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ABSTRACT

We study the phase diagram and universality classes of
the quenched bond—diluted spin 1/2 Iéing-ferromagnet in a semi-
infinite simple cubic lattice with a (0;0;1) free surface.  The
approach (herein formulated for arbitrary values of the number of
states q of the Potts model) is a real sﬁace renormalization group
which preserves two-spin correlation functions and uses clusters
which have already proved to be very appropriate for the present
structure. We observe that surface ferromagnetism persists below
the d=2 percolation threshold pzn=1/2, in fact down to P, =0.42. In
addition to that we check that a conjectural extension of the Kas
teleyn and Fortuin theorem is satisfied in the present particular

case.

Key-words: Surface magnetism; Bond-dilutidn; Phase diagram; Semi-in
finite cubic lattice.
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1 . INTRODUCTION

Surface magnetism is nowadays an expanding subject of
research which presents both theoretical and experimental rich-
ness, besides various applications such as catalysis and corroQ
sion. For details, the reader is referred to various recent re-
views: that of Binder[ll.for a general introduction, that of Diehl
(2] for reciprocal Space-renormaliZation gronp treatments and
that of Tsallis[ll for real space ones. Several studies are avai
lable for non-random systems (pure Iéing, q-§tate Potts, éniso—
tropic Heisenberg models) but very few have been devoted to ran-

dom onesr[4'6]

none of them with purposes of numerical accuracy.
Here we focus the criticality associated with the quen

_ched bond-diluted spin 1/2 Ising ferromagnet in a semi-infinite
simple cubic lattice with a (0,0,1) free surface. The coupling
constant-;nd bond concentration are assumed to be respectively
_JS and P, on the -surface, and JB and'ps_everywhere else. The pha
se.diagrdm (in the space (k T/Ja, J /JB’pB’ Pyl for instance) of
this system is still unknown within a reasonable degree of accu-

" racy. The main purpose of the present work 1; to perform such a
study, as well as to establ;sh the corresponding  universality.
classes. Special emphasis will be given to tne role played by di
lution (Ofps, Pg<1). To;do this study we construct a real space
renormalization group (RG) which preserves two-spin correlation
functions and uses sophisticated clusters which have already pro
[7]

ved to be quite efficient for both infinite and semi-infini-
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te (81 simple cubic lattices.

The RG formalism will be established .for " the gq-state
Potts model for arbitrary q. For simplicity we shall proceed as
follows. Dilution will be assumed onily on the free surface (i.e.,
pp=1 and Oépsﬁl)h The value q=2 will give to us the pgp=1 section
of the phase diagram we are looking for. The value q=1 will give
to us (through tﬁe Kasteleyn and Fortuhltheorem[Q]Jthe T=0 sec-
tion (bond percolatlon diagram in the full (pB,pS)SpaGe]Of the pha
se. diagram of the q=2 system under analys:Ls

In addition to-what has-been said up to now, the pre-
sent work 111ustrates a conjectural extension by Tsa1115[10] of
the Kasteleyn and Fortuin theorem. Indeed bond percolation in an
arbitrary finite_or infinite system 1is expeéted to be isomorphic
not only with the pure version of the q+1 Potts ferromagnet, but
also with any quenched bond-random version of it, thq probgpility
law P(Jij) being an arbitrary one with ferromégnetic coupling
constants (i.é.,'P(J ) =0 if J <0)

In Section 2 we present the model and formalism; .in Sec

tion 3 we present the results and discuss the q+1 limit; we fi-

nally conclude in Section 4.

2 . MODEL AND FORMALISM

We consider the following Potts Hamiltonian
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H=-q £ J,. 8 (ci=1,2,...,q,Vi) (1)

where the sum runs over all pairs of nearest-neighbouring sites
on a semi-infinite simple cubic lattice with a (0,0,1) free sur-
face. When both i and j sites belong to the free surface, Jij is

given by the following probability law:

P(d;:) = (1-p)8(d ) + P8Iy -d) (2)

~with 0<p <1 and Jsao; Otherwise, the following law holds:

with 0£p <1 and.Jnao.
Let us _iptroduce the following convenient variable

(thermal transmissivity ; Ref.[11] and references therein):

I-exp(-qJ/kBT)
t = e [0,1] (4)

1+(q-1)exp(-qJ/kBT)
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which defines'tS and‘tB from Jg and Ja respectively. Egs.(2)and

