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ABSTRACT

Within a real space renormalisation group framework, we dis
cuss the criticality of the fully anisotropic (arbitrary Jx, Jy
and Jz) g~-state Potts ferromagnet in simple cubic lattice. Sev-
eral already known exact results for the d=1 and d=2 particular
cases are recovered. Furthermore we obtain: (i) the g-dependence

of the d=3 correlation length critical exponent v, (in particu-

3
lar, if g~ 0, V3(q)'hv3(0)+ v;(th where the present approximate
values are v3(0) =1.105 and v§(0)=-0.66; (ii) the g-dependence
of the d=2 «+ d=3 crossover critical exponent ¢23 (in particular,
¢23m1//§'if g+ 0); (iii) through a convenient numerical extrapo
lation, a guite accurate proposal for the critical temperatures

corresponding to arbitrary ratios Jy/Jx and JZ/Jx and values

of q.
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I. INTRODUCTION

During recent years many works have been devoted to Ehe
g-state Potts model, both because of its theoretical richness and
itslexperimental utility (for an excellent review see Wu 1982).
However most of these works have focused the two—dimeﬁsional (d=2)
case (seeWw:1982, and de Oliveira and Tsallis 1982 and references therein).
Soiie e f£B#E has also been dedicated to the isotnopic d=3  fer-
romagnét ! (Bléte and Swendsen 1979), but we.are_n%%}gygﬁgagfnaqy

sf§@§ﬁ£€fcgétudy of the andsotropic d=3 case and its crossovers

BT i h

. work

i »snd brs

to lower dfmensions. This is the purpose of the . 9£§§%§t
{restricted however to the discussion. of the critical tempera-
ture T, and correlation length and crossover critical exponents
v and ¢) which follows along the real space renormalisation group
(RG) lines of de Oliveira anda)Tsalliﬁ 1?82 {which 15 herein recove;:ed
as particular qase).'By noting qc(é; the limiting value of Uvé
above which the phase transition is a first,qrder one (we recall
that 1im qc(d)=<»,qc(2)=4 and qc(3)§ 3; see Wu 1982 and de Maga
1hée;}:;§}Tsallis 1981 and réferencesvtherein), the present work
is restricted to qlch(d)° We present in Section I the model
and the formalism, in Section I ‘the RG:results, and in Section

IV the extrapolation procedure which provides accurate values

for T, corresponding to models with arbitrary anisotropy.

II. MODEL AND FORMALISM

Let us considér the g-state Potts ferromagnet whose Hamil-
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tonian is given by

W=-al Jaxac +3J.8

- L] CU. . 00 .' i " .'
(i.,j,k)l i3k %i4,5,k Y %55,k %, 542,k

+ J 6
2 94,5 %, 5,k }.,

(foo;a§,.rzgo) W
where (i,3j,k) runs over all sites of a simple cubic lattice and
ik = 1,2,...,9,¥(i,3,k). We briefly recall the present status
of knowledge of the criticality ('rc, v and ¢) of this modelv: )
i) for d=1 (i.e., Jy=Jz=0) the critical temperature Tc vanishes,
éﬁé the correlation length critical exponent satisfies

(2)

vV

~-e

1=l ’ Vq

[

ii) for d=2 (i.e., Jz=0 and Jy>0) T. satisfies

-qJ_/kgT -qJ_/kyT,

[1+(g-1) e “lile(g-1)e 7 " €1 = q (3)

and the corresponding critical exponent is given by (den Nijs 1979)

v, = %{2 + n/ [arc cos(-;- Vg) -n137t (4)'

iii) the d=1 to d=2 and d=1 to d=3 crossover critical exponents
(respectively ¢12 ard ¢13) are commonly believed to satisfy
(Redner and Stanley 1979, de Oliveira and Tsallis 1982 and refer-

ences therein)

¢12 = ¢33 =1, Va (5)
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iv) for the isotropic d=3-case (i.e.,Jx=Jy=Jz), T. is given by
prnt T . ,

L0 . By
3.52 +0.05 for g=1 (from Gaunt and Ruskin 1978) (6.a)
kT /qd = < 2.2556 + 0002 for q=2 °(from Zinn-Justin 1979) (6.b)
| .1.8169 } for g=3 (from Jensen and Mouritsen 1979)
}, (6.c)
where the g=1 value has been obtalned from P, =0.247 £ 0.003 by
-J_/k T
- using the Kasteleyn and Fortuln 1969 1somorphlsm (p l-e.wﬂ/ )

with bond percolation, and where we_reqa}%”tbat pp% q=§{“_case
might be slightly first order; the corresponding critical ex—

