
CBPF-NF-063/01

The MCEF code for Nuclear Evaporation and Fission

calculations

A.Deppmana, O.A.P.Tavaresb, S.B.Duarteb, E.C. de Oliveirab, J.D.T. Arruda-Netoa,c,

S.R. de Pinaa, V.P. Likhacheva, O. Rodrigueza,d , J. Mesaa, and M. Gonçalvese1.

a)Instituto de F́õsica da Universidade de S�ao Paulo

P.O.Box 66318 - CEP 05315-970

S�ao Paulo, Brazil

b)Centro Brasileiro de Pesquisas F́isicas -CBPF/MCT

22290-180 Rio de Janeiro, Brazil

c)Universidade de Santo Amaro - UNISA

S�ao Paulo, Brazil

d)Instituto Superior de Ciencias y Tecnoloǵõa Nucleares - ISCTN

A.P. 6163 La Habana, Cuba

e)Instituto de Radioproteç�ao e Dosimetria - IRD/CNEN

22780-160 Rio de Janeiro, Brazil

Abstract

We present an object oriented algorithm, written in the Java programming lan-

guage, which performs a Monte Carlo calculation of the evaporation-fission process

taking place inside an excited nucleus. We show that this nuclear physics problem is

very suited for the object oriented programming by constructing two simple objects:

one that handles all nuclear properties and another that takes care of the nuclear

reaction. The MCEF code was used to calculate important results for nuclear reac-

tions, and here we show examples of possible uses for this code.

PACS numbers: 24.75.+i, 25.85.-w, 21.60.Cs

1Also: Sociedade Educacional São Paulo Apóstolo- UniverCidade, 22710-260 Rio de Janeiro, Brazil.



CBPF-NF-063/01 1

PROGRAM SUMMARY

� Title of program: MCEF

� Catalogue number:

� Program obtainable from: CPC Program Library, Queen�s University of Belfast, N.

Ireland.

� Licensing provisions: none

� Computer for which the program is designed and others on which it has been tested:

Microcomputer with Pentium Intel 233. Installation: Institute of Physics, University

of S�ao Paulo, Brazilian Center for Physical Research -CBPF/MCT.

� Operating system: MS-DOS 6.00, Windows 95 and Windows NT 4.0, Linux

� Program language used: Java 1.2.

� Memory required to execute with typical data: 8 Mbytes of RAM memory and 4 Mb

of Hard disk memory (.class Þles only).

� No. of bits in a word: 16

� No. of lines in distributed program, including test data, etc.:363.

� Keywords: Photonuclear Reactions, Evaporation, Fission, Monte Carlo Method.

� Nature of the physical problem: The competition between evaporation and Þssion

is an important problem in intermediate and high energy nuclear reactions. Here,

neutrons, protons, alphas and possibly other particles escape from the excited nu-

cleus in competition with the Þssion process. Considering the fact that an exact

calculation including all the channels in this nuclear reaction could be a complex

problem, a statistical description of all these possible decaying modes could be a

major simpliÞcation. In fact, rough analytic approximations are possible, and the

results are in reasonable agreement with the experimental data for relatively low



CBPF-NF-063/01 2

reaction energies, where the most important reaction channels are just the neu-

tron evaporation and Þssion. At higher energies, other channels, like proton and

alpha particle evaporation, become important, and the analytical calculation of the

reaction process is much more complex.

� Method of solution: The most reasonable way to avoid the complexity of these

problems, and to obtain the required data is the Monte Carlo (MC) simulation. In

fact, this method is particularly suited for processes which are intrinsically statistical

in their nature, as the nuclear reactions described above. Also, the object oriented

approach for the algorithm is useful for solving this problem, since it is appropriate

for the atomic nucleus problems, and turns the MC calculation clear stated problem.

� Typical Running Time: depends on the desirable statistical accuracy. For the par-

ticular set of initial parameters shown as an example in this work, the running time

is approximately 5 seconds.

LONG WRITE-UP



CBPF-NF-063/01 3

I Introduction.

Nuclear physics problems are particularly suited for the application of the object oriented

(OO) paradigm in the software programming. The OO software is appropriate whenever

it is possible to fragment the algorithm into many well deÞned objects which have some

parameters that one can control or access from outside, and which may modify the object�s

characteristics. In nuclear physics we can Þnd many algorithms with these features, and in

particular, the atomic nucleus itself can be easily treated as an ordinary object interacting

with its environment through some speciÞc set of parameters that can be modiÞed from

outside by changing those parameters.

