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ABSTRACT

We discuss the critical frontier and critical exponents
associated with the quenched bond-dilute quantum anisotropic
spin % Heisenberg ferromagnet in square lattice. To perfornm
the calculations, we extend (and analyse with some detail) an
approximate real-space renormalisation-group framework re-
cently developed by some of us for the pure model, Whenever
comparison with available exact results is possible, 'theagre
ement is either perfect or quite satisfactory. Some effort
has been dedicated to extract the main asymptotic behavijours
of the critical frontier., Also several interesting quantumef
fects appearing in the composition laws of (Heisenberg) bond

arrays are exhibited,.

Key-words: Heisenberg ferromagnet; Bond-dilution; Quantum ef

fects; Cpiticality.
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I INTRODUCTION

During recent years several works have been dedicated to
the study, within real space renormalisation group (RG) frame-
works, of phase transitions in quantum systems (see Pfeuty et
al 1982 for a review). The noncommutative nature of the prob
lTem makes it non trivial. One of fhe main models that have been
focused is the Heisenberg ferromagnet (Suzuki and Takano 1979,
Stinchcombe 1979 (a,b), 1981,Takano and Suzuki 1981, Castellani et al 1982,
Tsallis et al 1984, Plascak 1984).Inparticular, some of us ( Caride et al
1983 (a,b)) have recently discussed, within a RG scheme, thecritical Tine
and thermal critical exponents associated with the spin - %
anisotropic Heisenberg model on square lattice. The procedure
is a cluster based one, and uses self-dual (Wheatstone bridge
Tike) two-rooted graphs to simulate the square lattice; in oth
er words, the square lattice is approached through convenient
self-dual hierarchical Tlattices. This formalism provides re-
sults which, whenever comparison is possible, precisely (or
nearly so) reproduce well established ones (such as the crit-
ical points and thermal critical exponents corresponding to
the square lattice pure Ising and isotropic Heisenberg models).

In the present work we generalize the treatment of Caride
et al 1983 in order to cover the quenched bond-diluted case
of the same model. The critical surface in the T(temperature)-
A(anisotropy) -p(concentration) space is calculated, and the
universality classes are established. Some effort is dedicated
to the discussion of the main asymptotic behaviours.

In Section Il we present the pure model and introduce the



CBPF-NF-065/84

formalism; in Section III we discuss several interesting quan
tum effects; in Section IV we present the bond-diluted model
and its RG treatment; in Section V we present the main results;

finally we conclude in Section VI.

IT PURE MODEL AND FORMALISM

I1.1 Model

We consider a system (anisotropic Heisenberg model) whose

dimensionless Hamiltonian is given by

= . X X, Y.y z 2
P ) Kij[(] Aij)(_cicj+oicj)+0,c. (1)

<i,j> 10

where K.. = J../k_T
1] 1] B

the factor QJ/kBT) has been incorporated in the Hamiltonian),

(Jij is the exchange coupling constant;

Aij is the anisotropy in the spin space, the o's are the
standard Pauli matrix associated with spins1/2, and the sum
runs over all pairs of nearest-neighbouring sites of a square
lattice. The particular cases Aij =1, Aij = 0 and Aij = - ®
respectively correspond to the Ising, isotropic Heisenberg and
XY models. Because of noncommutativity, the system will ex-
hibit quantum effects whenever Aij 1. The gstandard pure
model corresponds to Kij = K and Aij = A, ¥(i,j). However be-
fore focusing this model and its diluted version, we shall
consider simpler systems, namely two-terminal arrays of spins,
i.e. we shall consider two-rooted graphs, each site of which

¢
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carries a set of Pauli matrix, and each bond of which denotes

an anisotropic Heisenberg interaction.

I1.2 Parallel array

We consider first a parallel array of two bonds character
ized respectively by (Kl’Al) and (KZ,AZ) (see Fig. la). It is

"equivalent" to a s4ingle bond characterized by (KP,AP)givenby

KP = K1 + K2 (2)
Kp(]-AP)=K1(1-A1)+K2(1-A2) (3)

hence
Kb, = Kyby + K,a, (3")

By equivalent we mean that the Hamiltonian (and consequently
the associated partition function) remains invariant. If we
are dealing withnparallel bonds, then Egs. (2) and (3') are

obviously generalized into
n
K = ) K. (4)
n
Ko = Y K4, (5)
If this paratlel arrnay is a bSubarray of a more complex array,
it can always be replaced by a single bond (with(KP,AP)given

by Eqs. (4) and (5)) without any modification of the whole Ha-

miltonian (or its corresponding partition function)., A1l this
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simplicity will disapper for series arrays because of noncom

mutativity effects.

II1.3 Series array

Let us consider a sendles array o4 two bonds characterized
by (Kl,Al) and (KZ,AZ) (see Fig. 1.b). The corresponding Ha-

miltonian is given by

= .l - X X Y.y z_z
31?123 Kif (1 Al)(clo3-+olc3)-+0103

p— -

+ K| (1 -Az)(o§o§-+o§o§) +oso; (6)

The entire equilibrium thermal statistics of this system as
determined by its two terminals (sites 1 and 2 in Fig. 1b) is
identical to that of a s4ingle bond (characterized by (KS,AS)) if

we preserve the partition function, i.e.

M MP
e 2 -Tre 1'% (7)
3
where
61-P12= KS[U -AS)(o’fcf’z{ +oi’o§) +oi0;—f + K (8)

Tr denotes the tracing operation over the states of the spin
:t site 3 (see Fig. 1b); K4 1is an additive constant that has
to be included in order to Eq. (7) be possible. Kgs A and
Ko are functions of Kis 8,5 K, and 4, to be found. Let usnow
determine these functions.