- ponent is given by . 17
0.88 for g=1 (Heerman and Stauffer 1981) (7.a)

0.630 £ 0.0015 for g=2 (Le Guillou and Zinn-Justin 1980) (7.b)

k Lo b

v) For the d=2 to d=3 crossover exponent ¢23 the following re-

sults are available:

1.75 for g=1 : (Redner and Stanley 1979) (8.a)
¢ =
23
7/4 (exact) for g=2 (Liu and Stanley 1972, 1973, Citteur
' it +and Kasteleyn 1972, 1973)

(8.b)

Before presentlng our RG formallsm, let us define a few

convenient varlables (Tsallls and Levy 1981, Tsallis 1981):

b , qCT /KT
R T 1Ret oy
o —qJ /k T

e10,11""" (a=x,y,2z) =~  (9.a)
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(referred to as thermal transmissivity)and

£n(1l+(g-1)h(d)t ]

séd) z s(d)(ta) & 10,11 (a=x,y,2) (9.b)

£nfl+(g-1)h(d)]

where (Tséllis and de Magalhées 1981, de Magalhées and Tsallis
1981) the pure number h(d) sensibly depends on dimensionaiity d
and very slightly on the particular d-dimensional lattice (h(2)=1 for
square latﬁice, éndvh(3)=0.377 + 0.044 for simple cubic lattice).

If we have a series (or parallel) array of two bonds with
transmissivities t; and t,, the 6verall transmissivities (respec

tively ts and tp) are given by

t = t.t (series) (10)

s 172
and
D D.D
tp = t,t, (parallel) (11)
where
D 1-t,
;) (i=1,2,p) (12)
l+(g-1)t,

(D stands for dual). We can also verify that h=1 (square lattice)
implies |

g(2) () = 1-s(2) (v) (13)

'We can now introduce our RG framework. Following along the
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lines of the de Oliveira and Tsallis 1982 treatment of the sqguare
lattice case, we éstablish the RG recursive relations by renor-
malising the b=2 cell indicated in Fig.l (g,h) into the b=1 cell
in Fig. 1(d) (b denotes the size of the cell, and coincides with
the linear scaling factor). The recurrence is based upon the
preservation of the partition function, and can be economically es
tablished by using the Break-collapse method (Tsallis and Levy

1981). We obtain
L - .
tx -_Rb(tx,ty,tz,q) (14)

where Rb(tx,ty,tz;q)éRb(tx,tz,ty;q) is a ratio of pdlynomials
(in the t's) too lengthy to be reproduced herein (the numerator
and denominator contain more than 1600 terms each). The
sum of the coefficients of the numerator coincides with that cor
responding to the denominator and is given (Tsallis and Levy
1981; Essam 1982) by qK where « = cyclomatic number = [ (number of
bonds) - (number of sites) +1] (for the two-terminal graph of
Fig. 1(h) it is k=20). It is worthy to note that Rb(tx,ty,o;q)
recovers Eg. (12) of de Oliveira and Tsallis 1982.

The rest of the RG recursive relations is given by

R, (tyt, /t, i) (15)

ct
L
i

rr
]

Rb(tz,tx,ty;q) (16)

where the equivalence of the x,y and z axes has beén taken into

account. By studying, for fixed g, the RG flow (in~ﬂua(tk,ty,tz)-

-space) determined by Egs. (14)-(16) we can obféin the fixed
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points, the para-ferromagnetic separatrix, as well as the relevant
Jacobians a(t;,t;,t;)/a(tx,ty,tz), which in turn determine the

critical exponents v and ¢.

