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ABSTRACT

4

Eigenvalues and eigenfunctions of the operator + V{r) are

dar®
discussed for different examples. A generalization of the usual har
monic oscillator is discussed for fourth order equations . in the Ap

pendix.
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1 INTRODUCTION

For several reasons, it is interesting to consider differential
equations of order higher than the second. For example, they ap-
pear in discussions of gquantum gravity'. Also in.an extension of
supersymmetric Weiss-Zumino theories of higher dimensions?’® it

was obtained a generalized Klein-Gordon equation of the form
y
0 + (m?) ¢ =0 . (1)

This equation, for d=4,gives the usual Klein-Gordon equation and

for d=6
0D0¢ +m*¢ = 0 . (2)

Several arguments have been advanced to try theories in spaces
of higher dimensions. Once they have been accepted into the game
then, for the reasons mentioned above, higher order equations might
also be considered in it.

Therefore, it is justified to try to gain some experience about
the properties of systems obeying higher order equations.

To go from the higher order Lagrangians to a Hamiltonian sys-
tem would require a detailed analysis. In order to simplify mat-

ters we will assume the following equation for stationary states:
HYy = EY (3)

with
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H = V7% &+ v(x) , (4)

and we will discuss this equation for different potentials V(r) and
for spherically symmetric solutions.

In Section 2, in order to jllustrate the main line of the method,
we revisit the usual hydrogen atom.

In Section 3, we discuss the case in which V(r) is a § function.

In Section 4, the potential V(r) =-o/r is considered. This is
the Green's function of the bilaplacian operator in five dimensions.

In Section 5, boundary conditions are discussed. Finally, in
two appendices we show briefly an equation of the fourth order with
solutions parallel to that of the usual harmonic oscillator and e-

laborate on the conditions of self-adjointness.
2 THE HYDROGEN ATOM REVISITED
In order to illustrate the method we shall follow for the fourth
order, we first consider the usual second order Schrédinger equa-
tion for the spherically symmetric solutions of the hydrogen atom
(-2 -2)¥ = EY (5)
which, with ¢=¢/r, can be written as

2
M+%¢=—E¢. (6)

We shall use the Laplace transform (L)
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c+iw o
¢(r) = Elﬁ ]e"%(p)dp. ¢(p) = [e“"'ur)a:. (n

c~im 0

We look for a solution with physical boundary conditions
¢0) =0, d(o) =1 . (8)

Taking into account that (Ref. 5, p. 129)

L(% ¢(r)) = Itb(p')dp'r (9)
. P

we get for ¢(p):

p?é(p) +GI¢(pﬂdp“+E¢(p) = 0 (10)
P
and after taking the gderivative,
2 d¢
(p°+E) ap " (2p-a)¢ip) =0 (11)
which on integration leads to
o
. 2ivE
¢(p) = —— |B2X2 . (12)
p?+E \p+ivE
which is valid for any real E.
For E <0 it is convenient to write (12} in the form
o
| 172 2]e| 172
.1 p-1E| |
p*-|El \p+|E]

where we used E ==|E]|.
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e
) 8, 8,
The Laplace anti-transform (L™') of (p~A;) "(p-1,} © is (Ref.
5, p.238)
B 8 -61-82"1 Alr
L7 p-2,) Hip-xy) %) = E =
| I (=8,-8,)
X lFl(—Bz:-Bszls(Az-kllr). | {(14)

To find out which values of E correspond to eigenfunctions we must

look for the behavior of .F. as r »«, We have, for the asymptotic

11
behavior of |F, (Ref. 5, p.278)
I (-8,-8,) B 1/2
F.(-B,;~B,~B :2|E|”2r) - b (2|E|”2r) ! tazh?“| r
1Fy (=Bpi=By=By
r(-8,)
(15)
where we used 11=-—|E|1,2 and 1, =|E|1/2. Thus, for r +=,
-8.-1
g 2 1/2
o(r) + 2]g|'/H Y E— elEl"7x (16)

T (-8,)

This shows that ¢(r) diverges unless we have 82=n where n is a po-

sitive integer. That is, from (13),

o
Bz b ——Tﬁ - 1 =N (17,
2|E|
or
. az
E o —— fOI‘ n=0’1'2,|.- (18}
4(n+l)?