The expansion of exp (&Hiz) provides
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-5~
exp(dHf;,) =a' +biz(clcz-+c{og)-kcizoiog (9)
where a', bi and ¢/, depend on K_, A_ and Ké Analogously

the expansion of exp(dW ) provides

123

where a,{bij} and {Cij} depend on K ,4,,K, and A,. Eq. (10)

implies
gr exp(3ﬁ123) 2a +2b , (0 o§ +0 o ) +2c,07 ; (11)

From Egs. (7), (9) and (17) it follows immediately that

a' = 2a (12.a)
b, = 2b,, (12.b)

and
Cip = 2¢4, (12.¢)

which implicitely determine KS, AS and_Kg as functions of Kl’
Ay K2 and Ay. Let us now proceed to the last steps of the
calculation.

We first take care ofé-l-?lé, and express it in the basis which

simultaneously diagonalizes o>

. and og, and which we note
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++ >, [+"%|°+>ami[--%'IntMsbaﬂs&mﬁ becomes
1
KS+KO 0 0 0
0 -K +K! 2W 0
s 0 s (]3)
0 2Wg . -K +K! 0
S 6}
0 0 0 K +k'
]
where
W, = K (1-5,) (14)
The corresponding eigenvalues are
] — I
€l = Kg + Ko (15.a)
e; =~KS + Ko+ 2wS (15.b)
eé ==K, + KJ - 20 (15.¢)
e, = € (15.d)

The corresponding normed eigenvectors, arranged in columns,

provide the following unitary matrix

0 0 0
U, = 0 1/VZ 1//Z 0 (16)
0 ‘1/VZ -1/v/Z 0

0 O 0 1
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If we note Aﬁﬁ;D the diagonal form of<ﬁ&£2, the following re

lation is satisfied:

3, '
12 - ‘ 12 14
e = U;, e U (17)
hence
0 0
L
g} g} g! ¢
&RJ e 2+e 3 e “-e 3
e 12 - 2 ¢ (18)
e} ¢! e ¢}
e 2—e e “+e
2 7
0 0

On the other hand, the right side of Eq. (9), expressed

in the | ++> | +=>, | -+>,] - -> basis becomes
] ]
*Cly 0 0 0
0 a'-cl, 2bl, 0 (19)
1 ]
0 Zbiz a'-c;, 0
0 0 0 a +c1'2

This expression, together with Egs. (9) and (18), yields

1 i 2
L L (20.a)
LI ty2 ' 2
(a%-c;3)% - 4(by,)

JhWs 2 "1 +2by, (20.b)

- ! - !
a c12 2b12
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Ko = 12 (20.¢)

where we have used Egs. (15).
Let us now take care of &wlzs’ and express it in the basis
| + + 4>, [++->, ‘+-+>, | -++>,l--+>,\l-+->,,[+-->,[ -— =,

We obtain

My = (21)

Al = K1 + K2 (22.a)
and
-(K1+K2) ZWZ‘ 2w1
- _ (22.b)
A3 2w2 Kl K2 0
2w1 0 K2—Kl
where
wi = Ki(l -Ai) (i=1,2) (23)

The eigenvalues of A3(ei,i =1,2,3) are the roots of the fol-

‘lowing cubic equation:
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3 +ae? - [62 +4»(W§ + wi)]a --Sl—ocB +4(w,§ -Wi):l =0 (24.a)
where
o = K]_ + K2 (24.b)\
and
B = K]_ - K2 (24.(:)
The 8 x 8 unitary matrix diagonalizing &&123 int01$9?23 is
given by
1 0 0 O
0, = 0 U, 0 0 (25)
0 0 U3 0
0 0 0 1
where U3 is a 3 x 3 matrix given by
_ a1 —
with
a2
£.48 2 1 1 3
1 - 3071 _ sl _ g1 - (1 -8+ )82 (1 -82)
A3 Cjﬁt;)lj(] 551)(] 6Az)*q\/4w§+(e.+u)2 Ay" by ]
J
N 4N]2. 1 1 1 1 1
+ \/ (1 -6 )8F (1-8%2) + &, &8, ¢: (26.b)
4Wi+(ej+a)2 8770y J Ay hy ]
. e§+ej8-4wi w2 \ . . 4w§
AL = (r=)IA3(1 =687 )(1 =685 ) + : (1 -6; )
] a(B-€. ) +4U5 WI J by A, 4U2+(e.-B)2 by
J 2 J
S (1 -83) + (1 -63 )8t 62 + 8} &3 &2 26.c
Al j Ay A2 J Al A2 ] ( )
A3)% =1 - (Al)?2 - (a2)?
(22 CHEINEN) (26.4)

(the 6's are Kroenecker delta functions)
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By following through the same steps as hefore (namely Egs.
(17) and (18) for 3.91'2)‘ we obtain the 8 x8 matrix exp (P ,)

as an explicit function of Kl’ W K, and wz. On the other

1* 72
hand, the right side of Eq. (10), expressed in the 8-dimen-

sional basis mentionned before, becomes

1 0 0 0
0 B3 0 0
(27)
0 0 33 0
0 0 0 Bl
where
By =@ % ¢y ¥ Cy3 % €y (28,a)
and
a+C197C137Cy5 2b, 4 2b, 4
B3 = 2b23 a=C,,*+C 47 Cyy 2b12 (28 .b)
2b, 4 2b, , a=C177C13%Cy3

Expression (27) (with Eqs.(28)), together with Eq. (10) and

the explicit expression of exp(J“ mentionned above, yields

123
. 3 ~
a = % [}<KTFK2) + ) Z eeJ(A (29.a)
i=1 j=1 .
1 : €3
b,, = e (2 29.b)
1277 L el 05) (29.b)

and

o
!

