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Abstract

The magnetism of rare earth intermetallic compounds is invesiigated with a model hamil-
tonian containing crystal field and exchange terms. An algebraic analysis of the charac-
teristic polynomial associated to the model is made and it is shown that, for Prt3(J = 4)
and Nd**(J = 9/2), in the case of cubic symmetry, the ninth and tenth degree polynomi-
als are decomposed into simple factors. From these factors, analytical expressions for the
crystal field eigenvalues, the magnetic moments and the critical temperatures are derived.
The results are applied to PrAl; and NdAly; exchange parameters and effective g factors
are easily obtained from crystal field, T¢, and low temperature magnetic moments data.
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In order to analyze the magnetic properties of rare earth intermetallic compounds one
usually starts with a model hamiltonian in which a crystal field term describes the elec-
trostatic interaction of the 4f electrons of the rare earth ions with the neighbor charges,
and an exchange term accounts for the inter-ionic spin interaction. Both terms contain
adjustable parameters, which must be determined using inelastic neutron scattering data
and magnetic data [1]. The computation of magnetic quantities from the model hamilto-
nian is usually done entirely with numerical methods, even for cubic symmetrical crystal
fields and in the molecular field approximation. This, not only complicates the best fitting
process, but also makes less visible the role of the model parameters in determining the
magnetic behavior of different compounds.

In this paper we show results of a computer algebra approach to determine eigenvalues
and magnetic moments associated to the magnetic model hamiltonian. In particular, we
make an analysis of the magnetic behavior of the ground state and obtain an analytic
expression for the critical temperature. These results are applied to the intermetallic
compounds PrAl; and NdAl,, which crystallize in the cubic Laves phase structure (C15).
Using crystal field parameters, Curie temperatures and low temperature magnetic mo-
ments obtained from the literature, we calculate the exchange parameter and the effective
Landé factor for these compounds.

" The starting point is to obtain explicitly the characteristic polynomial associated to
the model hamiltonian #

det [< J,n|H ~Smny | Sym > = 0 (1)

where the hamiltonian has two parts:

H - Hc H + Hmag . (2)
For cubic symmetry, the crystal field hamiltonian can be written
H.y = By0] +50%) + Be|Og — 2103) (3)

where B, and Bg are crystal field parameters and the OF, are Stevens’ operators, which are
listed in the literature {2]; | J,m > are the eigenstates of J;, for a given angular momentum
J. Equation (3) is only valid in a coordinate system (z, y, 2) which coincides with three of
the fourfold symmetry axes of the crystal; the z axis is taken as the quantized direction.
In other coordinate systems the form of H,; is less simple [3].

In the molecular field approximation

Hmag = —gpph.d (4)
where } is the total magnetic field:
gush = gusho+dolg—1)* < J> (5)

In (5), ¢ is the Landé factor, ug the Bohr magneton, Ao the exchange parameter and ko

is the applied field; < J > is the thermal average of the angular momentum operator J.
In order to compute the magnetic moments in the z direction, fi = (1,0,0), let us

rewrite eq.(4) as Humay = —gunhJz. The magnetic moments are then obtained as

S Py dy; dy;
gup <i|JA|i>= Ty = -—g,ugaz (6)
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where y; are the roots of the polynomial in y generated by equation (1}, & = guph and
h = k.7 is the molecular field acting on the 4f electrons along the direction 7 (a unitary
vector) (see equation 5). The reason for choosing the spontaneous magnetization in the
z direction is that it is the experimentally observed easy magnetic direction{4]. Of course
due to the cubic symmetry of the crystal field hamiltonian ( €q.(3) ), directions z,y and
z, in our model, are magnetically equivalent. Actually, according to Boucherle et al. [5],
at low temperature, below the Curie point, most of the RAl; ( R = rare-earth ) exhibit
a small distortion in the unit cell. This may explain why experimentally the directions
(1,0,0), (0,1,0) and {0,0,1) are not magnetically equivalent. For the cases of Pri3(J = 4)
and Nd*3(J = 9/2), equation (1) was dealt with through computer algebra, yielding a
ninth and a tenth degree polynomial, respectively. This was done using REDUCE, a well
known algebraic program. REDUCE also allowed the factorization of these polynomials
into smaller factors. In the case of Pr*3 we obtained four factors: one of the third degree,
and three of the second degree; for Nd** we also have four factors: two of third degree
and two of second degree. They are listed in the Appendix.