{(3) can be rewritten as follows:

P (t) = (1-pg)8(t) + pgélt-ty) (5)
and

P.(t) = (1-py)s(t) + Pys(t-ty) (6)

To construct fhe RG we 3hail use the clusters of Figs.1(a) and 1
(b} (noted Gn:and Gsl for the bulk and surface respectively: with
each continuous (dashed) bond we associate PB(t) (Ps(t)). We shall

note P. (t) (P. (t)) the distribution associated with G (E ).
: GB GS B S

(t) "and PE-(i) do not préserve, through successive renormali-
B 5

zations, the simple binary form of Egs.(5) and (6). One possible

(t¥ and

Pe

way out is to numerically follow the-RG evelution of PG
: B

PG (t) until] they achieve invariant forms:-this type of apﬁroach
s _

has been followed, for different systems, by Stinchcombe and Wat

son[12] and oihérs. Another way out, much ;impler and néveqﬂnﬂgss

very precise if convenient averages are chosen, consists in res-

pectively approximating P . (t) and P, (t) by the following binary
B s _ !
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5
distributions
ngt) = (1-pplé(t) + ppé(t-ty) (7}
and
Pé(t) = (1=pg)8(t) + pgét-ty) (83

where té, té, pé and pé are to be found as functions of tas tgs p;

and Pg: To perform this we impose

<t>..r = <t> (9)
P P
B - GB

<t2>P; =-<tg>PG (103

B

<t>Pl = <t>P _ (11)
8 Gs

<t?>.1 = <t2> (12)
PS PG
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which formally closes the RG procedure. In practice however PG
B

contains almost 2%°23x10%° delta's:! (and P, contains almost
s

222 delta's). To make the problem more tractable we shall proceed
as follows. We consider the particular case pB=1, hence Eqs. (9)

and (10) become one and the same equation, namely

t! =fq(tB) (13)

where f (t ) is a ratio of polynomials and can be calculated by

using the Break-collapse method[11]. For example,the particular
P

case q=2 {Ising model) y1e1d5[7]

3 5 7 3 o+l 13
fzftg) SZ?tB + 218ty + 1410t5 + 7153ty + 28640t +84805t

+ 183265t1° + 273834t17 + 263475E1° 4 15Tb28t;1

+

46924t2% + 7221t2° »+ 546827 4 20t2° 4 31}/

. 8 ‘1 X 2
(1 + 8t2 & 64ty + 599ty + 3342ty + 14907t2° + 50759ty
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14 16 1e 20
+ 130256tB- + 2361651:B + 284318tB + 214054t

+ 91983t2% 4 19772t5" & 2255¢0° + 131¢2° o 2t,)  (14)

Also equations (11) and (12) become much simpler for pB=1'because

PGs[t) contains, in this case, slightly less than 2°=512 &eltd's,

and is therefore easily tractable in computer. Eqs.(11) and -(12)

can be rewritten as follows:

'pété = <t>y, = F(tB,tS, ps) ' 15)

G

s
pé(té)z = <t2>P = G(ty,tg,Pg) (16)

Gg
hence
. 2

Py = (17

and
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G(tg,tg,Pg)
te = — (18)
Summarizing, Eqs.{(13)}, (17) and (18) give the RG recurren

ce in the (tB,ts,ps)-spéce. Therefore the criticality corresponding
to the pB=1 particular case of the Ising ferromagnet (q=2) can be
considered as a tractable problem. The other particular case (name
ly the T=0 limit of the Ising ferromagnet) we are interested in can
be solved (through the Kasteleyh and Fortuin theorem) by considering

the ﬁB=1 partiular case of the q»1 model.

3  RESULTS AND THE q+1 LIMIT

The RG flow diagram associated with the Pg=1 q=2  modet
is indicated in Fig.2. Three phases are observed characterized by
trivial (fully_stableJ fixed points, naﬁély the pa?amagnetié (PM;
(ps,tB,ts) = (0,0,0)), bulk ferromagnetic_(BF; (pS:tB,tS) =(1J,1))
and surface ferromagnetic (SF; (ps,tB,tS) = {1,0,1)) phases. The
PM-BF, SF-BF and SF-PM critical surfaces correspond to the so called
[13]

ordinary, -extraordinary and surface phase transitions; the

PM-BF-SF c¢ritical line corresponds to the special transition.

