4 2 11 .3 .3 13 L, .3
+ 9K, Koo + 7 Karfee v T Karfeo v 7 Xarfee

+ 22 K3 KE. 4 15KY KY 4 BOKS K (14)
The corresponding RG flow is similar to that presented in Figure 3.

Equation (9) (Eg. (13)) has been established by making the configura
tional analysis associated with the sequencé "‘KATKXX'KYY'KCGKATKXX'KYY'KCG'"
(see Figure 4), calculating the effective fugacity R (K, ,K i K t/Kyo),
and then taking XX' =CG and YY'sAT (XX' =AT and YY' =CG). We have
proceeded analogously to obtain equations (10) and (14).

We have indicated in Figure 5 the critical lines cornagxmding
to various typical sequences. We notice an important . ;mprbvement
with respect to the one base~pair model: the picture preéents now
both diversity and selection! In other words, a microscopic basis
for Darwinian evolution is now achieved. However, and in spite of
this interesting achievement, the model is not yet free from two
important limitations: (i) if we assume a reasoﬁable time evolution
of KAT and Kog (see Figure 5), the most priviledged codes are those
presenting either very low or very high (A+T) / (C+G) ratios, a fact
which is not easily consistent with the values (1/2 §(A+T)/KHG)§2;
see [20]) associated with modern living systems (at least in  the
biosphere); (ii) the critical line is one and the same for all se-
quences of nucleotides which correspond to a single sequence of
bonds (e.g., ...ACACAC..., ...AGAGAG..., ...ACTGICTG..., etc., cor

respond to the sequence ...K, K _K, K ..), a fact which has no bio-

_ AT CG AT CG '
chemical support. Both limitations disappear by considering the
different intrachain fugacities (they are, within a nearest-neigh-
bor picture, 10 in npmberr and will be denoted by JAA'JAT'JAC'JAG'

JTT'JTC'JTG'JCC'JCG and JGG). In fact, our approach thus far corre
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sponds to assign to these 10 constants the value infinity. It is
intuitive that finite values for these fugacities will make it moxre
dif§icut to attain the point of infinite polymeric growth. We have
indicated in Figure 6 the expected critical line assuming say that

all the J's are equal among them (and equal to J), and that KAT=KCGEK=

note that K approaches X* when J diverges. The fact that the actual
J's are finite and different grom aue_anothen; will make all the

critical lines {of Figure S5) to shift towards higher values of KAT

and K... This shift is in. general diffenent fon differing sequences

0f nucleotides, even if they preserve the same sequence 0 Kyn.'s

and KCG'A. The result is indicated in Figure 7, by . arbhitrarily

choosing JCG =J =] <Jd,, =J We

ce “Jee “Vaa #Jar *Vr 1c “Jac *dpg <
have not carried on actual RG calculations corresponding to finite

T *Jrr <Ipe =Y
J's. They are in principle tractable, though burdensome because of
the large number of RG parameters., It is clear, in any case, that
this is a realistic path for overcoming the two limitations men-
tioned previously.

Before closing the RG section let us mention a point that will
turn out to be relevant later on. The present approach is approxi-
~mative since we are renormalizing growing fragments of §{nife size b into grow-
ing fragments of size b' <b, The exact answer is hopefully - achieved only in
the b+« limit, which we have not attempted to perform. But we see that, within
procedure IT for instance (in fact the same facts occur within pro=-
cedure I), the RG using (b,b'}=(3,2) yields K* =0 .18 whereas the

'RG using{b,b')=(9,5) yields K* =0,52 (see Figs..3 and 5). This trend
can be considered as an indicat’ion that K* can keep increasing while
b increases. It.could even happen that lim XK* =, thus collapsing

b+

the entire set of critical lines onto infinity (KAT=K Later

cg:m}.
on we come back onto this important point.
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IIT -~ COMPUTER SIMULATION APPROACH