The OO programming presents many advantages, such as the readability, good main-

tainability, reusability and extensibility[1] of the program. The Java language, which has

been created speciÞcally following the OO paradigm, has the additional feature of porta-

bility, allowing the possibility to easily run the same program at different machines[2].

In the Nuclear Physics Þeld, the MC calculation is frequently used since it allows the

precise calculation of many problems having a statistical nature, which would be rather

difficult to be solved analytically. For instance, the analysis of the radiation interaction

and propagation inside different materials with any arbitrary shape is often performed

with MC calculations in Medical Physics and in Nuclear Reactor Physics[3, 4]. In the

study of the nuclear properties, the MC calculation has been used in the simulation of the

intra-nuclear cascade process following the nuclear interaction with high energy particles,

and it has shown to be the more precise method for calculating this process and its

characteristics, such as the multiplicity of secondary particles, the secondaries spectra,

the residual nucleus formations, etc[5-7].

In this work we develop an OO program which performs a MC calculation for the

nuclear evaporation taking place in the residual nucleus formed at the end of the intra-

nuclear cascade process. This problem presents all the characteristics described above for

an OO algorithm: its is intrinsically statistical, since the competition between evaporation

and Þssion depends on the respective probabilities, and the particles escaping from the

nucleus are chosen randomly, according to their escaping probabilities[8]. Also, the process



CBPF-NF-063/01 4

depends on speciÞc nuclear parameters that can be deÞned for each nucleus, and the

modiÞcation of these parameters also affects the nuclear characteristics.

The paper is organized as follows: in section II we describe the nuclear evaporation-

Þssion process, in section III we delineate the OO algorithm developed in the Java pro-

gramming language, in section IV we show some results obtained with this algorithm, and

in section V we present our conclusions.

II Theory: The Nuclear Evaporation-Fission process

The intermediate and high energy nuclear reactions are well described by a two-step

process in which the Þrst step is a fast intra-nuclear cascade which transfers most of the

incident particle energy to a few nucleons inside the target nucleus[7]. During this process,

some particles may escape from the nucleus carrying out part of the initial energy. After a

few steps, the number of participating nucleons increases, and the energy of each one is not

enough to escape from the nucleus. At this point, an excited residual nucleus is formed,

and the excitation energy is uniformly distributed among all its nucleons. The residual

nucleus de-excitation mechanism is the evaporation-Þssion competition, in which some

particles escape from the nucleus and/or the nuclear Þssion takes place[8,9]. The entire

process is governed by chance, and just the relative probabilities are used to evaluate the

desired physical characteristics in the reaction. During the nuclear evaporation, the k-

particle emission probability relative to j-particle emission, according to the Weisskopf�s

statistical model[8], is

Γk
Γj
=

!
γk
γj

"!
E∗k
E∗j

"#
aj
ak

$
exp

%
2
&
(akE

∗
k)

1
2 −

'
ajE

∗
j

( 1
2

)*
. (1)

The level density parameter for neutron emission is[10]

an = 0.134A− 1.21 · 10−4A2MeV −1, (2)

and for all other particles emission this quantity is related to an by

aj = rjan, (3)

where rj is a dimensionless constant.



CBPF-NF-063/01 5

For proton emission we get

Γp
Γn
=

!
E∗p
E∗n

"
exp

%
2 (an)

1
2

&'
rpE

∗
p

( 1
2 − (E∗n)

1
2

)*
, (4)

and for alpha particle emission

Γα
Γn
=

!
2E∗α
E∗n

"
exp

+
2 (an)

1
2

,
(rαE

∗
α)

1
2 − (E∗n)

1
2

-.
. (5)

The Coulomb potential[9] for proton is

Vp = C
[Kp (Z − 1) e2],
r0 (A− 1)

1
3 +Rp

- , (6)

and for alpha particle it is

Vα = C
[2Kα (Z − 2) e2],
r0 (A− 4)

1
3 +Rα

- , (7)

where Kp = 0.70 and Kα = 0.83 are the Coulomb barrier penetrabilities for protons and

alpha particles, respectively, Rp = 1.14fm is the proton radius, Rα = 2.16fm is the alpha

particle radius, r0 = 1.2fm . Also,

C = 1− E
∗

B
(8)

is the charged-particle Coulomb barrier correction due to the nuclear temperature [9],

with B being the nuclear binding energy. In addition, according to Ref. [13], we use

rp = rα = 1.