¥

With gespect to the universality classes, Fig.2 shows
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that:

(i) The pure model (ps=1) presents the well known four universa-
lity classes (characterized by four semi-stable fixed points),
namely the d=3 and d=2 standard Ising phase transitions, and
the behaviour of the surface quantities on the ordinary and

on the special phase transitions;

(ii) Surface dilution is irrelevant at any finite temperature, the
universality classes of the surface, ordinary, extraordinary

and special transitions being those of the pure Ising system;

(iii) At T=0 the universality class of the surface qugntiﬁies is
that of the d=2 percolation, eiéepting for a very special
‘point (T=0 special phase transition, characterized by a fully
unstable fixed point) which by.itself constitutes a new uni-

veFsality class,

We present, in Fig.3, sections of the critical surface
of Fig.2 for typical values of Pg. Wé observe that surface ferro-
magnetism persists below the d=2 percolatiop threshold pzn=1/2 R
in fact _down to pc:0.42. This constitutes a nice illustration of
bulk-assisted surface percolation. Finally, in Fig.4, the same ty
pe of sections of the critical surface are indicated in the (T,J /
J,) space. The effect of the dilutien on the locatiom (vilue - of
JBIJB) of the special phase transition is indicated in Fig.S5.

Let us now turn our attention onto the q>1 iimit. Sec-
.tions, for typical values of-ps, of éhe q=1 pB=1 critical surface
are presented in Fig.6. Let us consider its ps=1 cufve. According

!
to the Kastelgyn and Fortuin theorem, it might be interpreted as
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follows: the abcissa te and ordinate tg are respectively changed

into p, and pg, and the curve thus'represents the T=0 phase dia-
gram (bond percolation diagram) of the q=2 system (in facqbftﬁe
system for arbitrary value of q) where both surface and bulk are
assumed diluted. As before, the various universality classes are
‘indicated by the RG flow on the critical lines.

Let us now focus the p <1 curves of Fig.6: they provide

an illustration of the conjectural extension of the Kasteleyn and

£10]

Fortuin theorem proposed by Tsallis . Assume an arbitrary fi-

nite or infinite graph, the bond between the i-th and j-th sites

of it répresenting a random ferromagnetic (J .>0) q -state Potts

ij

interaction with probability law P, (JlJ) or more convenlently

Pij(tij)’ tij being the corresponding thermal transmissivity. We

then calculate, for each bond of the graph,<tij>Pij j;FIIJtLRHJ(t -3
and then take the g»1 limit of all these quantities. The above
mentionned conjecture states that the system thus obtained is
fully isomorphic'with the bond percolatioh system through the va

riable transformation lim <t. “> Py 50 P; i being the occupancy
q+1 ij

probability of the (ij) bond. The standard Kasteleyn and Fortuin

ij P

. . 0
theorem is recovered as the partlcular_case Pij(tij)=6(tij-tij),
¥(i,j). If we are dealing with an infinite system (Bravais latti
ce, hierarchical lattice or any other) which, in the q+1 limit,

presents a phase diagram represented by the equation ({1:1_m<tJ P D=0,
q>1 1j
Tsallis conjecture implies that then and only then the same sys-

tem presents a bond percolation phase diégram represented by the
equation H)({pis})=0. In other words, if we represent a q=1 criti
cal frontier in the\{tij} variables, it does not depend on {Pij}‘
For example, Eqs. (5) and (6) imply that, if represented in the

{pgtg,pPyty) variables, the q=1 critical lines would be the same
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11.
for all'(ps,pn), hence the same as that associated with_p3=ps=1.
This last statement can be checked on Fig. 6., Indeed, the ps<1

curves of that figure satisfy the following (numerical) facts:

(1) all curves with 1>ps>0.5 can be transformed into the ﬁs=1
curve through the ordinate transformation p.t. (f °Pg) -t s(tg: )
(e.g., if we multtply by 0.6 the ordinates of the critical
line associated with Pg=0.6 we precisely obtain the ~ordi-
nates of the critical line associated with ps=1, the abcis

sas being the same);

(ii) all curves with 0, Sajps> P 0.42 can be transformed .into

)~ (T

the pS-l curve through the transformation (t B

8'Ps

t.(t ;ps=1)) where t is, for a glven Pgs the value of t

s B
associated with the peoint at to=1 (e. g.,fbr'ps 0.47, t =0.17,

B

and we verify that the point (tB, S) =(0.17,0.47) belongs

to the p, =1 critical line).