II. RESULTS

Our results are illustrated in Fig. 2. Egs. (l14)-(16) pro-

éz) (2) (2)

vide the following fixed points: (i) ( x,sy.sz)-—-(O,O,O)and(l,l,l)

are fully stable, and correspond respectively to the para-and
ferromagnetic phases; (ii) (1,1,0), (1,0,1) and (0,1,1) are semi
stable ones, and belong to the ferromagnetic region; (iii) (1,0,0),
(0,1,0) and (0,0,1) are fully unstable ones, and correspond to
the d=1 case; (iv) (1/2,1/2,0), (1/2,0,1/2) and (0,1/2,1/2) are

semistable ones, and correspond to the d=2 isotropic case; (v)

(523),5(3),s§3)) is a semi-stable one, and correspords to the d=3

c
(3)

isotropic case (sc

softly depends on q; see Fig. 3).
(2) , (2)
X y
=0 (and the equivalent ones), thus reproducing the exact d=2

The RG critical surface contains the line s = 1 at

+(2)
result expressed in Eq. (3). The performance at the isotropic d=3
fixed point is not comparable to the d=2 case, as the RG pro-
vides, for g=1, tc= 0.2260 (instead of 0.247, corresponding to
Eq. 6 (a)), for>q=2, t.= 0.1949 (instead of 0.21811, corresponding
to Eq. 6(b})), and, for g=3, tc= 0.1750 (instead of 0.1966, corre-
sponding to Eq. 6{(c)). The results obtained for TC for arbitrary
.anisotropy ratios Jy/Jx and Jz/Jx are indicated in Table I.

The Jacobian at the d=1 fixed points is fully degenerate and

its unique eigenvalue A(l) equals 3. It can be shown that )\(1)=2b-—1
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1,

for arbitrary value qf b, therefore v, = l_;L_:i;rr‘:oﬁn.b/l’_n(Zb--l)
thus recovering the exact Eq. (2). The degeneracy of this Jaco-
bian implies that both d=1 + d=2 and d=1 < d=3 crossover expo-
nents ¢12 and ¢13 equal un;ty, thus confirming Eqgq. (5).

At the d=2 fixed points the Jacobians are as follows. Let
us analyse for instance the=(ézaéf{é:%=(l/2,l/2,0) fixed point

{the others are analogous);kits Jacobiaﬁ has the following form

a(g) . bla)  clq)
blg) al(q) c(q) (17)
0 0 d(q)
The eigenvalues are
(2)
>\1

= alq) +b(g) = (2025+11160/q + 26580qg

2 3

35792q3/% 4 2985242 + 15816q°/

+

+5207q

+ 976q7/2 +80q4)/(2025+8820/§+16804q

+ 18290q°/% + 12444q2 + 54249°7%+ 148143
+ 23297'% +169%) (18)
¢
11 +22/5 if g-»0 (18')
45
¢
15(1-22 L) if g-o (18")
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A2 = alq)-blq) = (101258865073 +342860q

+ 781853¢°/% + 1178008q2 + 1240724¢>'2

+ 939667q° + 516906q /% + 205408q"

2

+ 57611g°" 1/2

+ 10844q° + 1232972 « 649°) /(91125

+ 595350/ + 1782540q + 3234167q°2

+ 3960600q% + 3449388g°/2 + 219134343

+ 1023534q"/% + 349008q* + 847732
+ 3932q° + 1392172 4 64qb) (19)
2142275 if g0 (19')
9 9
y
l_é _l.., if qg-—>o (19u)
2 /q

and A§2) = d(g) (too lengthy to be reproduced herein; it mo-

notonically decreases from about 8.1 to about 3.3 when gq in-

creases from 0 to 3). The respective eigenvectors are (1,1,0)

(1,-1,0) and (1,1, 3{*) (@-1{2) (q))/c(q)). Eas. (18) and (19) re-
cover respectively Egs. (13) and (14) of de Oliveira and Tsallis 1982.
We verify that X{z)(q)zlz)\éz)(qbo,‘v’q >0,and that )\(32)((;) Zx(lz)(q)(x(f)(qy >$12)(q))
if 9 <g*(q>qg*) where g* =5. The coefficient c(q) monotonicaliy
increases from roughly zero to roughly 10 when g varies from
zero to infinity; consistently the eingenvector associated with
k§2)(q) is roughly along the (1,1,1) direction for q varying
. let us say between 1 and 3. Within the present b=2 RG approxi-

mation the critical exponents are given by Vo =£n2/£nk§2) and
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$,4 =£nk§2)/£n1{2): see Figs. 4 and 5 and Table II.
The Jacobian at the d=3 fixed point (tx=ty=tz=t§3)(q)) is

as follows:
e(q) - flq) £(q)

£(q)  eld) £(q) (20)

f(q) f(q) e(q)

The eigenvalues are

AP s e@ + 2£(a) (21)

and

x§_3) - x§3) = elq) - £(q) (22)

and the eigenvectors are respectively (1,1,1) and any vector
perpendicular to (1,1,1). We verify )\§3)(q) _>_l_>_)\§3)(q)> 0, vq>0.
The corresponding approximate critical exponent is given by
Vy = £n2/£nki3) (see Fig. 6 and Table II); X§3)(q)nomﬁxmrxﬂly

increases from roughly zero to 1 when g varies from zero to in

finity.