Using the Þssion width from the liquid drop model for Þssion by Bohr and Wheeler[11],

and the neutron emission width from Weisskopf[8], we get[12]

Γf
Γn
= Kf exp

%
2
&'
afE

∗
f

( 1
2 − (anE∗n)

1
2

)*
, (9)

where

Kf = K0an

&
2
'
afE

∗
f

( 1
2 − 1

)
'
4A

2
3afE∗n

( , (10)

and

E∗f = E
∗ −Bf , (11)

with K0 = 14.39MeV . Here, Bf is the Þssion barrier height discussed below.



CBPF-NF-063/01 6

The particle separation energy can be calculated directly from its deÞnition using the

Nuclear Mass Formula[15], as we do for the proton and alpha-particle emission, respec-

tively The Þssion barrier is calculated by[14]

Bp = mp +m(A− 1, Z − 1)−m(A,Z), (12)

and

Bα = mα +m(A− 4, Z − 2)−m(A,Z), (13)

where mp is the proton mass, mα is the alpha particle mass, and m(A,Z) is the nuclear

mass calculated with the parameters from Ref. [15].

However, for the nuclear Þssion barrier and for the neutron separation energy there

are empirical formulae that give more precise values[14], as, respectively,

Bf = C(0.22(A− Z)− 1.40Z + 101.5)MeV ; (14)

and

Bn = (−0.16(A− Z) + 0.25Z + 5.6)MeV. (15)

The present Monte Carlo code for Evaporation-Fission (MCEF) calculates, at each

step i of the evaporation process, the nuclear Þssion probability, Fi ,deÞned as

Fi =

'
Γf
Γn

(
i

1 +
'
Γf
Γn

(
i
+
'
Γp
Γn

(
i
+
'
Γα
Γn

(
i

. (16)

Then, the particle that will evaporate (neutron, proton or alpha particle) is chosen ran-

domly, according to their relative branching ratio. Once one of these particles is chosen ,

the mass and atomic numbers are recalculated by

Ai+1 = Ai −∆Ai, (17)

and

Zi+1 = Zi −∆Zi, (18)

where ∆Ai, and∆Zi are, respectively, the mass and atomic numbers of the ejected particle

at the ith step in the evaporation. Also, the nuclear excitation energy is modiÞed according

to the expression

E∗i+1 = E
∗
i − Bi − Ti, (19)



CBPF-NF-063/01 7

where Bi and Ti are the separation and the asymptotic kinetic energies of the particle

being ejected, respectively. For neutrons, T = 2MeV , for protons T = Vp,and for alpha

particles T = Vα.

Expression (19) ensures that the nuclear excitation energy will be, at each step in

the evaporation chain, smaller than in the previous step. This process continues until

the excitation energy available in the nucleus is not enough to emit any of the possible

evaporating particles. At this point the evaporation stops, and we can calculate the

nuclear Þssility by the expression

W =
/
i

i−12
j=0

(1− Fj)
Fi. (20)

III Algorithm: The MCEF code

The code organization is based on two objects: the Nucleus, instantiated by the Nucleus

class, and the MCEF object, instantiated by the MCEF class.

� Nucleus: is the class where all the nuclear characteristics are calculated and deter-
mined. The only way to access its internal variables is through the constructor or

through its methods.

� MCEF: is the class which performs the Monte Carlo calculation. It creates an in-
stance of the Nucleus class and modiÞes its properties according to the evaporation-

Þssion model described in the last section. When a particle evaporates, a new

instance of the nucleus class is created with the new values for A, Z and E calcu-

lated from our model, and the previous Nucleus object is destroyed. By accessing

the Þssion probability of each nucleus in the evaporation chain, this routine also

calculates the Þssility of the initial nucleus.

In Figure 1 we show a ßow chart of the algorithm, with a short description of each class

and the variable through which they communicate with each other. A more comprehensive

explanation is given below.