1 K, 3 e
1 = e zleel(x;)z:l -2 (29.c)
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Finally Eqs. (29) substituted into Egs. (12), and the results
substituted into Egs. (20) provide the expressions we were
looking for, i.e. KS, NS and Ko' as explicit functions of K1’
wl, K2 and wz.

For the pure Ising particular case (A1 =4, =1) we reobtain

the well known results (sees for instance,Tsallis and Levy 198]

and references therein)

tanh(Kg) = tanh(Ky)tanh(K,) (30.a)
and
. (30.b)
as well as
Ké = %E,n{2[cosh(2K1) +cosh(2K2):l} (30.c¢)
For the isotropic Heisenberg particular case (Al =A2 =0) we

obtain Ay = 0, and recover results of Tsallis ‘et al 1984,
namelys Eq. (4) therein for KS, and Eq. (A 26a) (with K13=0)
therein for Ko'., Finally, for the particular case KI= K, = K

and wl = w2 = W, we obtain

e +K)et + (& -K)e_Aje'k

e “Ws - (31.a)
Zh
x eZK-+[]A -K)ex +(A-+K)e_X]e'K/2x
e 8 = (31.b)
2W
2e” "8

and

Ké =Ln2 + K_ + 2W (31.c¢)
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where

A = YK? o+ 8W2 (32)

As anticipated in Section Il.2, the series case is, be-
cause. of noncommutativity, considerably more complex than the par
allel one; in particular the search of additive properties
(such as those Egs. (4) and (5)) or factorizing ones (such as
that of Eq. (30.a)) becomes practically untractable. Furthermore,
a sendies arnay (e.g., two bonds characterised by (Kl’Al) and
(Kz’Az)) which is a subarray of a more complex one, cannot 4in
general be neplaced by a single bond (associated, in our ex
ample, with KS = Ks(Kl’AﬁKZ’Az) and Ay = AS(Kl,Ai;KZ,AZ)).This
fact (which will be illustrated in Section III) generates in-
teresting quantumeffects, but makes hopeless (at least for
the present type of quantum systems) the search of operational
ly simple procedures similar to the Break-collapse Method (i-
nitially deviced by Tsallis and Levy 1981 for the g-state
Potts model, and afterwards extended for other classical
models; see Tsallis et al 1983, and Tsallis and Redner 1983)
which, through elementary fLocal topological operations, ena-
bles the calculation of anbitrary arrays.

The following properties are worthy to be noted:

13K,50

i) K QKl,A

s o) = Ko (Kyahy 5K 50,) (33.a)

and

By(KysbysKyshy) = B (KyyhysK 44)) (33.b)



CBPF-NF-065/84

-13-

i i ; - ; 34
1) K (0,8,3K,8,) = 0, ¥(By.Kys8,) (34)

i1i) in the high-temperature Timit (|Kll,[K2[ << 1),

. . 35
KS(K1!A13K29A2) v Kle V(AlsAz) ’ ( )
iv) K (% =,803K 58,) = £ n(h;,0,5K,)K, (36)

where n(4A.,A.,K ) is a finite quantity which satisfies

128,0K,)
n(],],sz =1, %(Kz), and which, for A, =4, =0,n monoto--

nously increases from % to % when ]KZ] increases from

zero to infinity.

v) in the low-temperature Timit (]K1I,|K2] >>1 and IKll_g [Ks1)3

K 1 v K if A =4, =1 (37.)
(Kl < 1Ky | if 0<a ,h, <1 (37.b)
1 - 2 2 ) i = =
Ky | v oKy + K, = VK2 4 K2 - KK, if 8, =4, =0 (37.c)

IT.4 Arbitrary two-terminal array

We consider here an arbitrary connected two-terminal ar-
ray (see examples in Fig. 2) containing N sites (2 termi-
nals and (N -2) internal nodes), and N(N -1)/2 bonds joining
them (all sets of parallel bonds are assumed to be replaced
by the corresponding equivalent bonds). The sites are noted

isJ,k,2, etc; the bonds are noted according to the sites they
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join (ij, ik, jk, etc); the two termina]s are noted 1 and 2., The
ij-bond (and anralogously all the others) is characterized by

(K A:-.); an absent bond is equivalent to the corresponding K

ij* 7ij
equal to zero. The Hamiltonian of this system is given by

- _ Y5Y z _z
A TICEINNN) 5[0 -850 (%0 s oY) v o2e?]  (38)

J
bonds

We intend to replace this array by a single bond whose Hamil-
tonian<hpiz is that of Eq. (8) (in this Section we shall use

: . . ,
the notation (K12 ,Alz') rather than (KS,AS)). We impose  the

preservation of the partition function, i.e.

12 | Tr P12, N (39)

334y40.,N

Our purpose in the present Section is to outline the generadl
procedure for finding Kfz » A7, and Ké as functions (explicit
whenever possible) of {Kij} and {Aij} (the convenient notation

W.. = K,.(1T -4A..) will sometimes be used).
1] 1] 1]

N
Let us introduce the total angular momentum §sz( ) g)/z,
i=1 1

and note S? its z-component, The Hamiltonian éwl always

2,..N
commutes with S*, but not necessarily with S* (excepting for
Aij = 0, ¥(ij); for this case, see Tsallis et al 1984, where
a misprint should be noted: a few lines below -Eq. (A4), it
should be "It is convenient to work ...", instead of "It is dif
ficult to work..."). Consequently the 2N x 2¥ matrix &WIZN,N is
conveniently represented in the basis | >
| £+ 2... +>, where it exhibits the following block form:
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0 0 .0 0
Ag +.-0 0 9
: 0 40
6+912. ? .o A(g) 0 : (40)
0 eo0 ..OAN 0
0 0 ..0 A