These polynomials contain all the relevant magnetic information; let. P(y, By, Bs, a)
be one of the above mentioned factors, whose roots y; are the energy eigenvalues.

We have
P(y, By, Bs, a) = 0 - . (7)
oP {dy apP _ -
5 (E) tz- =0 (8)

From equations 7 and 8, we can obtain the ground state magnetic moment for each value
of the exchange parameter. For the case of Prt?, the ground state is given by the lowest
root of the third degree polynomial; for Nd*3, the third degree polynomial with the
plus sign contains the ground state. The results are shown in Figure 1 using the crystal
field parameters of PrAl; and NdAl; {1]; both curves show magnetic moment reduction,
relative to the free ion value. For the PrAl; curve, if A\/W < 0.43, there is no spontaneous
magnetic order, although the magnetic moment of PrAly(J = 4) saturates much earlier
than that of NdAly(J = 9/2). The initial value of the magnetic moment in the NdAl,
curve is (11/6)gpp.

It is worth mentioning that for @ = 0, the roots of the factor polynomials, i.e., the
crystal field eigenvalues, are analytically expressed in terms of By and Bs; they are pre-
sented in the Appendix. As far as we know, it is the first time these expressions have
appeared in print; a particular solution for Bs = 0 was given by Penney and Schlapp (2].
In fact, we have found that computer algebra can give analytical resuits for the crystal
field eigenvalues of all rare earth ions [6]. Crystal field eigenvalues are usually obtained
numerically and displayed in tables or in graphical form, as in Lea, Leask and Wolf [7].
These plots are used in the determination of crystal field parameters for intermetallic
compounds, using inelastic neutron scattering data [8].

We will show how the factorized polynomials and their first and second derivatives
can be used to obtain the energy eigenvalues of the model up to o?,

v = g0+ (lim Eﬁy—') o+ L (]im ﬂ) o? (9)

a—0 dov 2 \a—0 da?
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In order to obtain the coefficients of & and a? in (9), we take the limit o — 0 of
equations (7), (8) and (10)

&y P i o &P '
% () * 3 (e ”ay—a(—)+w"° (1)
At this point, we would like to emphasize that in order to compute the coefficients
limg_o(OP/8y), lima_o(@P/da)}, etec, in (T), (8) and (10) we have to make use of the

analytical expressions for the eigenvalues of the crystal field hamiltonian.
For the ground state energy level we have, for Pr*®:

’ dyo A dzyg _ 28 1
(da).,=o_°’ (da*).,.=o = 155, 6k (1)
For Nd+3:
dy) _ 11 'y 8 245b, — 47bg
cl.‘_.’%(da) 6’ (da= weo 945 (bs — bs)(25bs — 3be) (12)

where by and bg are related to B, and Bs (see Appendix). In obtaining (11) and (12)
we have assumed that the crystal field ground states of Prt® and Nd*2 are I'; and T,
respectively; these are the cases of PrAl; and NdAl,. Using (6), (11) and (12) we can
obtain the threshold value of Ag(A;/W = 0.433) for the PrAl; curve in Figure 1. Also,
using (6), (9) and (12), obtain the initial value of the magnetic moment (for Ag/W = 0)
for the NdAl; curve in the Figure: the result is lim,_o(dye/dar) = 11/6 {(in gup units).
Using the same procedure, we can obtain analytically the limits as o — 0 of (dy;/da)
and (d?y;/do?) of all other levels. Expressions of energy eigenvalues, up to a® were given
by Schumacher and Holligsworth [9] for the case Bg = 0, using numerical methods. The
value of the critical temperature is obtained from

? _  Zil-dyi/da)ezp(-y,B)
< J.i> S cap(—yiB) (13)

where the right hand side is linearized in a ( a = A{g—1)% < J.7 >). An expression for
Tc in the case of Pr*® compounds is given in the Appendix.