4 CONCLUSION

We have focused the criticality of the guenched bond-di-
luted spin 1/2 Ising ferromagnet,ﬁ&gsemi-infiuite simple cuhic
lattice with a (0,0,1) free surfacé. To do this we have develoﬁed
a RG formalism for the q-stdte Potts model for arbitrary q, and ha
ve obtained the phase diagrams (and discussed the corresponding
universality classes) for g=2 and g=71. Within this framework, the
semi-infinite Bravais lattice has been approached by a suitable hi
erarchical lattice (see Fig.1). The d=2 results we obtain for this

hierarchical lattice are exact in the pure (non diluted) case, and
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almost exact -for the diluted case.-All the phase transitions -in
the hierarchical lattice are of the second-order type for all g;
this is in contrast with‘ the results known for Br;vais_ lat-
| tices, where first-order phase | transitions are expected for
9>q, (qc=4 for.;?}ictly d=2 systems, and q_= 3 for d=3 ones).

In Fig.4 we present the evolution of the phase diagram
as a function of (surface) dilution: it exhibits an interesting
and general scheme for bond percolation (and phase transitions of
random ferromagnets) in semi-infinite systems. As presented in
Fig.4, the results are believed to be exact within an error not
larger than 1% cverywhefe. In particular, we estimate in p.=0.42
+0.01 the bond ?ercolation threshold in bulk-assisted surface per
colation in: the present case (i.e., P, jumps from 1/2 to 0.42 if any
non vénishing Potts.coupling constant is assumed bétween thefree -
surface and the bulk).

In addition to the above results, the present formalism
has enabled, in the'q+1 limit, an i_llustrat‘iori_ of the Tsallis conjectural
extension[103 of the Kasteleyn and Fortuin theorem.

We are deeply indebted to Prof. G.Schwachheim for fruit
ful computational assistance; interesting remarks from A.C.N. de

Magalhaes are aéknowledged as well.
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CAPTION FOR FIGURES

Fig.1 -

Fig.2 -

Fig.3 -

Fig.4 -

Bulk (a) and surface (b) two-rooted graphs. The arrows 1in-
dicated the "entrances" (one of the roots) and the "exits"
(the other root) of the graph. Continuous (dashed) 1lines
indicate . bulk (surface) interactions. Within the present
RG the bulk (surface) graph is renormalized into.,a bulk
(surface) single bond. Infinite iteration of this procedu-

re generates an hierarchical lattice.

RG flok of the surface diluted (pnal)ulsing modelu m ., o
and O respectively denote trivial (fully stable), critical
(semi-stable) and multicritical ffully unstable) fixed
points. P, BF and SF respectively denote the paramagnefic,

bulk ferromagnetic and surface ferromagnetic phases.

Sections of the critical surface of Fig.2 for typical va-

lues of Pg-

The same results of Fig.3 represented in the (T/TiD,JS/JgB,.(pSﬂ))

3p

. and J:B respectively are the critical tem

space,_where T
perature of the d=3 pure mode1(p3=1)and the location of the
special transition of the semi-infinite pure model(pB=pS=‘l).
The exact results p-l=1/201*] ana x,1?P/5 -2.269... t15)

are reproduced herein. For (JB/kBTiD) and (J:B/JB)p ap o=
> B 5§

we obtain 0.1949 (to be compared with the series result
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0.2181[16] and 1.762 (to be compared with the series
1.610.1[17], Monte Carlo 1.510.03[18] and extrapolated

RG 1,569[191 results).

Fig.5 - Evolution of (JiB/J with pg ; p,=0.42.

Fig.6 - Same as Fig.3 (q=1 model instead of q=2). See the text

for transforming the ps<1 information into the ps=1 one.






can-NF-064/87

16
/.
/
/
/
/
/
/
/
/
fl
// /";R
/" p
/ e
/ / ts
/ / //
a ¥
te

FIG. |



17

CBPF-NF-064/87

FIG.2



CBPF-NF-064/87

18

= '0.44
0.47
0.49
0.5

0.53

0.6

0.7

0.8

0.8

0.2 0.4 06

FIG. 3

0.8



CBPF-NF-064/87

19

v '91d
9} zk 8
T T T

0
| @

6v'0

g0 §50

|
00! wr /% 0% o 90




CBPF-NF-064/87

20

FIG 5
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