N
T

) X (ﬁ) matrix (r=0,1,...N). A. corresponds

1

to [++...+>(and also to [--...->); A corresponds to the

set of N vectors |+ +...->,.0.5 |+-...4>and|-+...+ (and also

where A N, is a (
()

to the corresponding N sign-inverted vectors); analogously for AN(N,1>/2

N N
etc. The eigenvectors of A(N) will be noted XfQJ),)é(r)x cer s

N !
X(ér)) and the corresponding unitary matrix (whose columns
()

aré the normed eigenvectors) will be noted U(N). If we note
r

D . : v . .
JWle. the diagonal form of<¥R12. the following relation

l'N llN’
is satisfied:
4 P
12...N = 12...N +
€ Uia...n © Uia. .o (41)
where the 2% x 2V unitary matrix U12 N has the same form of

Eq. (40), U(N) playing the role of A(N). By using (471) we can
r Y
express exp(é#lz...N) as function of {Kij,A..}.

1]
On the other hand exp @H?lz can be expanded as fol

.N) 2
lTows:
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Az v ToT +olel) + o 0%t ]
e sa N<£;J [}ij(oigj'+ci03) €13%:i%;
-se;—sz—-wbonds
+ )X d.. (6¥c® + Y67 )o2a?
Cii)# (L) ij, k€Y 17] 1757k L
X X YV Yy, zzzz
tei ke K(c + oY ;0 )(o + Gkoﬂ).Ffij,kﬂcﬁijkqQ
X X Z Z Z . 2
+ : [é (o oX + oror)o%0%6%0
(ij)# (kL) (mn) ij,kf,mn j i3k L mn
+- .0 + .. (42)
This expansion can be represented in the [+ ... > basis,
and then compared to that obtained in Eq. (41), thus ob-

taining a,b and c, (as well as any other coefficient we
might be interested in, such as d, k@"thkﬁ’ etc) as explicit
functions of {K. L lj}. Let us now proceed through the final
step of our calculation. Eq. (39), together with expansions

(9) and (42), implies

a' = 2 a (43.a)
o L oN=2
bi, = 2 b, ~(43.b)
S )
Ciy = 2 c12 (43.c)

Substituting these expressions into Eqs. (20) (where we have

to remember that Kiz = KS and W£2 = ws) we close the procedure,

thus obtaining Kiz,Wiz and Kg‘ as functions (explicit whenever
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N is low enough, or the symmetry of the array high enough) of

{K..,W..} as desired.
131° 1] -
III SOME QUANTUM EFFECTS

The present section is dedicated to the analysis of some

interesting quantum effects.

IIT.1 Linear chain arrays

If we are dealing with a classical system (i.e., all re-
levant commutators vanish), a linear chain can be solved "by
pieces", i.e., the exact solution corresponding to the entire
chain can be straightforwardly achieved by exactly so]ving fi-
nite pieces (e.g, linear arrays of 3 or 4 spins) of the same
chain. This simplifying property s lost whenever the system
presents non-commutative quantum aspects. This effect has al-
ready been examined by Takano and Suzuki 1981, who have analyzed
(in detail, for high temperatures) the discrepancy existing
between the exact procedure (consideration of the entire array)
and the approximative one (decomposition into subarrays). In
the present Section we calculate, for all temperatures, an il-
lustrative and important example of this discrepancy, © namely
that corresponding to a linear array of 4 spins (see Fig. 2(9))
A11 3 bonds are assumed of the same type, and are associated
with (K,A).

(n) . . . A ‘. .
We note KS (KI’Al’Kz’Az""’Kn’An) and Ag (Kl’AIJi’AZ’“"
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Kn,An) the values K12 and Aiz (see Section II.4) correspond1ng
to a Tinear array of n bonds and (n+1) spins. In particular

(2) ) (2) . . . . _
KS (Kl’Al’Kz’Az) and A (Kl,Al,Kz,Az) are respectively iden
tical to Ks and AS calculated in Section I1.3 (Egs. (31.a) and
(31.b) provide explicit expressions for the ~particu1ar case
(/K]_’Al) = ('KZ’AZ) = (K,4)).

The exact calculation of the array of Fig. 2(g) provides
(through the general procedure indicated in Section H.4)K§$(K,
AsK,A3K,A), The approximate calculation ("by pieces") of the
same array provides Kiz)(ng)(K,A;K,AXAEZ)(K,A;KA);K,A). We

finally introduce the convenient ratio

(2) [ (2) : (2) . ) :
X _ Ko™ (K™ (Ko03K,0) 8 % (K, 05K,4)5K,4)

S : (44)
s k(P (K,8:K,85K,8)

which depends on (K,A). If A =1 (classical system),Ri -equals
1 for all values of K., If A # 1 (quantum system), Ri presents
oscillations as a function of K. The effect has been illustrated
for A € [[0,1] in Fig. 3. Note that, for high temperatures
(kg T/0 >> 1), RE n 1 for akl value s of A. Accordingly to these
results the approximative procedure is reliable for high tempe
ratures, but might be missleading at low temperatures. This is
precisely what is observed in the calculation, by Takano and
Suzuki 1981, of the internal energy associated with the quantum
linear chain.

Let us finally add that the analysis of the ratio Ré =
8B (kP (Kaask,),88P (K,85K,0)36,0) 7882 (K,83K,83K,4) shows
the same type of behaviour as the ratio RE. This is to say.,

for A = 1, Ré = 1 for all values of K, and for A # 1, Rg 0S-
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cillates as a function of K. In the limit of high temperatures,
Ré tends to unity for all values of A, thus exhibiting the com
mon tendency of most quantum systems to behave classically at

high temperatures.