A. The Nucleus class



CBPF-NF-063/01 8

This class instantiates the Nucleus object through its constructor

public Nucleus(int A, int Z, double E){
this.A=A;

this.Z=Z;

this.E=E;

this.Ex=Ex;

} ,

where the input parameters are the nuclear mass number, A, the atomic number, Z, and

the nuclear excitation energy, E.

The other nuclear characteristics described in section II are calculated by its methods.

Several methods allow to retrieve the resulting value for each nuclear parameter. Below we

give an example of such methods for the nuclear Þssion barrier, Bf. First, Bf is calculated

in the method calcBf(), and then it can be retrieved by the method getBf():

private void calcBf(){
Bf=0.22*(A-Z)-1.40*Z+101.5;

Bf=Bf*(1-E/this.getB());

}

public double getBf(){
if (Bf==0) this.calcBf();

return Bf;

}.

Note that the method calcBf() needs to retrieve one of the nuclear parameters, the

nuclear binding energy B, which is done by the method getB(). In the method getBf(),

we Þrst check if the value for the Bf parameter is equal to the initialization value, Bf=0,

in order to calculate each parameter only once, thus improving the code performance.

B. The MCEF class

This class instantiates the MCEF object through its constructor



CBPF-NF-063/01 9

public MCEF(int A, int Z, double E){
this.E=E;

this.A=A;

this.Z=Z;

n=new Nucleus(A,Z,E);

evap=false;

W=0;

nneutrons=0;

nprotons=0;

nalphas=0;

} ,

where the input parameters are the nuclear mass number, A, the atomic number, Z, and

the excitation energy, E, for the initial nucleus in the evaporation process. It instantiates

an object Nucleus, n, and a random number generator, r.

This is the steering object for the evaporation process performed by the method Evap-

oration(), which is the core of the Monte Carlo calculation, and is shown below.

private void Evaporation(){
double Ex=E;

W=0;

NF=1;

double F;

double rand;

double Gf,Gp,Ga,Gt;

while (Ex>0){
F=this.Probfis();

W=W+NF*F;

NF=NF*(1-F);

Gp=n.getGammap();

Ga=n.getGammaa();



CBPF-NF-063/01 10

Gt=1+Gp+Ga;

rand=r.nextDouble();

if(rand<Gp/Gt){
A=A-1;

Z=Z-1;

Ex=Ex-n.getBp()-n.getVp();

nprotons=nprotons+NF;

}
else{

if(rand<(Ga+Gp)/Gt){
A=A-4;

Z=Z-2;

Ex=Ex-n.getBa()-n.getVa();

nalphas=nalphas+NF;

}
else{

A=A-1;

Z=Z;

Ex=Ex-n.getBn()-2.0;

nneutrons=nneutrons+NF;

}
}
n=new Nucleus(A,Z,Ex);

}
evap=true;

}

Here, the evaporating particle is statistically chosen, according to their respective

escaping probabilities, through the random number returned by a static instance of the

Random class available in the java.util class to the variable rand, which is compared with

the particles emission probability, calculated as the ratio Gi/Gt, where Gt = 1+Gp+Ga



CBPF-NF-063/01 11

and the index i represents the the evaporanting particle (i = n, p or α ). The nuclear

Þssility is also obtained using the Þssion probability values calculated for each step of the

evaporation chain by the method Probfis().

private double Probfis(){
return n.getGammaf()/(1+n.getGammaf()+n.getGammap()+n.getGammaa());

}

The boolean variable evap is used to avoid the repetition of the entire Monte Carlo

calculation when any variable is needed. If evap has value false, the calculation is per-

formed, otherwise the variable value, which has already been calculated, is returned. An

example is in the method which returns the Þssility variable, W:

public double getFissility(){
if (evap==false) this.Evaporation();

return W;

}
At each step, the values of A, Z and E are modiÞed according to the evaporated particle

characteristics, and the Monte Carlo calculation continues until the nuclear excitation

energy is not enough for the evaporation of any possible evaporating particle.

C. Input variables

The input variables are entered through the command line. The variables are:

� A - the mass number;

� Z - the atomic number;

� E - the nuclear excitation energy in MeV;

� stat - the number of iterations for the Monte Carlo Calculation.