Using the crystal field parameters and the experimental value of T given in the review
by Purwins and Leon [1] for PrAl,, the expression (A.13) (see Appendix) gives

A
(Gess — 1)’W° = 1.55 (14)

This result, together with the value of the moment mo = 2.8:5 for the ion Pr*? in PrAl,
[1], allows, using the curve for PrAl; in the Figure, the determination of g.;y = 0.75.
Again, using (14), Ao = 24.23 meV. A similar procedure was followed for Nd*? in NdAl,.
The results for PrAl; and NdAl, are given in Table L

To summarize, we want to stress the two basic contributions of this work to the study
of the magnetism of 4f systems with crystal field interactions: 1) an algebraic approach
which allows the decomposition of a complex problems into simple parts, and 2) the
development of an algorithm to obtain the magnetic moments that does not require the
knowledge of the eigenfunctions. Not only it makes it easier the fitting the parameters, but
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it also gives a better understanding of the role of crystal field and exchange in determining
the magnetic behavior of different compounds. Although the present work was centered
on an application to intermetallic compounds, the method is obviously not restricted
to these systems. The potentialities of computer algebra approach to crystal field and
magnetic problems should therefore be noted.
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A - APPENDIX

Factorized polynomials:
J=4

P(T1,T3,Ty) = y°— 2y*(23b4 — 6bg) + 16y{35b] + 86b.bs — 324b; — o’}
— 32{4983 + 658b3bg — 2056b,b2 — 640563 — a?(9b, — 10bg)} (A.1)

Py(T3,Ts) = —y* —22y(by — 2b6) + 4{2667 + 436b4bs + 32083 + o*}  (A.2)
PE(s,Ty) = —y® —2y(6by + 8bs £ ) + 36453 + 384d4bg + 805}
+ o(48b, + 20b) + 3a° (A.3)
where
b4 = F4B4 =Wz
bs = FeBs=W(l - |z])
Fy, = 60
Fg = 1260
J=19/2

PE(Te, T3, T3) = y° — y(98by — 32b & 3a/2) ‘
— y{3483282 — 3136b,bg * 1022040 + 3152b; + 144
+61(a/2)*} + 3{1020768bF + 281344b3bs + 603125} cx
— 128576b,b% + 3808b4bgax + 3402b4(ar/2)?

— 235525 F 4104bZa — 64bga® + 21(a/2)%} (A4)
PE(TE T = —y? — 2y(49b, — 1656 + a/2) + 3{5208b2 + 3136b,bg
+ 7Thyer + 36883 + 5(a/2)*} (A.5)
where
b = FiBa_Wsz
T 5 T s
bs = FsBs = W(]. — |$D
Fy = 60
Fs = 2520
Roots of the crystal field hamiltonian:
J=4
E(T;) = 4(7bs — 20bg) (A.6)
E(Ts) = 4(bs+ 165s) (A7)
E(T,) = 2(7b+ 2be) (A.8)

E(Ps) = —2(13b4+1066) (Ag)



J =9/2

Expression relating T¢ to crystal field and exchange parameters for J = 4. |

where

A

W

E(Ts)
E(Tg)
E(T3)

= 4(49b, — 16b;)

M =

e~ PE(T) + 2e—BE(ls) + 3e—PE(L4) + 3e—PE(Ts)

—49b, + 16bg — M
~49b + 16bg + M

{5(360582 + 1568b4b + 27202)}/2

cle—ﬂE(F:l) + qe-ﬂE(l‘a) + cae"ﬁE(ri) + Qe—ﬁE(FS)

E(T1)
E(T5)
E(T.)
E(Ts)

20
21{7z — 6)
8(49z — 64)

15[(Tz — 6)(9z — 14)]
(2227z — 702)

~ 280[(7z — 6)(2z + 3)]

5(25z — 78)

24](2z + 3)(9z — 14)]

= 4(27z —20)

—4(15z — 16)
2(5z + 2)
—2(3z + 10)

1
ksTc

+ 23(;1;)’

+28(3)
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(A.10)
(A.11)

(A.12)

(A.13)
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Captions

Fig. 1. Magnetic moment of the ground state {in gup/rare-earth ion) for PrAl; and
NdAl; versus A/W, where A = {(ges; — 1)?Xo. The curves were drawn using the crystal
field parameters ¢ and W given in Table L.

Table 1. Computed effective Lande’s factors (g.;s) and exchange parameters (Ao) for
PrAl; and NdAl;. The crystal field parameters z and W, the critical temperature T and
the low temperature magnetic moments mg are taken from [1]. The Is chara.ctenze the
nature of the crystal field ground state.
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‘Tab.1

z | W(meV) | Te(K) | mo(un/ion) | gess | Ao(meV) | T
PrAl, | 0.739 -0.329 33.0 2.80 0.75 24.23 I's
NdAl; | -0.370 [ 0.161 65.0 2.45 0.68 7.47 Ts
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