I11.2 Dangling bonds

A subgraph (e.g., a bond) of a two-terminal graph issaid
to be dangting if it is connected to the terminals through a
single site (which might be internal or terminal). If the graph
was a wire-made one, and a voltage was applied between the
two terminal sites, the dangling subgraphs are those along
which no current circulates. For example, the graph of Fig.
2(e) can be seen as that of Fig. 2(h) with a dangling bond;
the same holds for the graph of Fig. 2(f). In  the ‘present
Section, we analyze the role played by dangling subgraphs. For
the sake of simplicity we assume all the bonds to be equal
and associated with (K,A).

If A =1 (classical system), then Aiz = 1 and Kiz is not
sensitive to dangling bonds (or subgraphs). This is no more
true if A # 1 (quantum system). We shall illustrate the situa
tion by comparing the graph of Fig, 2(h) (associated with
;5™ (koayafh ka2 K2 (k,056,0),08 (K,85K,8)])  with
that of Fig. 2(e) (associated with [kiéey(K,A),Aige)(K,A)])
and that of Fig. 2(f) (associated with Dq;f)UQA),AigD(K,Aﬂ).
kP (k,15K,1) = KIS (K, 1) = k1% (k,1) =k1$P (K,1) presents
a smooth monotonous (and relatively uninteresting) K-dependence.
In order to be free of such type of trivial dependence, let us in

troduce the following convenient ratios;
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() (g
. K K,A

R = 5 12 o) (i=e,f,h) (45)
KE2 (K, 15K, 1)

The results for typical values of A 6[0,1] are indicated in
Fig. 4. In the high temperature limit all three rCe)  p(E) 4ng
R(D tend (through 1/T corrections) to unity for -all :walues

of A, In the T - 0 limit we obtain the following results (for

A€[0,1]):

RC® 5 (3 -A[387-66+4) e(172,1] (46)
sesa-~/357-85+8)  €[0,1], if A>0 (47.3)
2(E)
1 - /3/2 , if A =0 (47.b)

REW > J(5 A[BAZ-T64+9) e[1/2,1] (48)

. . . . f
An interesting non uniform convergence is observed for R( )

in the 0 < A << 1 region: at T = 0, R(f) ~ (3/2)A, then at a
small but 4inite temperature (which tends to zero when A tends
to zero)rapidly grows up to about (1-v2/2), then very smoothly
grows from this value up to unity, when T keeps increasing
up to infinity,.

The fact that all three R‘®, R‘® and R™™ are smaller
than unity for finite temperatures, and monotonously dem&ase
for decreasing temperatures, shows (as intuitively expected)
that the quantum nature of the problem tends to make moredif-

ficult the transmission of thermal information between the

spins of the system (i.e., the two-hody correlation decreases).
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A similar discussion can be done for Aigi)(K,A)(i =e,f,h).
For A = 0 and A = 1, Aigi)(K,A) respectively equals 0 and 1
for i =e,f,h and all finite values of T. For 0< A< 1, the fol

lowing inequality is verified for all T > 0:
h
8388 (k,8) > 8189 (k,8) > a2 (K,0) (49)

At T = 0, all three values belong to the interval [0,1]. When
T increases, all three monotonously decrease, and smoothly
join together down.to a common asymptotic value which is a-

chieved in the T » « Tlimit. This asymptotic value is given by
a1$P > a2 - a) € [0,1] (i=e,f,h) (50)

The fact that decreasing temperature enhances Aigi) (the
problem becoming therefore closer to the Ising Timit A =1),
corresponds to the somehow intuitive’notion that the lower the
temperature is, the stronger the symmetry trends are (see also
Castellani et al 1982 for interesting considerations concer-

ning the fundamental state).

III. 3 Diamond array

Our last simple array will be the diamond-1ike (see Fig.
2(c)) commonly used in approximations of Migdal-Kadanoff type.
The exact calculation of the diamond array will be noted
L[kigc)(K,A),Aigc)(K,A)]. The approximate -calculation ("by
pieces") provides [?ng)(K,A{K,A),Aiz)(K,A;K,A)], where we
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have used Eqs. (2) and (3'). Let us introduce the convenient

ratios:
(2) .
g 2K (K,A,K,A) (51)
Rd = KV(C)(K A)
12 s ]
and
(2) .
gh o Be (KeBsKob) (52)
d

)
815 (K,A)

The K-dependences of R§ and Rg for typical values of AGEO,lj

are indicated in Fig. 5 (a,b). In the T »> « limit , bothRi and

A
d

the T - 0 1imit, they tend to the following values:

R tend (through 1/T? corrections) to unity, as expected. 1In

- 2 = -
RE > SV EL - D049 e [1,1,10 7 (53)

2(1 + A)

A +A) (6 -2 VBA®=16A%9 » :
o L 28)(6 - = e [1,4/3](54)

2A(5- ¥ 8A%-164+9)

For intermediate temperatures, both RE and Rg remain -roughly
in the same intervals as for T = 0, In other words, the proce-
dure "by pieces", strictly correct for classical systems (A =
1), is an excellent approximation for all temperatures and
all values of A€[0,1]. This fact justifies "a posteriori" the
use of this procedure, commonly adopted in Migdal-Kadanoff-
like RG treatments of quantum systems (Suzuki and Takano 1979,

Stinchcombe 1979 (b), 1981, Takano and Suzuki 1981, Tsallis:
et al 1984, and many others).
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IV BOND-DILUTED MODEL AND RG APPROACH

