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Abstract

We present a method to evaluate the Jacobian of chiral rotations,
regulating determinants through the proper time method and using
Seeley's asymptotic expansion. With this method we compute easily
the chiral anomaly for v=4,6 dimensions, discuss bosonization of
some massless two-dimensional models and handle the problem of charge
fractionization. Besides, we comment on the general validity of Fu

jikawa's approach to regulate the Jacobian of chiral rotations with

non-hermitean operators.
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I. INTRODUCTION

Chiral anomalies have been playing a role of increasing impor-
tance in field theory of elementary particles since their discovery
some fifteen years agol.

More recently Fujikawa’ developed a method which allows to study
chiral anomalies in a path integral approach, independently of per-
turbation theory. He observed that the path integral fermionic meas
ure is not invariant undera chiral change of variables and that the
anomalous term comes from the Jacobian of the chiral rotation.

Afterwards his method was employed to implement a sort of path-

® of the bosonization technique9 in two-dimen-

-integral version?®”
sional models and recently Schaposnik has showed'’ how Fujikawa's
method can be implemented to study the problem of charge fractioni

zation'!1?

in two-~dimensional models.

The method developed®™® by the group of La Plata (Gamboa-Sara-
vi, Muschietti, Schaposnik and Solomin), to compute Jacobian of
chiral rotations, makes use of the zeta function regularization of
functional determinants®?® and the direct computation of Seeley's
coefficients!*. It is the purpose of this paper to use instead a
method developed by Alvarez'® to compute determinants, by means of
the proper-time method and Seeley's asymptotic expansion'®, to
study the chiral anomaly in space-time dimension v=4,6, bosoniza-
tion of some massless two-dimensional models and charge fractioni
zation.

There are some conveniences with this method, namely:

(i) For normal Dirac-like operators the computed Jacobian is

directly identified with the regulated Jacobian of Fujikawa?.
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(ii) The asymptotic expansions are tabulated for all physical-
ly interesting examples we are considering.

The shortcoming of this method is that we cannot compute the Ja
cobian of a theory for all non-normal Dirac-like operators, as is
done in ref. 6, for example in the physically important theory with
a pseudo-vectorial coupling, unless we are able to analytically
continue this operator for a region where it is normal,.

In the next section we present Alvarez's method for computing
determinants, give the Jacobian of chiral rotation by this method,
and briefly discuss its direct identification with the regulated
Jacobian of Fujikawa and possible consequences for the method de-
veloped by Fujikawa when the Dirac-like operator is non-hermitean'’.

In section III we compute easily the anomaly in v=4,6 space-
~time dimensions for Q.C.D, In section IV we apply this method to
bosonization of the Schwinger, Thirring and massless two-dimension
al QCD. And, finally, in section V we discuss the application of

this method for the fractionization of fermion number.

II. THE JACOBIAN OF THE CHIRAL TRANSFORMATION

We start by considering the fermionic part of the generating

functional of an Euclidean Dirac-like theory:

G = JDﬁDw exp{-fﬁDw avx} (1)

and introduce a non-abelian local chiral transformation over the

fermionic fields
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v rY5®
Y = e n,
(2)
ry.®
- = 5
b=mn_e

with @:@aka, A, the generators of the group of interest, and r a
real parameter (0 <r<l).

The transformation (2) in the generating functional (1) intro-

duces a Jacobian as:

G = fDﬁanrJ(r) exp{—fﬁrDrnrde} (3)

with

ry. ¢ ry.®
D =e > pe ° (4)

We integrate over the fermionic fields in (1) and (3), the re-

sult is formally the determinant of the Dirac operator:
G = detD = J(r)detDr (5)

so we may obtain a formal expression for the Jacobian of the trans
formation (2) in terms of functional determinants:

LnJ (r) = KndetDr --IindetDr (6)

=0
The functional determinant in (6), as is well known, diverge
and must be regqularized. In order to regularize this determinant

by the proper-time method we must construct a square operator, DD+,
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and provided that Zn det DY is proportional to £n detD we have:

2 _ -;-_ + - ® .d_S _ +
Zn det Dr =£n det DrDr =Tr £n DrDr = J Tr [exp ( sDrDr)] (7)

S
€

with € an ultraviolet cutoff on the proper-time integration.