In short, th= asymptotic behavior can be directly obtained by
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noting that the behavior for large r is dominated by the singula-
rity (p-l)B which has the largest real part of A,

In fact,

Ar

- B e
L™ (p-A)" = — (19)
Pi-gye-*l

which leads formally to (17) and (18).
With positive E, éhe singularities appear on the imaginary axis
(see (12)) and this leads to scattering states for any value of E>0.
It is worth noting that equation (11) gives information about
the locations of singularities and energy eigenvalues even without
knowing its explicit solutions. We assume that near a -singularity
A, ¢(p) has the form

o(p) = (p-MB + 0((p-2)B*?

) .  (20)
Replacing.in (11) we have

[(P—X)z + ZX(p—l) q.lz +E]B(p—)\)8-1

_ (21)
+2[2(p-)) +2x=a] (p=2) P = 0. -
B+1
Disregarding (p-2}) we get
A2 s =E , A= —2__ | (22)
2{8+1)

When the energy ‘is vositive, these singularities are located on

the imaginary axis giwving the scattering states. When the energy

is negative, the singularities lay on the real axis at l=i|E|1/2h
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In order to avoid the singularity on the right hand side plane, 8
should be chosen equal to a positive (or zero) integer leading to
form (17).

Going back to (B) we want to point out that ¢(p) goes to zero
like 1/p? when |p| +=. As it has no poles on the right hand side
of the p-plane, for r=0 one can close the.integration path in (7)

with a semicircle to the right. We then see that ¢{(0)=0,but $(0)£0.

3 6-FUNCTION POTENTIAL

We now want to find the spherically symmetric solution of the

equation

9292y ~ad3(F)Y = EV . (23)

We first look for a solution of (23) which outside the origin is
a "free" equation. The boundary conditions at r=0 are left open so
as to be able to adjust them to generate the $-function potential.

We choose Y=%/r and obtain for r#0

i
_Z_Ji = E¢ . (24)
r

Taking the Laplace transform we get (Ref. 5, p.129)

(p*-E)}d(p) = p ¢(0) +p?¢'(0) +pd* (0) + ¢''' (0). (25)
If ¢$(0)#0 then ¢ has a 1l/r singularity. Sincev"-(%) =8(7) and vzvzt%}-“-

v25 this leads to a singularity not contained in equations (23) or

{24); so we must impose ¢(0)=0, that is
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(o) = ¢'(0) . (26)

Thus, in (25) we drop the p’~term and obtain

¢lp) = RI$1(0)+ps''(0) +4 " (0)

) (27)
where the Xi are the four roots of the equation
#
A = E . (28)

Let us first look for solutions with negative E=—|E|. Explicitly,

A, = 1L || 1/é

1% e Ay = A
(29)
Ay = -‘-%-i- le[V4 =y

We have seen that singularities in the right hand plane generate
solutions which increase exponentially for large r. So we must eli
minate them in Eq. (27). These correspond to ll and ng then we

choose the constants in such a way that

P2 ¢t {0) +ps™ (0) + ¢'(0) = C(p=A;) (p=2,) (30}

which leads_to

$'(0) =€ , " (0) =- ¢ vZ|E|"/?

. (31)
' {0) = q:lEl'/z .
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With these values we get

¢ (p) = ¢ (32)

wﬁose antilaplace transform is (Ref.5, p.229)

olr) = —%rle 3 e )y . (33)
That is,
. (34)

Now we have

ae
dar?

g2 (35)

_ 2—];.. -1_
= (V r)¢ +Z
The first term of (35) drops out as ¢(0)=0 and we are left with
1 4%¢
vz(i) = = =i, (36)
r L ar?

From here,

2 2 4
vey2 & o g2 1 Q_E) = (vl.i) a’e 1 d’$ . (37N
T ar r arz T ar®
Comparing with (23) we have
o oan 20(0) _ _ ¢''(0) _ _ 4. 1/4
@ = - AT Sy = - AT Sy = - 2 [E] (38)

from which
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& — (39)

which is possible only if a >0 {attractive potential). We also see

that there is only one eigenvalue for each positive o:

E=«—7. (40)
4(47)

For E >0, the singularities are at

A, = E ' 12 = - 11 ¢ 13 =i)t1 ,14= -111. (41)
Now, if in (27) we choose the quadratic form in the numerator S0
as to eliminate a couple of roots we arrive at an inomnﬁsuamy.tkmg
ly, if we eliminate the two real roots or the two imaginary ones,

then
$'*(0) =- ¢(Aa+kb) = 0 {42)

and so it is not possible to get a d-function like in (36). On the
other hand, if we choose to eliminate one real and one imaginary
root we are led to a complex value for a,.