Let us now describe how we simulate the primordial soup in the

computer. We consider two square lattices of size Ly xL, (in crys-

Yy
tal units); the top lattice and the botiom lattice, each with pe-

riodic boundary conditions in both directions. On the sites of the

lattices we place A; T, C and G nucleotides {(at most one nucleotide

per site). We respectively denote by NROt, Néot, N%°% and NGO

c G
total number of A, T; C and G nucleotides placed in -each lattice

the

(the same guantities are assumed for both lattices). Covalent hondings
are possible {(to form dimers, trimers, etc.) only within each.lat-
tice, and only along the x-direction. That means that in both lat-
tices alf the chains will be parallel to the x-axis. The hydrogen
bridges can appear only between the top and the bottom lattice. That
means that if on a given site of the top lattice there is, say, an
A nucleotide, and on the same site of the bottom lattice a T nuclectide,
then they form a compiementary pair and may form a bonding. We de~
note respectively by pAi‘ and Pee the probabilities of chemical bondings
of the A-T and C-G pairs between the two lattices. The variables PaT
and Poc are convenient for computér use. They are directly:ekﬁed.

to KA and KCG respectively: when K monotonously increases from ze

T
ro to infinity, p monotonously increases from zero to one (the re-

lation is similar to p =K/ (1l+K)).

The starting configuration is obtained by randomly placing nu
cleotides in form of monomers and in form of dimers on both lat-
tices (we randomly place first the dimers and then the monomers). We

can place, on each lattice, NA A-monomers, N, T-monomers, N, C-mo-

T c

nomers; NG G=monomers, N AA-dimers, N AT~dimers, ete. The fol-

AA AT
lowing relations are obviously satisfied:
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N°°Y = N 42N, N, +N,. +N (15.a)
A A AA AT AC AG *
NEOY - N_ N, +2N__ +N..+N {15.b)
T I AT TT ~ " TC TG *
NtOt = N, +N +N +2N. . +N (15.c)
C c *Vac *Vrc cc Y Ve .
NEOY - N +N.. #N_. +N_. +2N (15.4)
G 6 AG TC T6 CG °
and
tot tot .tot _tot
NA +NT_ +Nc +NG < LxLy (16)
We shall work with NtOt NtOt nd NtOt -NEO‘:; the ratio NtOt/NEOt

will be used as a parameter of the model but we usually consider
it to be unity. Also shall we ‘assume that the AA, AT, TA and TT

dimers appear equally often, i.e., NAA.=NTT =NAT/2; analogously

Noc= cg = /2 Finally, we assume N, =N,.=N,.=N... Sumarizing,

we control the concentrations correSponding"to each initial confi

tot tot

guration by fixing 5 parameters, namely N, c

N s N and

aa’ Nec
N

AC’

After the starting configuration is set, the computer simu-
lates its time evolution., Two main processes occur: diffusion and
growth. Diffusion is simulated in the following way. We randomly
choose a chain (or monomer) of the top lattice. We then check whether
we can move it one step along the positive x-direction (the first-
neighbouring site along the +x end of the chain must . be empty) :
if we can we de¢, if we cannot we abandon it. We then randomly choose
another chain of the top lattice and check whether we can move it

one step along the positive y-direction (aff first -neighbouring

sites on the 4y side of the chain must be empty): if we canwe do,
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if we cannot we abandon it. We repeat the operation along the ne-
gative x-direction, and finally along the negative y-direction. Un
der these conditions a shift in y-direction is less likely to oc-
cur than in x-direction since it is less probable that afl the sites
along the side of the chain are empty than that only the site at
the end of the chain is empty. To better control this anisotropy in
the diffusion, which essentially seems physical to us, we have ge-
neralized the above procedure in the sense that we choose the x-di
rection m_ times and the y-direction my times, and allow for mx/
m.y # 1l. We found, however, that our final result did not depend on
m%/my. The procedure used for the bottom lattice is exactly the
same. So we define one diffusion 5tep.by m_ (and my) attempts of
diffusion in the positive x (and y)-direction and m {and my) at-
tempts in the negative x (and y)-direction and this for each of the
two lattices. For most of our data we have chosen mx==my =1.