But the operator given in (4) has the useful property that'®:
—D_ = fD_+D_f£ (8)

with f::ysé. Then differentiating (7) with respect to r, using prop

erty (8) and the cyclic property of the functional trace we get'?®:

4 ZndetD DT = 4Tr [f exp(-€D D+)] (9)
dr r r r r

In deriving this last formulae (9) we are assuming that the opera
tors Dr and D: satisfy:

foods Tr (D £fD exp(-sD D)1 = wds Tr[£fD D' exp(-sD D)1 (10)
J rr rr rr rr

€ €
which is valid when Dr is a normal operator.

Now, since f is a matrix function in order to compute the func
tional trace in (9) we integrate over the diagonal part of the
heat kernel for DrD:. For this diagonal part Seeley has shown'* that
there is an asymptotic small € expansion given by:
ik

<xlexp(—€DrD:)|x> €+0>>’ v/z[ag(x)+sa§(x)+eza;(x%h..] (11)
(dme)

with the coefficients of this expansion tabulated for physically

interesting operators,
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Integrating expression (9) over r from 0 to 1 we obtain the
Jacobian of interest, i.e., for r=1l:
1

LnJ (r=1) = —2[ drfdvx tr [Y5®(x)<x|exp(—eDrD:)|x>] (12)

X
0 exy

*
with tr denoting the trace over y-Dirac and color matrices .

Féﬁvihe purpose of comparing this Jacobian with Fujikawa's re
gulated Jacobian? we consider abelian local infinitesimal chiral
transformation. As the infinitesimal field ¢(x) appears direc-
tly in the integrand in (12), it is only necessary to consider
the & independent term of the diagonal part of the heat kernel.
Then, integrating over r and expanding over eigenfunctions of

P we get Fujikawa's expression? for the regulated Jacobian

of an infinitesimal local chiral transformation:

InJ = —ZJdYx o(x) tr [y, Z<x|kx>exp(—exﬁ)<ﬁJx>] (13)
cxXY k

The expression (12) appears as a natural extension of Fuji-
kawa's method for computing the Jacobian of a local finite chiral
transformation.

However, in cases where the operator D is non-normal, as we
have seen, we must be careful that £ZndetD is proportional to
ZndetD* and that expression (1l0) be valid; this puts forward some
questions concerning the general validity of Fujikawa's method

to regulate non-hermitean operators®’.

. ) . :
Notice that we don't use the perturbative evaluation of the determinant®®.
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ITI. CHIRAL ANOMALY IN 4 AND 6 DIMENSIONS

Let us consider the QCD lagrangean in an arbitrary dimension

with SU(N) gauge group:

Do- Lo, B
= -4 Fuv,aFa + Pi(g+K) (14)

As it was said in the end of section II for the purpose of com
puting the chiral anomaly it is only necessary to consider the
® independent term of the diagonal of the heat kernel in the Ja-

cobian (12). For this case by a straightforward algebra we have:

D2 = -D D +X (15)
Wy
with
D = 8 + A
U "R
X=-% [y ,y.1[D ,D_] (16)
4 TEAEN u Py

Happily the coefficients of the asymptotic small € expansion

(11) are tabulated®® with the values:

af = 1
(@]
r
a1 = =X
ar=-lx2+iaaF --LF F —lazx
2 2 12 W VHV 12 TUVTHV g
r 1 2 1 1 1
a, = -— (3 F )°-—3F 3F —-—3°(F F )+—F F F -
3
45 ¢ BV 180 AVARTAV AR TTe' 60 UV v 30 W vor o



