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Using the quantity normally scaled in multifractals we pos
tulate a generalized form for Ithe entropy, namely Sq EkE. —jlpﬂ /(g-1),
where: ¢ € R characterizes the generalization and {Pi} are the
probabllities associated with Wi(microscopic) . canfigurations
(W € N), We establish the main properties associated with this
entropy, in particular those. corresponding to the microcanoni—
cal and canonical ensemhles. The Boltzmann—-Gibbs statistics iis

recovered as the q - 1 limit.

Key-words: Generalized.statilstics;. Entrdapy; Multifractals; Sta

tistical ensembles.
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Multifractal concepts and structures are quickly*aequtﬂk@
importance in many active areas (e.q., non-linear~dwnmmmﬂ,sx§'
tems, growth models, commensurate/incommensurate structures).
This is due to their utility as well as to . their . :.elegance.-
Within this framework, the guantity which 1s normally scaled
is pg, where P; is the probability associated to an event and
‘¢ any real nﬁmber[:lj. We shall use this quantity to generalize
the standard expression éf the entropy S.in information theory,
namely S = - k Z P; Inyp,, where'W € I8 is the total number of
p0331b1e (micr;;éopic) configurations and {p } the associated

probabilities. We po&tutataﬂfor.the entropy

.'w .
1 -;leg
§ = k —E— € {1
a 5 =T CER (1)
_ . W
where k is a conventional positive constant and | p; = l. We
im]
immediately verify that
1~ E p; e(q—l)lnp Y
: i=1l ;
S, = £im S8 = kdim . . ==k LAnp, (1L
1 q>1 9 g+l q-1 izlpl -Pi (12)
where we have used the replica-trick type of expansion. we

illustrate definition (1) in,Fig. 1.7Sﬁ may be rewritten as

follows:

W
k . _ -1
s = g1 1, » (-6 (2)



CBPF~NF-062/87

which makes evident that Sé > 0-in all cases. It vanishes for
W=1, vq, as well as for W > 1, q > 0 and only one event with
probability one (all the.others having vanishing probabilities).

Mi{enoaanonical: emsemble: We want to extremize sq with the .con-
W . .

dition z p; = l. By introducing a Lagrange parameter . it is
i=1

straightforward to obtain that S is extremized, fonr all va&mA

04 g, in the case of equ&paobab¢£¢ty, i.e., pl.» 1/w,vi, and
consequently
l1-q
. W -1
S = k ~y=—F= 3
q -q (3)

We immediately verify that
8, =kin W (3%)

thus recovering the celebrated Boltzmann's.expression. ﬁe Cil-
lustrate Eq. (3) in Fig. 2. sq given by Eq. (3) diverges if.
q < 1 and saturates (at‘sdi=k/(q—l)) if g > 1, in the W+« lim
it. It is straightforward to prove that the extremum indicated
in Eqg. (3) is a maximum (minimum) for q > 0 (é <0); for qgq=0,
.sa'({-pi}) = k(W-1) for all {p,}. Finally, Eq. {3) implies

S (1-q)87/k :
_l% -~ & 1/%..1 (4)

l-q

Concavity: Let us extend here a property élreadyﬂmentioned,.ng
mely that g > 0 (g < 0) implies that the extremum of S is a
maximum (minimum) Let {pi} and {pi} be two sets of probabili—
ties corresponding to a unique set of W possibilities, and 2

such that 0 < )X < 1. We define. an {ntermediate probability
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3=
law as follows
pi = ap; + (L -2)1p! (Vi) | (5)
and. also
&, 2 S (pih -_:E'gq,({-;}i}) + {x—nsqu;j;n] (6)

It is straightforward to.prove that &q >01fq >0, nq < 0 if
qQ<0and s =014if g = 0. The equalities hold for q # 0 for

p; = Pi’ ¥i. The proof.follows -from Eq. (2) and the Qiseussion

of the function p; (1 -pg—l)/(q -1). Indeed, this function pre-
sents, for P; € (0,1), a negative, pogitive or vanishing curva
ture for q > 0, g < 0 and g =0 respectively.

Additivity: Let.. us assume two inderendent systems_A and B

with . ienbembles .-of - configurational possibilitdes  aA =

{1,2/¢..,4,...,M,} and aB

{18

{1,2,..,3,..,WB} respectively, . the
corresponding probabilities being {p?}-and {pgj.Werquxxmﬂhkm
MIB, the ensemble of possibilities being o*"® = ((1,1), (1,2),...,
(i,j),...,(w Wy )}: we note pé?B the corresponding probabili~

ties. The independence .of the systems means that pAU =”?p§ Y
WW

B AUB,
Vfl J); hencez . (P:LJ '_—Z (p ][Z (p :l', hence (({us-
i,]
ing Eq. (1)).
=AUB _ =A , =B
sq =85, ¢ sq (additivity) (7)

with
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. nfl + (1 ~q)s /K]

: 8
ik T (8)

i
il

AUB

In the g + 1 limit, Eq. (7) becomes S, "~ = st + S?, thus re-

1
covering the standard additivity of the entroples of independent

systems.

