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Abstract

Using dimensional regularization, the one-loop approxima-
tion for the effective potential (finite temperature) is com-
puted as an analytic function of the number of dimensions.
It is shown that a simple relation exists between potentials .
for different dimensions. This relation reduces to a simple
derivative when these numbers differ by two units. The limit of
zero temperature is calculated and also the finite  tempera-

ture corrections are given.
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By using dimensional regularization we express the one-loop
contribution to the effective potential]:lj, as an analytic
function c¢f the dimension v.

We will then be able to find some of its general properties
and also interesting relations between different dimensions.
In what follows we will consider a A¢* theory.

The one loop approximation in v spacial dimensions  for
finite temperature T = 6—1(B==period in time of the field) 'is

given byl—zjz

U (BY) = L fm J 4% Ln[p? + 41?n?T? + 37 (1)
) B nk-w S P v

For each n we have ([ 3] p. 563)

v
gV v
Inf=jdvp en(p? +a2) = 20 f dp p"7 n(p® + 1) == o T(-3) (2)
Itz 5
Using (2) we can write (1) as:
U (B,¢) = - re -\Zi) Z (47%n°T? +1p2)¥ (3)
v un e o

~which by term by term derivation is easily seen to obbey

= - =U, _,=-— (4)

We will now write UV(B,¢) in a way more suitable for ac-

tual calculations. We shall use (Ref. |/ 3] p. 713)
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*J (AX)
H dx (5)
™
e -1

1

1
§ (1121T2+A2)-u—E - 1 J
(2071 (u+3)

Using (5) in (3) we get, after separation of the

term:
F(-'\Z)') 1=V 1+V © V+1
_ v 27 Yy 2 X ? BYXx -
U, = vovo -2 (g) J mX_; v+l (=) dx (6)
(4m) %8 2
From here, it is easy to prove eq. (4), by using a Bessel
function recurrence relation. (Ref. [[3] form Z.p. 968).
Now we use the integral representation (Ref. [3] p. 953
form 9)
[ee] u—i
2 , .
J—u(XU) = (%L)a ——l;T— ;L J (t? - u?) Adn Y t at (7)
B T(e+3) v
2 0
in eq. (6). Integrating first over the X-variable and wusing

(Ref. |_2] p. 494 form. 12)

J §55¥¥L§JL = % cotgh t - %% (8)
e -1
eq. (6) takes the form:
o v
r(-3) B
U, =_____%~ v2 - 3 j de(t? - u?)*’ (coight—%)w)
(4m) TR ' VITT (1+3)
withu = Eb
1 .
is seen to com-

The integral involving the last term t

pensate exactly the term in ¢° (Ref. [ 3] p. 295,form. 3)
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-3
We are then left with:
@ v
U, (B,¥) = - 2 J dt(t? - u?) cotght (10)
v 14V —}_)— v _BY
B I r(1+7) U—T

Eq. (10) can be written in a more compact form by using

Liouville's concept of "fractional derivative” [ 4]

4
2 -
0,89y = —L—0 4 [cthy] (11)
gV net™T (@) "
(U=T)
Or also
A
2
- 1 d
U\) ) vV ir > -2 UO’
B (me™")* (du®) 2
1 -
v o=+ _d Cth“];u =L on sn %ﬂ (12)
0 (duz)—l u o B

Equivalently, we may take derivatives with respect to UL

obtaining again

du

v oL
dwz - 4m U\)-Z (13)
Or, more generally:
o
& y =L g (14)

(duz)a Vv (4ﬁ)a V= 20,

Going back to eq. (10), we note that it 1is easy to com-
pute the limit B - « (zero temperature), as only t > By con-

2
tribute to the integral. So that we can take cotht =1
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-
use formula 3, p. 295, of Reference [ 3]:
—_— _2; V+1 _ v+l
U, 35w (2 ﬂ) r¢-—=) (15)

It is obvious that (15) satisfies (13).

When the number of dimension (n=v+1) is even, there is
a pole in the I'-function of (15). We then use the well known
procedure to take the finite part of an analytic function at

a pole v; i.e.:

PEE(V) | _ = 4 [v-D)£W]| (16)
V=Y V=V
The finite part of (15) is defined by (16) plus a term
proportional to the residue which is taken care of by the
renormalization procedure.

With (16) we get, for n even:
| n
Uv«ﬁﬁin vien (n even) (17)

For n=0, in particular, v goes to -1l. It is amusing that
this result corresponds, according to form (1), to a space of

dimension -1.

Back to (10). We can use
coth x =1+ 2 [ e PX

and remembering that: Ref. [ 3] p. 322 for 6.

\%

J Lﬁi:&il_ e PX gx = (%%) Kv+1'(pp) (18)

1
F(b—%) 7z 5
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-5=
We get finally
_vtl v+l ‘
4r 2 S By, By poLv+l_ ., v+l
U =-———— 1 () K, &) - (= NG )
v 61+v p=1 P v+l 72 /T 2 (19)

2

(remember (17) when (v+1) is even)

0]

We want to point out that a similar relation to (4) exists

(19) can also be looked wupon as a low temperature expansion

also for the Green function Av(uz) of the Klein Gordon .equa-

tion; i.e:

d
dp?

B, (13x) = 128 (u%) (20)

As can be verified by direct calculation. (See [ 4] p. 362).
The expression (10) can be used for the calculation of the

transition temperature as a function of the number of dimen-

sions; i.e. the value of B at which the relative minimum disap

pearsLS].
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