CBPF-NF-062/84

-7 -
_ L gug oL ogege L (g gy lgi L XF T V-JLF\gF -
60 12 12 M 6 30 MV HY g WV H
1 1 1
-—PF. F X -— 3. X9 F - F 9. X (17)
30F“v Ty Y iy 60 vy

By the use of the well known properties of y-matrices we obtain

with (11), (12) and (17) in four and six dimensions respectively:

tr F f
c UV UV

il

5 3 =
u 1-1,5 8,].[2 (18)

3 ] -1 € .. tr(

- . )
Hou, 7 3(4m)% M1 M6 ¢

F F F
HiHy HgHy HsHe
which are the well known values of the anomaly in four and six di

mensions®?.

IV. APPLICATION TO TWO-DIMENSIONAL MODELS

It was shown in several works®T® that by performing a chiral
change of variables in massless Dirac like theory in two dimen-
sions we decouple at classical level the fermions fromother fields
present.

The quantum aspect of this decoupling is given by the Jacobian
of this transformation and we are going now to compute it by the
method. stated in section II for some field model theories in two

dimensions.

Schwinger Model

The lagrangean of the theory is:
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oé= -%F;v;a(iawmw (19)

+ + ;
i = A = d i =€ .
with YU Y. r " AU an YuYS uva

U
Performing the transformation (2) in this lagrangean.and : choosing

the Lorentz gauge:

A =X¢ 30 (20)
e

we obtain

&b - —iFfN +T_(if+e (1-r)K)n_ . (21)

We see explicitly in (21) that for r=1 the fermion decouples from
the gauge field. In this case
+ x* (22)

D? = DD
Tr

r.r
gl

with

DY = 3 +ie(r-1)A
H M H
(23)
Xt = - (1-r) 320y,
Then by (11), (12), (17) and (23) we get for the Jacobian
e? |
Lnd = --—-Jd?x A A (24)
2 U

and the generating functional after chiral rotation is:
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a2 SN L R
2(6,0) = [DﬂJDwDA exp[_f(—éF2 +& A2+ Tigv+Je > 8+6e > P} d2%x]
4 W oop M

with 6 and 6 the fermion sources and any Green's function can be

obtained from this generating functional?.

Thirring Model

This model is a purely fermionic model with lagrangean
- vy -1 ot @y
= Wlﬂw-; g (wvuw) (26)

but we can pass to an effective vector theory with generating func

tional as:

Z = JDwaDA exp{-[[m(ia+gﬁ)w-+i Aﬁ]dzx} (27)
2

We perform now the change of variables

irn(x)+ry5®(x)

Y(x) = e xr(X)
- - —irn(x)+ryg(x) (28)
Y(x) = xr(X) e
A (x) = 1 auvav¢(x).+i 2, (x)
g g

Analogously to what we have in the Schwinger model the Jacobian re
lative to this change of variables (28) can be computed by the

method developed in section II, and the result is:

g = - L szxw 5) 2 (29)
27 H
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Then the generating functional after the change of wvariables

(28) is:

- - 1 g2 , 1 , _ —invygd
7Z(0,9) = JD@DanDx exp{—fd?x[————(l+§L0£3u®) +--*~(8uﬂ) + xe
T

2g> 29*

0+

irn+y5® (30)

+Be x1}
with  and 6 fermion sources and again any Green's function can

be obtained from Z°.

Two-Dimensional QCD

We consider now the QCD lagrangean in two dimensions with the

SU(N) gauge group:

b - —iFUV'aFg\)%fﬁ(iﬁﬂ&)w (31)

Ls20

We choose the decoupling gauge introduced by Gamboa-Saravi,

Schaposnik, Solomin and Roskies, in this gauge the fieldlﬁlreads:

(32)

with 9 (x) taking values in the Lie algebra of SU(N).
Performing the non-abelian local chiral transformation (2) the

lagrangean becomes

Y5 (r-1)9 Yg(r-1)2 1
= s . 1 v
4& = ﬂr[lz-kle ge ]nr p ﬁnuaFa (33)