The second essential process is growth., Since we want to reach
thermal equilibrium our growth mechanism must fulfill detailed ba-
lance. The-autocatalytic growth (and breaking) process we shall con

sider is the following'one:

— P
: ' , ' -1 1 i
Pleft! 1Pright ©F Prefe!? 1Pright > Plefr! 1Pright
] ' t 1 ";'k_ t 1
® . ———o y) ——e
{(17)
where both P 5. 2nd Pright ©a0 take the values p,, and p.., and
where the transition rates k1 and kz must satisfy
k- 2P1efcPright _ ®yege Prighe
= =
2

Prest 1 Prigne!* Pright 1 Prese) * U Preee) B Prigne) 1~ Prese Prigne
| (18)
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where we have assumed independence between the "left" and "right"
hydrogen-like bonds linking complementary nucleotides. At the left
hand side of Eq. (17) we have three chains of lengths £1, £2 and
13 respectively; at the right hand side we have two chains, whose
lengths respectively are £1¥£2 and £3, the third chain having acted
as a catalyser for the (covalent) junction of the other two. A
growth sfep 1is defined in the following way: Randomly any site is
chosen for which a complementary pair is present on the two lat-
tices. If the neighbouring site (conventionally in negative x-di-
rection) does not have a complementary pair too, the growth at-
tempt is abandoned. Otherwise there are three possibilities: (1)
between the two sites there is no covalent bond in either of the
lattices, (2) there is a covalent bond in only one . of‘the lat-
ttices, and (3) there are covalent bonds in both lattices. In the
first case the growth step is abandoned. .In the secdnd case the
open bond will be closed by a .covalent bond -with probability | PieftPright’
i.e., with probability P;T' P,rPcc OF péG depending .if the two
complementary pairs were both of the type A-T, cne of type A-T and
one of type C-G, or both of type C-G. Finally, in the third case,
one of the two (randomly chosen} covalent bonds will be destroyed

with probability (i-p, . P )/2, i.e. (1-ppo}/2,(1~p, Ppo) /2

right
or (l-péG)IZ depending on if the complementary pairs were both of
type A-T, one of type A-T and one of type C-G, or both of type C-G.
Through this rule a thermodynamical equilibrium is well defined
since a detailed balance condition is fulfilled. The variables ?AT
and Pce determine the "willingness™ of a complementary pair to con .
tribute to the creation of a covalent bond. Since the probability

of havihg two neighbouring complementary pairs is low, only a small

fraction of growth steps is successful; typically only about e-



17 CBPF-NF—065/8?
very hundredth for the parameters that we are going to use.

In the time development, both processes, diffusion and growth,
must be mixed. So we define one time siep as consisting of first
m, diffusion steps and then m, growth_steps. In most cases we have
chosen mu=mg=10. After the application of some time steps, a cer-
tain amount of the originally placed monomers and dimers has grown
into longer chains (trimers, tetramers,...,polymers). In Fig. 8 we
show a typical configuration at two different times (since the chains
are aligned in the x-direction we have chosen“Lx larger than Ly).
Finally, if enough time steps have been applied the chain-length dis
tribution-n£ will come info some equilibfium, where n, is defined
as the number of chains of length £. In Fig. 9 we show‘a typical e
quilibrium distribution of chain lengths. This distribution decreases
monotonically like the cluster-size distribution of_percolation
and opposed to what is found in many irreversible cluster aggrega-
tion models [34-36]. We monitored two quantities that are related

to n,: the mean chain length £ =<{> = 2 {£n,)/ E n, and its fluc-
£ ey Yl

o0

tuatton B 3 [<€? -<g>2531/2 E (£%n z)/ Z n£-<£> 172,

In order to control statistical fluctuations we used the fol-
lowing procedure: First meqtime steps were discarded to assure that
the system be in equilibrium. Then each m time steps we estract the
data from our system and at the end we take the average value over
all these data. ms is usually chosen to be 200, In addition we al-
so average over several starting configurations, but it turns out
from our data that this second averaging is not really . necessary;
it seems that our system is ergodic. In addition to £ and A we al-
so monitor the length zmax of the longest chain found at a given
time step.