B

To study the case of cornrelated systdms {i.e., p is not

equal to- E pA‘;BH fp‘“m

fine T_ ({pM.]ﬁ 1= _:"“_({p*?‘.’B}) -8% ({z p‘“’“}) -5, ({ZAPAUB}) It
j=1

) for all (1 'j}) it is useful to de-

is clear from Eq. (7).that independency (no correlation) im-

AUB,

plies Pq = Q, Vq. For ‘arbitrary..and fixed: {p' } implying cor=-

relation, it is easy to prove that T <0 (éub-addétibitg of the

1
standard eamtropies of .correlated systems) and T, =0. For arbitiva
ry values offq,VFq presents a great sengitivity to {pAUB}, it

might be positivé or negative for q >>1 as well as for q <<-1,
and typically exhibits more -than one extrema. Extensive and sys-
tematiq compufer verification indicates that, generally speak-
ing, rq varies smoothly with q,but presents.no.panticular res-
gglarities besides ry = OIand.rl:iO. Whgn {pggﬁ} gradually ap-~
proach vanishing correlatiqn,_;q gradually fiattens until eve~
tually achieving Fq = 0, Vg |

Canonical ensemble: We want to extremiza S»-‘i with the conditions

1pi = 1 and

I e~—1%

i

¥ pje, =U (9)
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where {ei} and quare known real numbers (the same value €,
might be associated to more than one possible configuration);

we shall refer to them as generalized 4 pectrum and generalized
internal energy. We introduce 'the a and 8 Lagrange parameters and

define the quantity

S W W |
b, = +a ] p; -aBlg-1) ] p.e; (10)
1 k=1 i=1

which has been written this way for £fiture: convenience. We

impose % /dp = 0, Vi, and obtain p, w[} -g{g=1)e. ]q I, hence

1

1 —B(q-l)e.]E:T
pi. = E 2 = {11)
q
with
- 1
z, = 121@-8“1 '--1)'ur.z:|‘:’"1 (12)

We immediately verify that, in the g + 1 limit, we recover

p; = e *°i/z (11*)
with

7. = '} e BEi (12")

If A and B are two {ndependent systems with probabilities

{spectrum) {p?}(fe?}) and {p?}({;?}) respectively, the proba
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bilities corresponding to AUB satisfy p§?BJ= pipg, ¥{i,3)..This
implies '
1 - B(g-1)e?YB = l:l-e(q-l)e‘.‘] 1 -a(q-l)a‘.’:| (13)
- ij ifl- j
or equivalently
FAUB _ 24, 3B (14)
ij i j
with
_ md + s(1-qQ) €]
£ = (15)

B (1~q)

In the g -1 1limit {(and/or g + 0 limit), Egq. (14) becomes

E??B = ei + e?,thus recovering the standard energy additivity.

The property (14), together with the’ factorization of  proba-
bilities, replaced.in Eq. (9) yields

~AUB _ = -B
U =
a Uﬁ + Uq {16)

with

nfl +6 (1-q)U ]
U =
q B{l-q)

(17}

In the g » 1 limit (and/or the g » 0 limit) Eq. (l6) becomes

U?UB = Ui + U?, thus recovering the standard additivity of

the internal energies of independent systems.

Let us now discuss the main characteristics of distribu
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tion law (11l). First of all we notice that this distribution is
invaniant under the transfommation [1-8(q-1)eJ+{1-8(@-1) ¢ ] G-8(a-1)e ] for
adt &; e  being an-arbitrary fixed real number. Irt other. words, the distri
bution (11).is invariant wder e, »&,+¢ . (this is in fact a trivial -conses
quence from the fact that the distribution:.can be formally rewritten as
P, ae@(-ef‘e'i)). For B(g-1) »0, we recover the well kniwn invariance of the
Bol tzmanr-GibBe: statistics under wniform translation of the. energy. spectrim.
We.illustrate;distributicn {11) in Fig. 3icWe hoticé that, for g>1, pi=50
for all levels such that € il/[B(c.I—l}] (aiﬁ-l/E[S{ (q-l)j) if g>0 (B <0),i.e,
positive (negative) "temperatures". On the other hand we notice that, forigxl,
the levels such thate, < -1[B(1-@)] (e, 2 2/ |8](1-@)]) are, - if
B > 0 (B < 0), highly occupied, in a way which clearly reninds
the Bose-Einsteih condensation.