D. Output variables

The output variables are displayed at the screen. The variables are:



CBPF-NF-063/01 12

� W - the calculated mean value for the nuclear Þssility;

� Nn - the calculated mean value for the number of neutrons escaping from the

nucleus;

� Np - the calculated mean value for the number of protons escaping from the nucleus;

� Na - the calculated mean value for the number of alpha particles escaping from the

nucleus;

IV Test Run

Here we show an example of the code output. The input variables are A=232, Z=90,

E=900 (MeV) and stat=500. The input is through the command line java Mcef 232

90 900 500.

The output displayed on the screen is:

� Fissility= 0.75

� Number of Neutrons= 38.73

� Number of Protons= 7,77

� Number of Alphas= 24,22.

We applied this code to calculate the photoÞssility of the actinide nuclei 232Th, 238U

and 239Np at the intermediate photon energy range. The results for their absolute Þssility,

already published in reference [16], are shown in Figure 2a.

Using the calculated Þssility and the experimental photoÞssility data for those nuclei[16],

we obtained the total photoabsorption cross section at intermediate energies. The results

are shown in Figure 2b, and compared with the so-called universal curve for the bound

nucleon photoabsorption cross section[17], where we observe a good agreement between

the universal curve (full lines) and our results. With this work, we solved the long stand-

ing problem of the actinide nuclei Þssility saturation at values below 100%. For more

details, see reference[16].



CBPF-NF-063/01 13

V Conclusions

We developed an object oriented code written in the Java programming language which

performs a Monte Carlo calculation of the evaporation-Þssion process that happens during

many nuclear reactions. The main features of the code are its readability and reusability.

Even using the Java language, it presents a good performance during the Monte Carlo

calculation. We have shown examples of possible applications, including a recent analisys

of some heavy nuclei photoÞssility[16].

VI ACKNOWLEDGMENTS

This work is supported by the Brazilian agencies FAPESP and CNPq.

References

[1] J. Qiang, R.D. Ryne and S. Habib, Comp. Phys. Comm. 133, 18-33 (2000).

[2] I. Horton in Beginning Java 2, Ed. Wrox Press (1999).

[3] T.D. Solberg et al., Radiochim. Acta 89, 337 (2001).

[4] E. L. Redmond and J. M. Ryskamp, Nucl. Technol. 95, 272 (1991).

[5] V. S. Barashenkov et al,; Nucl. Phys. A231, 462 (1974).

[6] H. W. Bertini; Phys. Rev. 131, 1801 (1963).

[7] M. Gonçalves et al.; Phys. Lett B406, 1 (1997).

[8] V. F. Weisskopf, Phys. Rev. 52, 295 (1937).

[9] O. A. P. Tavares and M. L. Terranova, Z. Phys. A: Hadr. and Nucl. 343, 407 (1992).

[10] A. S. Iljinov, E. A. Cherepanov, and S. E. Chigrinov, Yad. Fiz. 32, 322 (1980) [Sov.

J. Nucl. Phys. 32, 166 (1980)].



CBPF-NF-063/01 14

[11] N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).

[12] R. Vandenbosch and J. R. Huizenga, Nuclear Fission, (1sted., New York Academic

Press, 1973) p227.

[13] K. J. LeCouteur, Proc. Phys. Soc. Lond., Ser. A63, 259 (1950).

[14] C. Guaraldo et al., Nuovo Cimento. 103A, 607 (1990).

[15] E. Segrè, Nuclei and Particles, (3rded., W. A. Benjamin, INC, 1965) p215.

[16] A. Deppman et al., Phys. Rev. Lett, 87 (2001) 182701.

[17] A. Deppman et al., Il Nuovo Cimento 111A, 1299 (1998).



CBPF-NF-063/01 15

VII Figure Captions

Figure 1: Schematic view of the algorithm. The NUCLEUS and MCEF classes are

shown, with a brief description of their functions and the variable values they exchange

during the run.

Figure 2:(a) The calculated nuclear Þssility as a function of the incident photon

energy for 237Np (full line), 238U (dashed line) and 232Th (dotted line). (b) The bound

nucleon photoabsorption cross section (see text), as a function of the incident photon

energy, for 237Np (full circles), 238U (open circles) and 232Th (full squares).The full lines

represent the upper and lower limits for the bound nucleon photoabsorption cross section,

as can be deduced from the data reported in [26].



CBPF-NF-063/01 16



CBPF-NF-063/01 17