IVv. EXTRAPOLATION FOR THE CRITICAL POINT

In the present Section we describée an ad hoc extrapolation
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procedure for the critical temperature T. for an arbﬂusz value
of q. We take advantage from the fact that the anisotropic d=2
RG result is the exact one for all g, and that the isotronic d=3 RG
result is not too bad (at least for g=1,2,3, whers comparison with other
results is possible). It essentially consists in "pushing" the center
(s£2)=s;2)=s;2)=séz)) of the RG critical surface in the (éf),séz),séz))
-space (see Fig. 2), until it coincides (by immosition) with the best value
(noted Syt usually from series) available in the literature for
that particular value of gq; the effects of this "pushing” mo-
notonically and softly dec;ease while going from the center of
the critical surface to its periphery, eventually vanishing on
352) =0 or

the anisotropic d=2 limiting case (i.e. Sy =0 or

siz) = 0) where, as said before, the exact result is reproduced

by the RG. As no confusion can occur in the present Section,

éZ) is given by Egq. (9b) with

we use SuE séZ)(azzx,y,z), where s
h(2)=1. Summarising, the input, for a given g, of the extrapola
tion procedure is the RG critical surface and the "exact" value
for the isotropic d=3 criéical point.

We consider, in the (sx,sy,sz)-space (see Fig. 7.a), the
point P (onthe RG critical surface and not belonging to the tri-
sectrix sx=sy=sz) to be extrapolated; its coordinates are noted
(sz,sg,sg) and conventionally satisfy 1> sz > ss > SZ >0 (every
other region is directly associated with this one through trivial

symmetry transformations). This point and the trisectrix determine

a unique plane whose equation is given by

s -8, sP.gP

y =22 :=g¢ (0,1] (23)
S -8 sP_gP

X 2 X Z
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This plane and the plane

i
=

S. + S_+ S (24)
y k-4
(which contains all three exact d=2 critical lines, e.g.,sx+sy=l
for s,=0) determine a unique straight line. This line cuts the
~0 plane at the point (s(z> ,s)(,Z) ,0) and the sx=0 plane at the point

(0 ,séx),SEX)), where

siZ) = 1/(1+q) (25.a)
552) = g/ (1l+g) (25.b)
s§X) = (1-9)/(2-9) - (25.¢)
s{¥) - 1/(2-9) (25.d)

Thisline also cuts the trisectrix at the point T with coordinates

(1/3,1/3,1/3) . If we consider now the triangle determined by the points

(0,0,0), (siz) § ) ,0) and (0, s;X) ix))

mediately obtain that

(see Fig. 7.b), we im-

2}
1}

L= L3 s (1/3-570) 2 4 (1/3-500) 217 (26.a)

ai
L}

, =+ 1/3=s{" 7+ 1/3-s{) 2 s qm )t 26.m)

where r, and r, are defined in Fig. 7.b (r1 and r, respectively

correspond to (s(Z) (Z) ,0) and (O, s(X) §X))). The angle 6 de-

fined in Fig. 7.b is determined by
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s§+s§+s§
cos 0 = (27)
/3 sP
where
P = Py 2 Py 2 Py 2
sP = /(sx) +(sP)? + (s) (28)
The quantity r? defined in Fig. 7.b is given by
p_ tan® _
r‘¥ = - —;%—- e[ r2,r1] (29)
Obviously sP < [1/3 « (zP) 2112,

The value sP is going to be extrapolated into sexthrough the re

lation

s - sP[1+F(rP)] (30)

where the extrapolating function F(r) is assumed to satisfy the

following conditions:

(1) F(rl) = F(-rz) =0 : (31l.a)
3 s,
(ii) F(0) = -1 H (31.b)
SP
fiii) F(r) maximal at r=0 . (31.c)