We shall now use the concepts and mathematical tools in-
troduced in previous sections to study the quenched bond-di-
luted Heisenberg ferromagnet in square lattice. (this problem
has already been studied, within a Migdal-Kadanoff renormali
zation group approach,in one; two and three dimensions by
Stinchcombe 1981). We consider the following random form of

Hamiltonian (1):

_ _ X X vy zZ .2
HP ~<i§j$Kij[(] a) (oo} + ofo}) + cioj-' (55)
with 0 < A < 1, and where Kij is a random variable which van-
ishes with probability (1-p), and takes the value K with prob
ability p (K > 0; 0< p< 1). This model is properly represented
by the following probability law:

P(K..,K

15oKg055) = (1 =p)8K, )8(K, (B, 1) +pS (K, - K)S (K B,y = KA)

(56)
where we have introduced, for future convenience, the random
variable A... The variable K,.A.. has been used (instead of

1] 13 1]

Aij alone) in order to avoid the indeterminancy of Aij when
Ki‘ vanishes (absent bond). In fact, it is the variable K. .A,.
L] ij ij
(and not Aij) which naturally appears in the Hamiltonian of
the system. The pure model (p =1) is the one treated by Caride
et al 1983 (a,b). Following along the same lines, we choose,
for constructing the RG recursive relations, the ;self-dual

c]uster appearing in Fig. 2(b). The corresponding probability
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Taw PH is given by

- _ .5 _ '(b) 1 (D) '(b)
P (Ky5sKyshyy) =P 8(Ky 5 =Ky 37 )8 (K 585 - Riz 7 hy15)
R UM H SALI RSV Ly
. '(,d) v (d) v(d)
+AS(K, ;- J8(K; 8y 5 - KD Al )]

+ 2p° (] -p)Z[}(Kij -Kige))d(Kiinj k1§ a1

» () Cr (D) ()
+ 26(K; o - kpp)E(K A - KIEP AT

_v'(® _ %g)l(@
+ (K5 KB )8k ALKy )

2 3 _pr( _pr(h) ()
+ 2p%(1 -p) 6(Kij Kis )S(Kiinj Kis A1, )

+ Epﬂl-p)2+8ﬁ(1-p)3+ﬂﬂl-pﬂ4%1-p)ﬂéﬂng(K
(57)

where (K (1),A'(1)) (i =b,c,d,e,f,g,h) respectively correspond
to the clusters appearing in Fig. 2, all the bonds-of which are assumed
equal and associated with (K,A). (K'(l) A'(l)) have been ana-
lytically calculated as explicit functions of (K,A); however
their expressions are too lengthly to be reproduced herein (we
recall nevertheless that the results corresponding to i=nh
are indicated in Eqgs. (31)). The Taw given in Eq. (57) clearly
is not anymore bhinary (in contrast with the original one given
by Eq. (56)). Following satisfactory previous attempts = for

the Ising and Potts models (Yeomans and Stinchcombe 1979, Levyet

)

LA
i3 1]
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al 1980, and many others), we shall approximate P by the bi-
nary law P'(associated with a renormalised single bond) given

by
)= (1 -p')5(Kij)8(Kiinj)

+pre(Ky, -K')S(K -K'A')  (58)

ij ij
where p', K' and A' are quantities to be determined as func
tions of p,K and A, For the first of these equations we adopt
the bond percolation one corresponding to the chosen self-dual

cluster, i.e. (Reynolds et al 1977)
p' =p° +5p*(1 ~p)+8p°(1 -p)® +2p*(1 -p)°? (59)

The other two equations can be obtained by matching first mo

menta of K., and K,.A.., or of any convenient functions of
1] 13 13

them, A particularly performant choice for the Ising model

(A = 1) has proven.ito be (Tsallis and dos Santos 1983 and re

ferences therein)

In(1 + tanhK..)
S(K..) SRR T
1] Zn 2

I

& [0,1] (60)

The matching we are looking for is going to be

<S(Kij)>P'= <S,(KiJ)>PH (6])

and
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S(K; ;8550750 = <5(Kg 8,02 P, (62)

hence
prS(K) =pos (K1) + bt (1 =) [s(K;§) + as (k4]

b+ 2p2(1-p)°S(K S ) = F(p.K,b) (63)

and
ps(k'at) =pss(k P a P ) vpr (1 -P)[S(K'(C)A'(C)) +as(k;{Dar (Y ):I
+ooo+2p2(1 -p)es(k S ariM) = 6 (p,K,a) (64)

Eqs. (59), (63) and (64)) provide explicit RG recursive .rela-
tions in the (p,K,A) space, the problem being thus formally
solved. The critical properties associated with the present

RG recurrence are described and analyzed in the next Section.

V. RESULTS

The numerical iteration of the explicit RG recurrence (from
Eqs. (59), (63) and (64)) provides the critical surface in the
(p,K,A) space, or equivalently in the (p,kBT/J,A) space: see
Fig. 6. The-most important fixed points are located at the
following positions: (i) two trivial (fully stable) fixed points
at (p,kBT/J, Ay = (1,0,1) and at (1,=,1), respectively cor-
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responding to the ferro-and paramagnetic phases; (ij) three
semi-stable critical fixed points, at (1,2.269...1) (pure
Ising), at (1,0,0) (pure Heisenberg)and at (1/2,0,1), (Ising
bond-percolation), the first of them being the attractor of
all T # 0 points of the critical surface (note that the pre-
sent RG recoversy for all these three fixed points, well known
exact numerical values); (iii) one fully unstable critical
fixed point at (1/2,0,0) (Héisenberg bond-percolation), this
location very probably being the exact one as well.