Again, for r=1 the fermion decouples from Au. Following refer-

ence 15 we define a vector Vi and a pseudo-vector PE by:
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—Ys(r—1)®

e 2. e

r
+

=V
u

r
4
P}l (34)

. r r T r
- nd =P ,}\.
with Vu Vu,axa a Pu u,aYS o

The square of the Dirac operator Dr is given as usual:

2
2 _ _ r __J_._ r
Dr = (au+Au) N euvYSFuv (35)
with
r r r r r
Flo = 9B, =3 ,A + [A,A]
(36)
r r . r
Au = Vu + lsuvYSPv

The Jacobian relative to the chiral transformation (2) can be
computed by using (11), (12), (17) and the property (8) with the
result:

1
Lnd = --l—fdzx{l Tr (KK) _J dar Tr (K"ATy 0)) (37)
27 2ch o cXY
which is the same result found in references 7,21. The first tem
is the non-abelian extension of the Schwinger mechanism, and the
second can be shown’ to correspond to the two-dimensional analog

of the Wess-Zumino functional.

V. FRACTIONIZATION OF THE FERMION NUMBER

Recently*’ Schaponisk developed a method to study the charge
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fractionization®*”*? for fermions in a soliton field. The method
consists in introducing a current:source term in the generating
functional and by performing a chiral change of variables to ob-
tain directly the term responsible for fractionization from the
Jacobian of this transformation.

We are going now to show that the method described in section
ITI is also suitable to obtain charge fractionization in the mod-
els studied in ref. 10.

Let us consider the two-dimensional model of massless . fermions

interacting with the external soliton field £, the lagramyﬁnlislz:

L . YSE
= P(if + ge )P (38)

In order to compute the fermionic current we define the gener

ating functional:

. YSE
Z{s] = JDEDw exp[-J@(i$-+$-+ge )Y d?x] (39)

with the source term SU for the bilinear form myuw.

We perform now the chiral rotation

[t}

Y (x) exp(-ysgr)n(x)
(40)

P (x)

n(x) exp(-v, £r)
2

where r is a real parameter varying from 0 to 1. The Jacobian re
lative to this transformation can be now computed by the method

developed in section II
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1
ng = J drfdzx tr [y5£<x|exp(—€D§) [x>] (41)
Y
0

with

Dr = lz+$+-2— Yueuv8v£+ge ( 2)
For an operator of the form:
= -3?2 3. 4 43
A d +P u-fQ (43)
with PU and Q matrix valued functions, following the  ~standard

steps?? it is easy to tabulate the diagonal part of the asymptotic.

expansion, the result is

-€A 1 1 _ 2
<x|e” "% x> > {1-e(Q-=(23,P P P )] +0(c?)} (44)

€+0 4dre 4

Then computing Di and using (41), (43) and (44) we get:

g = = szx[-laaza-zs e 3,6 +9%(l-cosh28)]  (45)
47 ML

2 U

Now, in terms of the new variables the generating functional is:

Z[s] = exp{-l;szx[—gliazg-sted aag + g?(l-cosh2&)1}
4T 2 H

JDﬁDn exP[—Jﬁ(iZ+¢+¢i+g)nd2XJ (46)

with au=ll€uvav£. Then differentiating with respect to SU and turn
2 =2
ing off s at the end we get
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1 62 1 C
J = == = — € 3. &+ (47)
H ss | 2r VYV J“
Hls-o
with
3 = =% pndet (ig+h+g) - (48)
H éau

Considering a slow varying £-field it may be shown that!?

32¢
g2

j, = €,,9,[const. + higher order terms in 32%&]. (49)

u uv

Then up to leading order in derivatives of & we obtain:

£ . (50)

1
J = — ¢ 9
o UV v

H

Thus we see that for a soliton field & we get the fractionization

of the fermion number from the Jacobian of the chiral transforma
tion.

We could make this analysis for a non-abelian extension of the

lagrangean (38) and to others two-dimensional models finding the

12

well known results?’ on charge fractionization.
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