We cannot avoid, however, eliminating the positive root (as it will, other

wise, implj an exponentially increasing function}, so we choose
P ¢' (0) +p¢' (0) + ¢''(0) = €(p-a) (p-},) (43)

where the real parameter a should be different from ll or A,. Now

2.
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=10~
$'(0) = ¢ , ¢'"(0) = - €la+r,)
$''1(0) = Cai,
and
- ¢ (p-a)

¢ (p)
: (p-kz)(p—h3)(p—l4)

whose Laplace transform is (Ref. 5, p.230)

. -A,r 1ii,r . =d.r =—-iX,r
10(e 1 —e 1 - Kela(e 1 —e 1

d{r) = K e )

where ¢ and § are arbitrary phases. From {(46) we get

' 81X
g £N0) L
¢'(0) l—tan%

(44)

(45)

(46)

(47)

We see from (47) that the strength of the §-function potential de-

termines the phase difference of both terms in (46), We also

that the solution exists for any sign of o.

4 THE OPERATOR p“-a/r

Note that 1l/r is the Green's function in five dimensions

the operator V?V2. We now deal with the equation
292 o _
VeV ¢-—r ¢ = Ey.

With y=¢/r we obtain

see

of

(48)
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4
49 _ < = Eo (49)

with ¢(0) =¢'"(0) = 0 to avoid §-functions at the origin (see 3.).
For the time being, and for reasons of simplicity, we also take
'¢'(0)=0. With these initial conditions the Laplace transform of

(49) is (after taking a derivative d/dp)

5‘_9; .

(p*-E) 5 + (dp’+a)é = 0 . (50)

Compare with (11) and note the differences in the sign of E and a.

To get a qualitative idea of the problem we follow the analysis used

at the end of 2. We assume
¢ = (p-0F &+ 0((p-n1 B+ (51)
and substitute in (50)
(p*-E)8(p-1) 51 4 (4p+a) (p-0) B! < 0 . (52)

So, near p =X we obtain the conditions

A“=E
and
420 v +40%8 = 0 (53)
i.e,
- S (54)

4(B+1)
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Now, if E <0 we have
1+4 1/4 -1+1 1/4
A, = =22 E| A, =A%, A, = === |E] A, =A% . (55)
! 73 + f2 5% %3 /3 v 4 T3

It is verified that Ai 18 another root lj which leads through (54)
to a complex value of 8. Then the exponenlt.ial growth of ¢(r) for
r +o cannot be avoided. So there is no solution for Eq. (50) with
negative E and norrﬂalizable ¢(r) with the assumed initial condi-

tions, On the other hand, if E is positive we have
WSS LU B VP VTR YO 1 LA IS W (56)

The dominant singularity corresponds to )\1 {largest real part). This
singularity can be avoided only if a <0 (see (54}) (repulsive po-

tential) in which case Eg. (54) gives

g3e o el (57)

4(B+1)

and choosing B integer (see discussion in 2}

B \4(nel) )

4/3
E = _IEJ_) (58)

However, after this choice we still have A3 and >s4 on the imaginary

axis and the corresponding asymptotic behavior is now dominated by
A.r A,r

the waves e 3 and e 4 . In the one dimensional case this corresponds

to the states of "total reflexion™ {sce Ref.6).

As a matter of fact we can write the explicit solutionof (50):

B B

1 B B
¢{p) = m(p-kl) (g-:lz)

2tp-14): 2 (p-1,) (59)
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where

uhi
Bi"_‘--—"‘lc (60)
4E

"~ The inverse Laplace transform is (Ref.l, p-238)
$(r) = r3¢2(—Bl.-Bz.—B3,-B4:4;Alr,}zr,lquar). {61)

where ¢2 is defined in Ref. 5 (p.235). By studying the asymptotic
behavior of ¢2, which is cumbersome and uninteresting, we arrive at
tte same conclusions already mentioned.

Formula (59) and (60) together with (55) and (56) show that as
there are no poles on the'right hand side in (7) we can close the
integration by a semicircle on the righf, giving $(0)=0. The same
argument holds for ¢'(0)=0 and ¢'' (0)=0 but not for ¢'"(0). The

reason is that the integrand vanishes like 1/p*.:

5 MODIFIED BOUNDARY CONDITIONS

The condition ¢({0)=0 has to be imposed to avoid a V26(¥) sin-
gularity. A similar argument is valid for ¢"(6)=0 which otherwise
leads to § singularities. On the other hand, ¢'(0) and ¢''(0) should
be left as arbitrary constants. In the previous paragraph we choose
$*{0)=0 for simplicity reasons. We now drop this requeriment.