Let us now focuse the relevant critical exponents. We con
sider the Jacobian 3(p',1/K',A')/3(p,1/K,A) (calculated at
the four critical fixed points) and its eigenvalues, noted
Ao A

p- T
natural variable tanhK, instead of 1/K; see Stauffer 1975,

and Ap (for the Ising bond-percolation point we use the

Lubensky 1977 and Stinchcombe 1979 (b)). The corresponding cor

relation length critical exponents are given by
v o= znb/ﬁnkr (r = p,T,A) (65)

where b is the RG linear scale (in our case b =2), and where
only Ar satisfying Ar > 1 (unstable.directions) are to be
considered. It is also convenient to introduce also the cross

over exponents, through

o = v /Vg (s =p,a) (66)

The results are indicated in Table I. The numerical values

are, on the whole, quite satisfactory when compared to exact
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available results (in particular, they improve on
those obtained, within a Migdal-Kadanoff- like RG, by Stinchcombe
1979 (b), 1981).

We intend now to discuss the main asymptotic behaviours of
the critical surface in the (p,kBT/J,A) space. We start by
considering the fixed A cuts of the critical surface (see Fig.
6(b)). In the p ~ 1 1imit, we obtain

T (p=1,8) -T (p,2)
Tc(p=1’A) '\"A(A) (] "p) (67)

with A(A) shown in Fig. 7. We obtain A(1) ~ 1.3314, ~to ‘be
compared with theexact value 2/2/(1+/2)&n(1+/2) » 1,.3293 (Harris
1974), In the p+1/2 1imit, we obtain

e-B(A)J/kBTc(PsA) n C(A)(p -pc) (68)

with B(A) shown in Fig. 8, and C(A) practically .independent
from A, at Teast for A not too small, Tet us say 0.3<A<]
(for A below 0.3 numerical precision difficulties appear). We
obtain B(1) =2 (which is the exact result) and c(1) ~ 1.395,
to be compared with the exact value 2 £n2 ~ 1.386 (Domany 1978).

We shall now consider the fixed p cuts of the critical
surface (see Fig. 6(c)). In the A >~ 1 limit we obtdin

T (put=1) =T _(p,4) 2 |
T (P, A=1) v D(p)(1 -4) (69)

with D(p) shown in Fig. 9; D(1) ~ 0.295 reproduces the value
obtained by Caride et al 1983 (a,b). In the 4 -~ 0 Timit the

numerical precision difficulties become particularly hard.
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For p =1 we recover Caride et al 1983 (a,b) asymptotic law,

namely

J —E(p)J/kpT.(p,A)
T B-c v F(p)A (70)

with E(1) = 4 and F(1) ~ 4, For p decreasing “below 1, Eq.
(70) is roughly satisfied with E(p) smoothly decreasing and
F(p) increasing in such a way that E(p)F(p) ~ 16. However these
p < 1 results should be considered only as indicative trends
Within a Migdal-Kadanoff R G approach, Stinchcombe 1981 ob
tained for the pure case (p=1), the following asymptotical
behaviouirs: (a) in the A ~> 1 Timit, Eq. (69) with
D(1) 20.32;(b) in the A~0 Timit, exp(- U/kyTo) v A%, where an
0.21.

To make a final ~comment, let Us cut the critical
surface (see Fig. 6(a))by a plane which contains the straight
line p=A=1 and turns around it, and consider the. variable
L= [(1-48)2+(1 -p)zjl/z. We verify that the departure of
Tc(p,A) from Tc(1,1) is Linear in £ for all angular positions
excepting that corresponding to the p =1 plane, where the
dependence is quadratic in ﬁl(see Eq. (69)). The proportionality
factor associated with the Tlinearity (in £) just mentioned,
smoothly decreases from 1.33 Tc(1,1) (see Eq. (67)), in the

A =1 plane, down to zero, in the p=1 plane.
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VI CONCLUSION

We have fully developed and illustrated the method out-
lined by Caride et al 1983 (a,b) for exactly  treating
the thermal statistics of two-terminal graphs whose sitesare
occupied by s =1/2 spins, and whose bonds represent aniso-
tropic Heisenberg interactions admitting at least one axis
of rotational symmetry in spin space (the Ising, XY and iso
tropic Heisenberg interactions satisfy this requirement). As
a matter of fact, the procedure can be straightforwardly ex-
tended to cover the general Heisenberg interaction (Jx:#dy #
Jz) or even more complex ones, as well as s > 1/2 systems.
This method can in principle easily be adapted to treat a
quite Targe class of quantum systems, including fermionic ones.
We are presently working along these lines.

At the graph level several interesting quantum effects
have been exhibited and analyzed. In particular, the non triv
ial consequences (on the thermal statistics) of dangling bonds
have been discussed. Depending on their location in the graph,
and on temperature, they can increase or decrease (the more
intensively the more quantic the system is) the corretation
between spins; their importance gradually disappears for in-
creasing temperatures. We have also compared the exact solu-
tion of typical graphs with that approximate obtained by
solving the graph "by pieces” (i.e., conveniently inserting
the results associated with subgraphs in order to achieve a
solution for the entire graph). In particular, the discussion

of the standard diamond graph, commonly used in Migdal-Kadanoff-1ike
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renormalisation groups, provides an."a posteriori" justifica-
tion of some approximate procedures (i.e., solution "by pieces")
which are frequently found in the literature.

The exact procedures developed here for two-terminal -graphs,
provide the mathematical tool for constructing renormalisa-
tion groups approaching Bravais lattices through hierarchi-
cal ones. Were it not for the non-commutation present in
quantum systems, the treatment would be the exact solution
of the hierarchical lattice under cdnsideration, It is be-
lTieved however (see also Suzuki and Takano 1979 and Takano and
Suzuki 1981) that the solution thus achieved is, by means of
certain compensations, an excellent approximation even if the
nature of the problem is not classical.