One of our central aims is to see if some selection of patterns
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(or codes) naturally occurs in our model under an appropriate choice
of parameters. It is not easy to quantify selection. In addition,
useful quantities like the entropy [37] are very hard to cbtain ac
curately via numérical simulations. We have opted, therefore; for
a verf simplified approach: We look at how often a certain type
of covalent bond appears. So we calculate the fraction-fA’T of
covalent bonds that are of type (A;T), i.e., A-A, A-T, T=A or'TJr{
the fraction fC,G of covalent bonds that are of type (C,G), i.e.,
C-C, C=-G, G-C or G-C, and the fraction fA,C of covalent  bonds
that are of type (A,C}, i.e. A-C, C-A, A~G, G-A, T-C, C-T, T-G or

G=T. The fraction is taken with respect to all covalent bonds on

both lattices. At the initial time of any configuration we have

N + N +N
far = - — A4 AT 1 — (19.a)
, _
NAA'+NAT'+NTT +Ncc +NCG<+NGG-+NAC +NAG +NTC +NTG

N.. +N +N

£ o = ——tt 6 &6 - (19.b)
] .
Naa *Nap #Bpp + Voo # N +Noo + N0 # Ny *Vpe +Nog
Noc *Nag *Nye*Npg
fA c~ - - {19.c)
77 Nyp #Nyp #Npg #Noo +Noo +Noo + Ny + Ny #Npo +Noe
At any time fA,T +fc’G-+fA’C =1.

In additien to fractions £ f and fA cr e also monitor
]

A, T "¢C,G
" the distribution of these three types of covalent bonds according

‘to the chain lengths, i.e., we determine ng’T;'nE’G and n%'c which

tell how many covalent bonds of type (A,T), (C,G) and (A,C)

there are in a chain of length £. Through a convenient normaliza-

tion, we may impbse ng’T 4ng’c 4n£’c = 1, To illustrate the ef-

fect of selection we show, in Fig. 10, ng’T and nE’G obtained for

a specific choice of parameters. Clearly, the two gquantities be-
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have differently; né’T has larger values and fluctuates _more for

intermediate chains lengths (5 <£<20). This disparity between co-
valent bonds of type (A,T) and type (C,G) is for us evidence that
not all patterns appear equally often but that some of them | have
been selected to appear preferentially.

Let us further focus the results; How long and how large do
we need to simulate in order to get reasonable results? Let us start
by looking at a couple of histograms: the development cof £ in time
as shown in Fig. 11 for both isotropic (mx=my=l) and anisotropic
(mx=1¢ my=9) diffusion. At about 20000 time steps this 160 x10 sys
tem seems to come so close to equilibrium that the statistical fluc-
tuations seem to be of the same order of magnitude of the systematic
deviation from equilibrium, so meq=20000 is reasonable. Furthermore,
we see in Fig. 1]l that the fluctuations in { increase with increasing
E which comes from the fact that the change in length of a chain. at
one breaking is proportional to the length itself, . Another in-
teresting effect is that, instead of the most common expomential ap
proach to equilibrium, we have here a nearly linear increase. Spe-
cifically, at very early times the slope is smaller than at later
times. This uncommon behaviour presumably comes, among others, from
the fact that the monomers must enter into a chain before they can
be active as a complementary pair to a growth process. Comparison
between Figs. 1l(a) and 1ll(b) exhibits the statistical irrelevance
of anisotropy in the diffusion steps. The time needed to perform a
simulation such as those presented in Fig. 5 is about 10nﬁmﬁ£s on
an IBM 360/158.