The simplest polynomial which satisfies these conditions is

F(r) = F(0)[1-Ar?-Br?) (32)
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3 2
r + T
A = — 2 1 : , (33.a)
2 3 A O IR L T P .
r, r, +T,°Y,
and
T 1-ar. 2
B Z b (33.b)
: _ ;
Ty

Finally the coordinates of the extrapolated point are given by

_k(a:=x,y,z) (34)

In spite of its apparent complexity, the implementation in
computer of this extrapolating algorithm is very simple. The op
erational steps are as follows: ‘(i) given (si,sg,sz), g is cal-
culated through Egq. (23), and aiSenséf), S;Z), s;x): and s£X)

through Eqgs. (25), hence r anderﬁ {through Egs. (26)) and fi-

1
nally A and B (through Eqs. (33));" (i"i)j:(é'i,sg,srz’)‘ ‘also determine
6 and sP through Egs. (27) and (28), which in turn determine rP
through Eg. (29); (iii) S, (taken from the literature) and sP
determine F(0) through Eg. (31.b); (iv) the knowledge of A, B,
r? and F(0) determines F(rP) through Eg. (32), hence g% (through
Eqg. (30)) and finally (szx,ssx,six) through Eq. (34).

The results obtained by using the above algorithm are in-
dicated in Table I. In order to test the confiability of our re
sults we have compared them to series calculations available for
g=1 (Fig. 8.a) and g=2 (Fig. 8.b) for the particular cases
0< JZ/Jx < Jy/JX =1 and 0< Jy/Jx = Jz/Jx < 1l. The agreement is very
satisfactory (the discrepancy in the t-vériable is always smaller

than 0.01).



CBPF-NF-062/83

- 14 -

V. CONCLUSION

We have discussed, within a real space renormalisation qgroup
framework, the g-state Potts ferromagnet in the fully anisotropic
(arbitrary Jx, Jy and JZ) éimple cubic lattice. The g-dependences
of the critical temperature TC, the one-, two- and three-dimen-
sional correlation length critical exponents Vir Vo and Vi and
the d=1«d>1 and d=2 + d=3 crossover critical exponents ¢1d
and ¢23 are analysed in the second order phase transition region
(g for d=1, g<4 for d4=2; and q_<_qc(3) =23 for d=3).

The present renormalisation group reproduces a considerable
amount of already known exact results such as tél) =V, =¢1d:=l,
¥vq, for d=1, t =1/(/g+1) for d=2, etc; it also recovers, in
the g+ 0 limit, the correct asymptotic behaviour v2<&l//§.ﬁhgg
ever our numerical results do not coincide with available exact
or series ones, the discrepancies are acceptable. Furthermore the
universality classes we obtain are as commonly expected, i.e. the
d=3 one for all values of Jk, Jy and JZ as long as none of them vanishes,
and the d=2 one when only one among them vanishes. The general vpicture in-
spires reasonable confidence, and therefore we tend to believe that the g~0
d=3 results ¢23°=‘l//('f, t((:3)(q) ’\Jt£3)(0) +t£3)'(0)q and Vg (a) %v3(0) +\)3'(0)q (with
finite values for t£3)(0),t£3)u0), v3(0) and vg(O)) are correct.

We havevalso developed an extrapolation procedure for Tc
which has proved to be quite satisfactory whenever comparison
with other available results (typically from series) was possible,
namely for the 0 _<_JZ/JX _<_Jy/JX =1 and 0 _<_Jy/Jx = JZ/Jx <1l par-
ticular cases of the g=1,2 models. Through this procedure we

have calculated T, for arbitrary ratios Jy/JX and Jz/J and
: X

values of g (the g=3 results are probably almost unaffected by
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the fact that the transition might be slightly first order). A
theory which enlarging the parameter space, would succeed in
recovering the existence of first order phase transitions would
be very wellcome. If alternatively the present RG is understood.
as refering to the hierarchical lattice defined by Fig. 1(h),
then all the results it provides are exact for g2 0.

Useful remarks from ACN de Magalhaes, EMF Curado, M
Schick, PMC de Oliveira, PR Hauser and WK Theumann are grate
fully acknowledged. One of us (LRS) has benefited from a CNPqg
Fellowship (Brazilian Agehcy); CT acknowledges partial sup-

port through the tenure of a Guggenheim Fellowship.
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CAPTION FOR FIGURES AND TABLES

Fig. 1 - RG cells and their equivalent two-rooted graphs; the ar

Fig.