Taking into account Eq. (25) we now get instead of (50), the

inhomogenecus equation

2Ap (62)

(pA—E) g% + (4p°+a)d = 20'(B)p
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which once sclved will lead to the exact result. The general solu

tion of (62) is (Ref.?, p.16)

- ' P * _
¢{p) = e I"(p)(ml dx g{x) eF(X)) (63)
_E
where
' % 3
F(p) = J 4X 42 9% and g(p) =-%§E.- (64)

A careful study of the analytic properties of the function given
by (63) is needed in order to fix the eigenvalues of this equation

with the new boundary conditions.

6 DISCUSSION

The bilaplacian (pf) equation has peculiar behavior when com-
pared with the usual p? equation. The attractive é-function poten
tial has no negative eigenvalue, no bound state, in the p2 case,
while it has always one and only one for the p“ case.

Furthermore, we get a solution for any positive value of ﬁaﬂﬂ
for any sign of coupling constant a. It is a combination of imagi
nary exponentials plus exponentially decreasing functions as shown
explicitly in Eq. (46). In order to produce a §-function behavior
at the origin it is essential to have ¢''{0) # 0.

The potential a/r is more involved. For the initial cﬁxﬁtnxs
$(0) =¢'(0) =¢'"(0) =0 there are no negative eigenvalues. On the other hand,
if E is positive, with
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E, = (—LJ—“ ')“3 (65)
4 (n+1)
(a discrete set of infinite eilgenvalues!) then, the solutions be-
have like incoming and outgoing waves. They correspond to the solu
tions for "total reflexion" discussed in Ref. 6. For any other wval
ues of E >0 one cannot avoid the exponential increase for r »«,
Using a variational method, F. Perez® has proved that there are
‘infinite negative eigenvalues provided ¢'(0) #0. In order to find
them it is necessary to know the analytical properties of the func
tion ¢(p) satisfying Eq. (63), so as to impose the correct asympto
tic behavior to be satisfied by ¢(x), which in turn will determine

the eigenvalues. This study is under way.
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APPENDIX A

We want to mention a particular example of a fourth order self-
adjoint equation whose eigensolutions are similar to those of the

second order harmonic oscillator:

4
g_i’._z 4 (x? %) + r*¢ = P$ =Eb . (A1)
dr® dr dr |
Defining
2
Y, = et /2 (A2)

we easily obtain

_ 2 ' 2
Py = [4(n +n)+3]yn-2n(2n —3n+l)ynd

2
(A3)
+ n(n-1) (n=2) (n-3}y__, .
50 we have
L m
PY, =m21 aly, (A4)
where
a: = E = 4n(n+l)+3
a"? = -~ 2n(2n?-3n+1) , aﬁ"' . _nt (AS)
n (n=-4)!

We call ¢n the solution of
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P¢n = En¢n ¢ where En =4n(n+1l)+3 . {A6)
With
n
o A
¢n -LEIA“YL (A7)
we have
n £ n
_ £ m_ m
?4‘“ -ZEIAH mgla’tym ) En mzlhnym ) (a8
Then,
n n -
- 4 £ _
Lzl{szl Alaj-EAly =0 . (A9)
For £=n we obtain
n_n n
Anan--EnAn =0 (identity) {Al0)
and thus
En = a:: (All)

n-2
a
-2
A: =" __ (A12)
E -E
n n=2

for £=n-4,

(ALS3)
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and so on.

APPENDIX B

The conditions at r=0 which must be imposed on any.two arbitra

ry eigenfunctions ¢ of the Hamiltonian to secure the hermiti-

1+ $2
city of the operator d*/dr* are

01 (003" (0) = 03" (014, (0) + 47 (0) 0 (0) =47 (0)0}'(0) = 0. (BY)

In the case of the §=function we put ¢n(0)=0, and the first two terms
of (Bl) vanish. The remaining two terms cancel each other in vir-
tue of the conditions (38) and (47). So, it is not necessary fo
have ¢'' (0)=0.

In the case of the Coulomb potential (Bl) is automatically sa-

tisfied by imposing the physical conditions ¢(0)=¢' (0}=0,
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