To estimate the system size needed for a given choice of para
meters it is good to see how long the longest chain was that ever

appeared during a given simulation. For the simlation of Fig. 1l(al,
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for instance, it was 67, so that Lx=160 seems enough,

An important result concerns the existence of critical points,
namely a choice of parameters at which the equilibrium character-
istic length £ of the chain diverges. Such a point is of deép in
terest in Biogenesis since; if the picture we are here deveIOping
for this prebiotic stage is correct;-only approaching such a crit
ical point one can generate arbitrarily long DNA chains. The most
relevant parameters of the model are Pur and Pce since, as we said
before, they contain in some way the external variables of the phys
ical situatioﬁ like temperature, pressure, humidity, various salt
concentrations, light intensity, etc. We will therefore explore
first the (pAT'PCG) plane. In Fig. 12 we see how the equilibriunm
value of £ changes along three different paths in the (pAT,pCG)
plane. Clearly £ seems to diverge only at PAT=pCG=1 which is there
fore the only critical point of our problem. This is a consequence
6f the one-dimensional nature of our growth model. We shall dis-
cuss this point later on. If one approaches (pAT,pCG)=(1,0.9),ﬁur.
“instance, the value of { appears to converge towardsa finite value.
The divergence of f£:at the critical point is cdnsistent with a

power law,
E = (1-p,,) 7" (20)

because the points in Fig. 12 lie gquite well on straight  lines.
The exponent x does not depend on the path used to approach the
critical point. We find x=0.49 +0.05, which suggests that Eq. (20)
could well be a square-root behaviour: x=1/2. The proportionality
constant of Eq. (20) does,. however, change if the path in the - (pAT'pCG)

plane is changed. A formula that fits reasonably well all of our
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data is

2
[(l-pAT) +(1 PCG

U'aa
n

(21)

where A is of order unity.

The average longest chain zmax and the fluctuations A of the
chain length also diverge with a powelaw like that of Eq.(20) with
the same exponent x within the statistical error bars. This is seen
in Fig. 13 for one of the paths of Fig. 12 that approaches the crit
ical point. |

Let us now come back to selecticn ayyd consider the ratio r=f, _/f

A,T'7C,G"

If one approaches the critical point along the line PAT . one

“Pegr
always has r=1 within the statistical fluctuations. On the other
hand we show, in Fig. 14, what happens if one approaches the criti
cal point along the line 1—pCG=4(1—pAT). We see that r »>1 on  the
whole line, except possibly at the critical point itself. Approaching
the critical point r-~1 vanishes (i.e., fA’T—fC’G tends to vanish)
in a way that seems to be described by a powerlaw since the data in
the log=log plot of Fig. 14 lie more or less on a straiqht line.
We conclude from this that for all values pAT# Poc ‘there will be.
sdme selection in equilibrium; but since for the critical point it
self Pur equals Pegr We cannot get selection for infinitely long
chains in the present conditions (namely, NROt:NEOt “and NAA CC'NAC/Z’
Thus a possible scenaric for selection in Biogenesis could have
been that nature approached the critical peint along a lnrapxrfpcc
so that fA,T'#fC,G' and that before the critical point was reached
the system started, for some reason, to defy thermal equilibrium by
undergoing various hon-equilibrium processes which would ultimately

lead to a partial isolation of the system from the exterior by means
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of membranes. In any event it is very unlikely that nature ever
reached the critical point also because infinitely long chains do
not exist.

Another selection mechanism can be related to asymmetriés in

the starting configuration, i.e., if we do not demard any more Nr’t =N'é°t
and NAA=NCC=NAC/2' It is of course probable that the prebiotic soup

was not that symmetric and for that reason we also investigated other

starting configurations. First we looked at the case where N;°t=
NE“ but the dimers have different concentrations: so we chose NAA=18,

NCC=2 and N C=12 for PAT in an 80x10 system. We found that the

A “Pcg
equilibrium times were somewhat longer than in the symmetric case
but, except for that, all equilibrium properties were essentially
identical. So we conclude that disparities in the original concen-
trations of dimers do disappear in the course of equilibration. One
should, however, remark that all types of dimers must be represented
at the beginping by at least one sample because otherwise, due to
our complementarity.mechanism, this particular type of covalent

bond will never be c¢reated during the growth.