Fig.

Fig.

Fig.

2 -

3 -

4 ~

5 -

rows indicate the entrance and exit points of the cells;
O and @ respectively denote terminal and internal nodes
of the graphs; tx, ty and tz are the transmissivities
along the three crystal-axes. (a), (b) and (c) have been
used (de Oliveira and Tsallis 1982) for the d=2 case
(the cluster (c) is renormalized into the cluster (a)).
(d) - (h) correspond to the d=3 case (the cluster (g), or
equivalently the graph (h), is renormalized into the

cluster (d)).rig. (g) is the d=3 extension of the cen-
tral cluster of Fig. (c); Fig. (h) is the d=3 extension
of the right graph of Fig. (c); because of its comple-
xity, we haveomited the indication of the d=3 extension
of the left cluster of Fig. (c).

Para(P)-ferro(F) magnetic critical surface in the (éif),séz),séz))
space. The arrows indicate the RG flow. The main fixed
points are indicated: A (ferromagnetic) and A (paramag-
netic) attract all the points respectively above and be-
low the critical surface; [J, O and ® respectively are
the d=1, d=2 and d=3 critical fixed points.
g-dependence of the RG critical point corresponding to.
the isotropic d=3 model (notice the ordinate scale). The
dots are series results: g=1 (Gaunt and Ruskin 1978),
g=2 (Zinn-Justin 1979) and g=3 (Jensen and Mouritsen 1979).
g-dependence of the d=2 correlation length critical ex
ponent v,: RG (——) and exact (---;den Nijs 1979).
g-dependence of the d=2 «< d=3 RG crossover expmxaﬁ:¢23.

The dots are series (®; Redner and Stanley 1979) and
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exact (0; Liu and Stanley 1979,1973,Citteur and Kasteleyn
1972,1973).

Fig. 6 - g-dependence of the d=3 correlation length critical ex-

Fig. 7 -

Fig. 8 -

Table I -~

Table II -

RG ( )and series (@; Heerman and Stauffer

ponent v

1981 for g=1; Le Guillou and Zinn-Justin 1980 for g=2).

Geometric constructions related to the extrapolation

procedure (see Section IV): (a) the(siZ),séz),séz))
space; (b) the triangle determined by the points O, P and

T of (a).

Present extrapolated results ( ) for the critical
point corresponding to the particular anisotropic d=3
case where two coupling conétants are assumed equal
(EQi) and the third one (E.%‘) eventually different.
We have the isotropic d=1, d=2 and d=3 cases at the
ordinate, abcissa and bissectrix respectively. (a)
g=1; the dots are series results (Redner and Stanley
1979); (b) g=2; both dots (Oitmaa and Enting 1971)
and circles (Paul and Stanley 1972) are series re-
sults.

Critical points (kBTc/qJX) for the anisotropic d=3
model: RG (top) and extrapolated (bottom) values.
* inﬁicates exact results (see for example .
Wu 1982) for the isotropic d=2 case; §, & and §§ are
series results (see the text and Fig. 3) for the iso
tropic d=3 case.

Present RG and exact (or series) results for the criti
cal point t. and exponents v and ¢ for the isotropic

d-dimensional models. (a) Wu 1982 and references
therein; (b) den Nidis MPM 1979; (c) Redner and

Stanley 1979; (d) Liu and Stanley 1972,1973; Citteur
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and Kasteleyn 1972; 1973; (e) Gaunt and Ruskin 1978; (f)
Zinn-Justin 1979; (g) Jensen and Mouritsen 1979; (h)
Heerman and Stauffer 1981; (i) Le Guillou and Zinn-Jus

tin 1980.
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(a) q=1
3 /3, |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
3 /3
Z X