To better realize the unusual properties.of the. present
statistics it is instructive to analyze the following situation.
Agsume g > 1, 8 > 0 and {ei} such that 0 < &, < g, «+v < g (W
might even diverge). When 1/g is above Tq-l)sw, all levels have
a finite occupancy probahility;lwhen (q_l}“éu-l <1l/8 < (@-1)ey,
then p, >p, *... >p,_, >p,=0. The probabilities successively
vanish while 1/8 decreases. We sventually arrive to (q—I)e1 <
1/8 < (q-l)ez, which implies P, <= 1..Finally,'the temperatures
1/8 in the interval [0, (g-1l)e;] are physically unaccessible, thus

0 in standard ther-

generalizing the non-accessibility of 1/8
modynamics. Let us illustrate this and similar facts through a
simple example,

Application: We consider .two non-degenerate levels with values
g, ¥ ¢ - § and EZ_E e + 8(8>0; e 3 0). The quantity Uq(B) is
given by Uq = /Py + €,P,. A straightforward calculation ylelds
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| 1 1
- | 13T | | 1
]:1 - (g=11¢5 -1) /x:[ o [1 - (g=1) (§ + 1)/:«:]

= — it : (18)
q qi;.r , 1

L-@o-ua]" ¢ io@o@E s

y

with x = 1/86 and ¥, = (U =)/ e[~1,1]. Eq. (18) is invariant
under (x,yq,q f1}§/6)+(x;yq,~-(q-l), -¢/8) and also under ({(x,
yq,q,e/ﬁ)+(¥x 2 MTLC - ¢/8). Consequently, it suffices to dis-
: cués-q 21 and ¢/6 2 0. In the limit q »1, we obtain y; =~
th{l/x), v e/§. For q.# 1,qu(x) depends on t£/§: see Figs; 4
and 5.

Let us conclude by recalling that, using the quantity nor-
mally . scaled. for multifractals, we have postulated an ‘éxpr.e_ss:ken
for the eﬁtropy.whiqhqgeneralizes.the.usual one (recovered for.
the parameter gq +1}. By preserving the Qtandard .. variatidnal
principle we have established the microecanonical.and canonical
distributions,.as well as several other properties. -Some»t:of
the emerging peculiar. characteristics are illustrated through

a simple example. One of the most interesting is the fact that
the unaccessible "temperatures" might belong to a ginéfe inter-
val -which shrinks on the T =0 peint in the q‘-v]_.i'mit.-Fir.]a.lly,

the fact'thaijsqﬁyasi and BUq are adddtive under qne;aﬁd‘ the
same functiowal- 4oam (namely -&ix) =4n[l + (1-qyx]/(q-1)) opens
the door to the generalization of  standard Thermodynamics - fhrough
the -introduction of appropriate generalized thermodynamic po=~
téntial_s. Applications of these generalized eguilibrium- stati_sg
tics in Physics de.g., fractals, multﬁif_ract.:als\-)-,:_‘_-v_;;Infc:j:'ma_tiofl.
Theory or any.ether branch of knowledge-using. .probabilistid¢ :

concepts would bec extremely welcome.
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CAPTION FOR FIGURES

Fig. 1 - Sq({pil) for W =2 and typical values of g (numbers

on curves).

Fig. 2 =valie of: the entropy at its extremum for .. typical
values of g (numbers on curves). The dashed ' 'line
indicates: the W + » asymptotic of SZ/k'

Fig. 3 -The distribution law of By (1l)asafunction of Be,.

| The cunves are . parametrized by q. (i) g =1l: standard

.exponential law; (ii) g >1: the distribution  pres-
ents a.cut—off:at'ﬂei = l/(q—l) (with a slqpe which
is 0,1 and -= for q <2, gq=2 and q > 2 respectively)
and diverges for Be, > ~«; (1ii) g <1l: the distribu
tion diverges at Bs; = -l/ (1-q) (the dashed line dndica=

tes the asymptote for g =0} and vanishes for Bei++w..

Fig. 4 ~q-=2 reducved internal "energy" as. a function of the
reduced: “temperatureg" {see the text) for a non-de-
generate two level system and typical_v&Ltl_es;..-_ of ¢/§. The
dashed region in (d) indicates the unaccessible "tem
peratures”, .

'Fig. 5 -~Reduced internal “energy" as a function of the reduced
"temperature® (see the text) for.a non-degenerate two

level system and typical values of g(numbers on curves).
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