The other, more radical, asymmetry that can be introduced in

tot
A

=18' N

the starting configuration is N ;ENEOt. Specifically we locked at

tot tot -
Ny, =272, Ng AA c Pce

80x10 system. We found, while approaching the critical point,r=5+1,

=144, N c =2 and N.c =12 at Pyr= in an
i.e., a very strong preference for covalent bonds of type (A,T).
This is therefore another possible selection mechanism which works

even for Par and which subsists even at the critical point. The

=Peg
appearance of this type of selection is very easy to understand: since
the total number of A and T nucleotides is larger than the total
number of C and G nucleotides, it is more likely to find covalent

bonds of the type (A,T)}) than covalent bonds of the type (C,G) in
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the patterns.

Summarizing we have simulated the phenomenon in computer try
ing to make the model as realistic as possible without complicating
it beyond our computational capacities. So we introduced : (i) straight
DNA-like chains that are aligned along a uniqﬁe direétion and that
perform a two-dimensional diffusion {(instead of possibly very folded
chains that can quite freely rotate and that perform a three ~di-
mensional diffusion); (ii) discrete (instead of cbntinuous) time
and space; (iii) sequential diffusion and growth processes (whereas
it seems more realistic that they have quite frequently occurred
simultaneocusly); (iv}) bi-planar configuration for autocatalysis
(whereas it seems more realistic to occur in all directions); (v)
fugacity-variables only for the A-T and C~G hydrogen-like bondings,
the fugacities of the 1.0 possible first—neighbour'covalént bonds
being held infinitely strong (which clearly is but a first appro-
ximation); (vi) an autocatalytic growth (and breaking) process which
takes into account the possible presence of complementarity links
only on the two nucleotides involﬁed in the first-neighbour co-
valent bond {(in fact it is not obvious that nucleotides others than
those do not play an appreciable role}; (vii) independent occur-
rence of the two first—neighbouring'hydrogeh-like bondings respon
sible for the autocatalysis of a covalent bond (whereas some cor-
- relation cannot be excluded). In spite of these many simplifying
assumptions, it seemé a priori quite plausible {(and the results re-
inforce a posteriori this belief) that the main ingredients have
been retained in our model. In particular, the fact that we have
allowed, together with the growth process, its reverse (breaking}
process enables the system to achieve thermodynamic equilibrium,

for each choice of parameters.
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Our main computer results have been that only for p,, =p,.= 1
our chains grow infinitely_long; and the equilibrium average chain
length, its fluctuation as well as the longest chain length diver-
ge at this point like 1//T:§Z;. Selection, i.e. preference of some
patterns over others, can occur if Pat *PCG or i1f in the starting
configuration the total numbers of the‘different species of nucleo-
. tides are chosen differently. The whole picture suggests, for the
particular stage of Biogenesis under discussion, that the main in-
gredients of a Darwinian~like molecular evelution, namely diversi-
~ty and selection, can be naturally incorporated in a scheme of ther
modynamical quasi-equilibrium., The phenomenon essentially looks like
a critical one, the most relevant external parameters heing the fu
gacities of the hydrogen-like bridges between the nucleotides of
complementary pairs. _

Certainly the present simulation is not exhaustive. A detailed in
vestigation of the influence of the starting configurations would
be welcome. A better understanding of the peculiar increase of the
chain length at early times, as well as of our square-root laws and

Eq. (21) is also needed.