. 0.5548 | 0.7112 | 0.8349 | 0.9421 | 1.0390 | 1.1287 | 1.2129 | 1.2928 | 1.3692 | 1.4427
0.5548 | 0.7112 | 0.8349 | 0.9221 | 1.0390 | 1.1287 | 1.2129 | 1.2928 | 1.3692 | 1.4427"
o 1.0592 | 1.2643 | 1.4255 | 1.5646 | 1.6896 | 1.8047 | 1.9125 | 2.0145 | 2.1117 | 2.2049
. 1.0229 | 1.2104 | 1.3612 | 1.4934 | 1.6139 | 1.7260 | 1.8317 | 1.9322 | 2.0284 | 2.1210
o - 1.4912 | 1.6689 | 1.8216 | 1.9584 | 2.0840 | 2.2013 | 2.3121 | 2.4174 | 2.5183
. - 1.4061 | 1.5636 | 1.7024 | 1.8293 | 1.9479 | 2.0601 | 2.1670 | 2.2696 | 2.3686
- - 1.8592 | 2.0223 | 2.1682 | 2.3019 | 2.4266 | 2.5440 | 2.6557 | 2.7625
0.3 _ - 1.7259 | 1.8690 | 2.0002 | 2.1231 | 2.2394 | 2.3506 | 2.4575 | 2.5607
oa - - - 2.1942 | 2.3476 | 2.4882 | 2.6190 | 2.7421 | 2.8551 | 2.9708
. - - - 2.0158 | 2.1504 | 2.2766 | 2.3963 | 2.5107 | 2.6209 | 2.7273
- - - - 2.5078 | 2.6543 | 2.7905 | 2.9186 | 3.0402 | 3.1563
0.5 - - - - 2.2882 | 2.4172 | 2.5397 | 2.6569 | 2.7698 | 2.8789
- - - - - 2.8061 | 2.9472 | 3.0798 | 3.2055 | 3.3256
0.6 - - - - - 2.5480 | 2.6739 | 2.7935 | 2.9088 | 3.0203
. - - - - - - 3.0927 | 3.2294 | 3.3590 | 3.4826
-7 - - - _ - - 2.8012 | 2.9232 | 3.0406 | 3.1543
e - - - - - - - 3.3699 | 3.5031 | 3.6300
' - - - - - - - 3.0472 | 3.1667 | 3.2824
- - _ _ _ - - - 3.6395 | 3.7696
0.9 _ _ - - - | - - - | 3.2882 | 3.4057
| _ _ _ _ - - - - - | 3.9026
1.0 - | 3.5250°




(b) q=2
I/
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
J_/J
Z X
. 0.4529 | 0.5708 | 0.6644 | 0.7462 | 0.8205 | 0.8897 | 0.9550 | 1.0172 | 1.0769 | 1.1346
0.4529 | 0.5708 | 0.6544 | 0.7462 | 0.8295 | 0.8897 | 0.9550 | 1.0172 | 1.0769 | 1.1346*
- 0.7276 | 0.8578 | 0.9631 | 1.0555 | 1.1398 | 1.2183 [ 1.2925 | 1.3631 | 1.4300 | 1.4964
. 0.6993 | 0.8165 | 0.9141 | 1.0018 | 1.0823 | 1.1501 | 1.2316 | 1.3012 | 1.3682 | 1.4332
0.5 - 0.9967 | 1.1690 | 1.2075 | 1.2972 | 1.2¢06 | 1.4593 | 1.5321 | 1.6059 | 1.6751
- 0.9323 | 1.0295 | 1.1184 | 1.2005 | 1.2792 | 1.3540 | 1.4261 | 1.4958 | 1.5634
0 - - 1.2270 | 1.3304 | 1.4243 | 1.5116 | 1.5939 | 1.6721 | 1.7470 | 1.8192
. - - 1.1275 | 1.2164 | 1.2098 | 1.3791 | 1.4553 | 1.5289 | 1.6002 | 1.6696
- - - 1.4379 | 1.5355 | 1.5262 | 1.7i15 | 1.7926 | 1.8702 | 1.9449
0.4 - - - 1.3053 | 1.3898 | 1.4700 | 1.5472 | 1.6219 | 1.6944 | 1.7652
o s - - - - 1.6365 | 1.7301 | 1.8181 | 1.9018 | 1.9818 | 2.0588
: - - - - 1.4746 | 1.5556 | 1.6336 | 1.7092 | 1.7828 | 1.8546
o - - - - - 1.8264 | 1.9169 | 2.0029 | 2.0851 | 2.1642
. - - - - - 1.6373 | 1.7162 | 1.7927 | 1.8671 | 1.9399
_ - - - - - 2.0098 | 2.0979 | 2.1821 | 2.2630
0.7 - - - - - - 1.7958 | 1.8732 | 1.9485 | 2.0221
_ _ _ - B _ - 2.1880 | 2.2741 | 2.3568
0.8 - - - - - - - | 1.9513 | 2.0274 | 2.1019
- - _ _ - - - - 2.3619 | 2.4463
0.9 _ _ _ _ _ _ - - 2.1044 | 2.1796
_ - - - - - - - - 2.5323
1.0