We use the framework deve]oped‘here, to study the criti-
cality associated with the quenched .bond-diluted quantum
spin 1/2 anisotropic Heisenberg ferromagnet in square lat-
tice, for anisotropy A varying from A = O (isotropic Heisenberg
model) to A = 1 (Ising model). The cluster we use is the
self-dual Wheatstone-bridge one, which has been shown to be
particularly performant for the square lattice. The para-fer
romagnetic critical surface we obtain recovers (precisely
or -almost) all the already known exact results. Furthermore,
the asymptotic behaviours corresponding to A -+0 (almost iso-
tropic), A > 1 (almost Ising), p » 1 (almost pure)and p +1/2
(just percolating) have been (either precisely or roughly)
established for arbitrary values of (p,A). Finally the vari-
ous thermal (vT), perco]atimw(vp) and anisotropy (vA) correla

tion Tength critical exponents we obtain :satisfactorily agree
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with the exact whenever available

With respect to universality classes, the common expecta-
tions (i.e., pure Ising for T > 0, ¥Yp, YA, pure Heisenberg for
T=0, A=0and 1/2 < p< 1, Ising percolation for T =0, p=1/2
and 0 < A< 1, and Heisenberg percolation for T=0, p=1/2and

A =0) are verified.

We acknowledge L.R., da Silva, U.M.S. Costa, G. Schwachheim,
S.I. Zanette, R.M.Z.dos Santos and R.R. dos Santos for veryuseful

remarks. Partial support has been received from CAPES (Brazil).
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CAPTIONS FOR TABLE AND FIGURES

Table 1:

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5 :

Present RG critical points and exponents as compared
with Migdal-Kadanoff-like and exact results (whenever- a-

vailable).

: Two-terminal graphs used for renormalisationpurposes.

o (e) denotes terminal (internal) nodes:(a). parallel
array; (b) series array.

(a) and (b): self-dual two-terminal graphs on which
the present RG is constructed. (c)-(h): all the non
equivalent percolating sub-graphs of graph (b){generated

by bond-dilution).

: Thermal behaviour of Ri(Eq.(44)), for selected values

of the anisotropy parameter A, The oscillations around

the classical value R§-= 1 are more pronounced for
0.3 ¢ Ag 0.6,

Thermal dependences of the ratiossée)(dashed),R&%dot-
dashed) and‘ﬁhkfull) defined ‘in Eq. (45), for typical
values of A.RY= 1 (i=e,f,h) is the classical Timit

(A =1).

Thermal = dependences of the rations RE (a) and
Ré\ (b) respectively defined by Eqs. (51) and (52)

for typical values of A. We note that the Migdal-
Kadanoff- approach overestimates the coupling constant
K and the anisotropy parameter A, In the less

favourable region (low temperatures), the errors are

K

less than 10% for Rg and 45% for RS; Rd =

A _
Rd =1 are
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the classical (‘A=1) Timits.

Fig. 6 :(a) The ferromagnetic critical frontier (full 1line) in

Fig.

Fig.

Fig.

the (A,kBT/J,1-p) space; the most important fixedpoints
and flux lines are indicated (o,e and ® respectively de-
note the fully unstable, semi-stable and fully stable
fixed points); all T > 0 critical points flow towards
the pure Ising fixed point (I).(b) Fixed A cuts of thecrit
ical frontier for selected values of A;the p+1(p»—pc=0.5
asymptotical behaviour of the cuts is given by Eq.(67)
(Eq. (68)).(c) Fixed p cuts of the critical frontier for
typical values of p, TheA »1 (A~>0) asymptotical be-
haviour is given by Eq. (69) (Eq. (70)).
A-dependence of the coefficient A(A) (defined through Eq. (67)).
A(1) ~» 1.33 and A(0) ~ 3 ,
A-dependence of the coefficient B(A) (defined throughEq.{68)) .
The dashed Tine is indicative (for A g 0.3 numerical
difficulties appear).

p-dependence of the asymptotical coefficient D(P)(de

‘fined through Eq. (69)). D(1) ~ 0.295 and D(0.5) ~ 0.65.



Ising (A =1)

Heisenberg (A =0) <

N7

CBPF-NF-065/84

-37-
TABLE 1
. Exact |Migdal-Kadanoff | Present
ure 181 leaed | 16407 2.269. ..
Vp 1(3 1.34(» 1.15
P 0.5(% 0.62(% 0.5
percolation
(T = 0) “p 1.3300.0 1,64 1.43
0,5V, Vp| (O 1(® 1
d /
IR NG (2 0
pure v
(p =1) A 1 - - 1.22
vy (& () .
Pe 0.5¢4 0.62(» 0.5
v (5) (2)
percolation{--2 1.33.7. 1.64 1.43
(T =0) VA - 0.71¢(% 0.69
o=V Vp | 1.13(? 1.81
a7V V| 0.49¢? 0.87

) Kramers and Wannier 1941
) Stinchcombe 1979 (b)

) Wu 1966

) Sykes and Essam

) Wallace and Young

1963, 1964

1978

) Mermin and Wagner 1966

1975

(1

(2

(3

(4

(5) den Nijs 1979
(6

(7

(8) Polyakov

(9

) Stinchcombe 1981
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FIG. 6 -q
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FIG. 6-b
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FIG.6-¢
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FIG. 8



CBPF-NF-065 /84

1.0 -

0.5

-48-

FIG.9

0.5

(I-p) ~