" IV- CONCLUSION

We have discussed the polymerization of codified self -repli-
cating DNA-like macromolecules using two different theoretical ap-
proaches, namely a renormalization group (RG) and a computer simu-
lation (CS). Let us concentrate on the phase diagrams they yield:
see Fig. 15. Why are they not one and the same? The correct one is

that of Fig.5(b}, i.e., the CS one. Indeed, the growing double~chain
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polymer is one-~dimensional from the topological point of view, there

-)m)

fore the critical point has to be at pAT=PCG=1 (i‘e'*'KAT =KCG
[(38]

since no infinlte chains are possible at any 4inife temperature
for {<inite couplings (i.e., for Par <l or Peg <1r OF equivaiently
KA; <\’.m or K.. <=}, Why then the RG approach has led to Fig. 15(a)?
The hint has already been given in Section II: the RG calculations
are only approximate. since the renormalizations have been done a-
mong cells with {inite size, The exac£ answer can only be achieved
in principle in the limit of cells with infinite size. Therefore
for RG cells which are increasingly larger we should expect the crit

ical lines of Fig.l5{a) to shrink onto the p,, =1 corner, thus

=Pgg
reproducing Fig.l15(b). In fact we recall that we have numerically
observed this shrinking tendency while considering lan;n:and.kuQEr
oligomers to perform the renormalization.

Is it then the phase diagram of Fig.l5(b) the ultimate form
wa can expect? The answer is no. Indeed, if we take into account
the chemical cross-links which do exist between different parts of
the real 4ofded polymer (see, for example, [39]), the system may
become a fractal object with fractal dimensionality df higher thén
1. Consequently, the system not being strictly one-dimensional any
more, the statments developed in [38] do not apply, and we‘are in
right for expecting critical lines like those appearing in Fig. 15(a).

To say it in other words, in the CS approach we did one appro
ximation, namely we neglected the cross-links of the polymer. In
the RG approach we did that approximation plus another one, namely
not considering infinite large RG cells. It is our belief that the
real phenomenon might have occurred in a manner which is closer to
that of Fig.l15(a) rather than that of Fig.15(b). Consequently, we

verify once more that in Science it might happen to be preferable
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to do {fwe mistakes rather than only one! We are presently working
on a more realistic computer simulation, which allows for folding
and cross-links; in order to test the above expectations.

To conclude let us list some of the relevant aspects which e
merge within our chemical quasi~equilibrium critical phenomenon
picture for the polymerization of DNA—like macromolecules based on
autocatalytic growth using a Crick and Watson-like camplementarity

between nucleotides:

(i} A single base-pair (KAT=KCG) yields critical growth con-

sistent with divexrsify but not with selection;

(ii) Two (or more) base-pairs (K AT"‘I .KCG) yield polymeric growth
consistent with both diversity and selection; these fundamental in
gredients naturally come inte the theory, thus providing a micro-
scopic basis for Darwinian evolution; life would have then appeared
from a certain amouht of self-replicating codes, and not from a
single one (those different codes would have grown at different,

though close, moments of the Earth evolution};

(iii) The role played by f§4inite values for the interchain co-
valent fugacities (JAA'JAC' .a@tc,) is to make possible realistic values

for the nucleotide ratio (A+T)/(C+G) (roughly between 1/2 and 2):;

(iv) In the old querelle "which came first: nucleic acids or
proteins?", our picture suggests a more primitive role for the nu-

cleic acids;

As a final remark we might add that, if analogies with spin
1/2 magnetic systems are to-be'done[15] for the prebiotic stage un—
der study, the roughest "reasonable™ model seems to be that .in which
the binany code (S =% 1/2) xregens to the base-pairs (A-T or C-G)

and naét to the nucfeotides (purine or pirimidine}.
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Unnecessary to insist how welcome would be experiments oonfirm
ing the picture herein exposed.

It is with great pleasure that I remind here that without the
enriching collaboration of R. Ferreira and H.J. Herrmann-thié re-=
view would had never been possible. I have benefited from stimu-
lating related discussions with many §e0p1e. This is maybe not the
place for mentioning them all: I cannot however resist the tempta-
tion of making explicit some of them, namely G.'Bemski, R. Maynard,

" L. Peliti, $§. Solla and G. Weisbusch.
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CAPTION FOR FIGURES

Figure 1l:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Example of autocatalytic process which can increase

the mean length of the macromolecules by using a mecha-

nism based on a Crick and Watson-like complementarity.