2.2556%
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TABLE I

(c) q=3
. Jy/Jx
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
J /3
Z X
. 0.4060 | 0.5066 | 0.5869 | 0.6572 | 0.7213 | 0.7813 | 0.8380 | 0.8923 | 0.9445 | 0.9950
0.4060 | 0.5066 | 0.5869 | 0.6572 | 0.7213 | 0.7313 | 0.8380 | 0.8923 | 0.9445 | 0.9950"
o1 0.6044 | 0.7072 | 0.7918 | 0.8670 | 0.9360 | 1.0008 | 1.0622 | 1.1211 | 1.1778 | 1.2327
) 0.5820 | 0.6749 | 0.7537 | 0.8251 | 0.8917 | 1.9548 | 1.0150 | 1.0730 | 1.1291 | 1.1836
0.2 - 0.8144 | 0.9028 | 0.9814 { 1.0537 | 1.1214 | 1.1857 | 1.2472 | 1.3065 | 1.3638
’ - 0.7642 | 0.8413 { 0.9123 | 0.9791 | 1.0429 | 1.1043 | 1.1636 | 1.2213 | 1.2774
0.3 - - 1 0.9945 | 1.0761 | 1.1510 | 1.2212 | 1.2878 | 1.3515 | 1.4128 | 1.4721
) - - 0.9174 | 0.9878 | 1.0547 | 1.1187 | 1.1807 | 1.2408 | 1.2993 | 1.3565
0.4 - = - 1.1602 | 1.2374 | 1.3098 | 1.3783 | 1.4439 | 1.5070 | 1.5681
) - - - 1.0580 | 1.1249 | 1.1892 | 1.2515 | 1.3122 | 1.3714 | 1.4293
o5 - - - - 1.3168 | 1.3911 | 1.4614 | 1.5287 | 1.5934 | 1.6560
) - - - - 1.1918 | 1.2564 | 1.3191 | 1.3802 | 1.4399 | 1.4985
0 - - - - - 1.4671 | 1.5391 | 1.6080 | 1.6742 | 1.7382
6 - - - - - 1.3213 | 1.3843 | 1.4459 | 1.5061 | 1.5652
0.7 - - - - - - 1.6127 | 1.6830 | 1.7506 | 1.8159
’ - - - - - - 1.4478 | 1.5098 | 1.5705 | 1.6301
- - - - - - - 1.7546 | 1.8235 | 1.8900
0.8 _ _ _ _ - _ - 1.5723 | 1.6335 | 1.6936
0.5 - - - - - - - - 1.8936 | 1.9613
: - - - - - - - - 1.6952 | 1.7557
- - - - - - - - - 2.0300
1.0

1.8169"




TABLE II

q-+>0 q-= 1 gq=2 g=3 g=4
1 1 1 1 1
(] Reve) |
[od
a a a a a
exact. 1 1 1 I I
d=1
RG (¥b) fn b b fnb_ Inb Inb
£n(2b -1) In(2b-1) | &n(2b-1) In(2b~1) { £n(2b-1)
\)l a a a a a
exact 1 1 1 1 1
RG (¥b) 1 1 1 1 1
(bld a a a a a
exact 1 1 1 1 1
RG(Vb) | ~1 - /g 1/2 vYZ-1 | 1/(/3+1) 1/3
£ @
C a a a a a
exact vl - Vg 1/2 VZ-1 1/(/3+1) 1/3
d=2
RG(b=2) | 42402.0.600 | 44 0.864 | 0.785 0.738
52/9 V9
o) 5 5 B B 5]
exact T 21047 | ,4/3.1.333) 1 5/6 =0.833 |2/320.667
3/g  Yq
2
RG(b=2) = 2.258 1.637 1.346 1.163
7a
¢23 c d .
exact - 1.75 1.75 - -
or series
RG(b=2) |=0.294-0.11q| 0.2260 0.1949 | 0.1750 -
e -
e e £ g
series - 0.247 0.21811| 0.1966 -
o RG(b=2) |=1,105-0.66q| 0.756 0.657 0.606 -
V3 i 1
series - 0.88 0.630 - -