Configurational analysis of the catalysing fragments cor
responding to the growth of a dimex {a) and of a Zfrimex

(b].

Critical line (full line) in the (KAT'KCG’ fugacity space
{procedure II), separating the finite growth (FG) phase
from the infinite growth . (IG} one of - the. _segquence
"'KAT AT
flow; the central dot indicates the single base-pair crit

KCG"' Arrows and dashed lines indicate RG

ical fixed point (responsible for the university class

of the whole critical line).

Configurational analysis, within both procedures I and

II, of the catalysing fragments correspording to the growth

of a pentamen (sequence ...K AT XX'K Y-KCGKNESQ(K%Y ch

Critical lines (in the (K ) fugacity space}) corre-

AT'KCG
sponding to the growth of selected sequences (the dashed

line 1s indicative); FG (IG) denotes the finite (infini-

te) growth phase. The point at Kyp =K o =K* reproduces

the fixed'point-of Figure 3; the dotted line is a symme-
try axis of some of the sequences (e.g.i...KNg%GKxg%G.”

and "'KATKATKCGKCGKATKATKCGKCG'")' The arrows indicate

a plausible (slow) time evolution of Kot and K...



Figure 6:

Figure 7:

Figure 8:

Flgure 9:

Figure 10:

Figure 11:

Figure 12:
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Indicative FI-IG critical line (one and the same for all
ZK and all J's

=Kee
equal among them (and equal to J). K* refers to the single

sequence types) corre3ponding”u)KAT

base-pair critical point of Figure 3,

Indicative FG-IG critical lines corresponding to the growth
of different nucleoiide sequences (not only different se-
quences of interchain links). The dashed line is a symme
try axis of some sequences (e;g., e« +ACAC. .., ..,AGAG...):
the dotted lines indicate the value K* of all ' previous
figures. The arrows indicate a plausible (slow) time e-
volution of K, and KCG.
Starting configuration (a) and configuration after 3000
time steps (b) for Ppr=Pce=0-975 in one of the two lat-

tices of a system of size (Lx,Ly)=(20,10).

Equilibrium chain length distribution n, {in ‘arbitrary
units) obtained for pAT£0.995 and Po=0-98 after 40000
tot

time steps. The parameters are Lx=160 and Ly=10’ NA =

NE°ti416, N

c N =NAC/2=16' mx=my=l.

AAT CC

Distributions nz’T and ng’c (in arbitrary units) of .co-

valent bonds of type (A,T) and of type (C,G) according to

the length £ of the chain. Same parameters as in Fig. 9.

Histogram of { obtained with: (a) the same parameters of
Fig. 9; (b) the same parameters of Fig. 9 except for

(m ,m) = (1,9).

Log-log plot of § against 1-p,r at equilibrium along three

different paths in the (pAT,pCG} plane: T {x); l—pCG=
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Figure 13:

Figure 14:

Figure 15:

-30-

4(l—pAT) (0} and p,.=0.9 (A). In the insert we show these

three paths in the (pAT'pCG) plane itself. For all runs

the starting configuration has been chosen completely sym-
tot _, . tot tot

metric, i.e,, NA =Nc and NAA.=NCC= NAC/Z' and NA =

0.26 L_L .
Xy

Log-log plot of A(e) and & (V) against 1-p,, along the path
l—pCG =4(1—pAT) and the same starting conditions as in
Fig. 12.

Log-log plot of r-1 against 1—pAT along the same path and
starting conditions of Fig. 13. For two values of P,y We
have represented two different statistical samples to ex

hibit the magnitude of the fluctuations.

Phase diagrams within the RG (a) and CS {b) approaches.
FG and IG respectively denote the {inite growih and ingi
nite growth phases. The various critical lines in (a) cor
respond to varioﬁs typical codes along the chains. The

dot e in (b) indicates the critical point for all codes.
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FIG. 3
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