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ABSTRACT

Within a real space renormalisation group framework which
uses rather sophisticated clusters, we discuss the phase diagram
and the universality classes of a semi-infinite cubic-lattice g-
-state Potts ferromagnet. In particular, we study the influence,
on the surface magnetism, of g and AEJS/JB—l (where Jg and Jp are
respectively the surface and bulk coupling constants). The exact
d=2 critical temperature TgD is recovered for all values of qg.
The g-dependence of the value Ac above which surface magnetic or
der can exist even if the bulk is disordered, is calculated and,
through a convenient extrapolation, reliable results are obtained
(for the Ising particular case, i.e. g=2, we obtain the extra-
polated value Ac=0.569,which compares satisfactorily with the
series result 0.6 + 0.1 and the Monte Carlo one 0.50 i0.03). At
the surface-bulk (SB) multicritical point we calculate the g-de-
pendences of the critical amplitude A and the crossover exponent

¢ [defined in the A>A_+0 limit through (Ti(A)/TiD—l).%A(A/AC—l)l/q),

3D

S
where TC(A) and Tc

ETg(Ac) respectively are the surface and the

bulk critical temperatures], as well as the correlation length

SB

critical exponent Voo For the Ising particular case we obtain

$=0.641 (which compares satisfactorily with the e-expansion re-

sult 0.68 and the Monte Carlo one 0.56 + 0.04), A=0.4and \)lSle.623

(as far as we know, no series or Monte Carlo results are availa-

SB

ble in the literature for A or Vl ).

Key-words: Potts ferromagnet; Criticality; Surface effects; Re-~
normalisation group.
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I  INTRODUCTION

Surface magnetism presents a quite rich criticality, which
has been focused both theoretically (Binder and Hohenberg 1972,
1974, Binder and Landau 1976, Svrakic and Wortis 1977, Burkhardt
and Eisenriegler 1977, 1978, Svrakic et al 1980, Reeve and Guttmann
1980, 1981, Reeve 1981, piehl and Dietrich 1980, 1981 (a,b), 1983,
Wortis and Svrakic 1982, Diehl et al 1982, Lam and Zhang 1983, 1984,
Aguilera-Granja et .al 1983, Sarmento et al 1984, Binder and Lan-
dau 1984) and experimentally (Pierce and Meier 1976, Alvarado et
al 1982 (a,b)); for a recent review see Binder 1983.

It is by now relatively well established that if we con-
sider a three-dimensional semi-infinite magnetic system with bulk
and free surface ferromagnetic (nearest-neighbour) coupling con-
stants JB and JS respectively (the interactions might . be Ising,
anisotropic ﬁeisenberg, Potts or more complex ones), several types

of phase transitions are present in the phase diagram (see Fig. 1).
Kt sufficiently low temperatures, more pnﬁﬁsely.for T<TiDEnm%H/kB,
where n3D is a pure number (n3D:=4.5ll for the spin 1/2 Ising mod
el in simple cubic lattice), all the spin layers (starting from
the free surface, corresponding to height z=0, to deep in the bulk,
corresponding to a height z+ «) are magnetically ordered (bufk fen
romagnet, noted BF); the z-profile of the layer magnetisations in
creases or decreases with increasing z for JS/JB <<'1 or Jé/JB>>l
respectively, and is rather flat for the intermediate wvalues of
JS/JB. When T crosses the value TiD, two important cases occur ac
cording to whether A EJS/JB_1< Acor A >AC, where AC is a pure num

n3D/n2D—l (the strictly two-dimensional criti
2D 2

cal temperature is given by TC = n

ber satisfying 0 <AC <

DJS/kB, where n?? is a pure num
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ber; n2D = 2,269 for the spin 1/2 Ising model in sqguare lattice,

therefore, for semi-infinite simple cubic lattice, it is O <Ac<
4.511/2.269~1=0.988; in fact, series and Monte ‘Carlc studies for
that model provide AC§O.5—O.6). In the first case (A<AC), all the
layer magnetisations m(z) vanish  dimultaneously (see Binder and

Landau 1984 and references therein) at TiD(mBEm(z+w)<t(T2D —TWB%D,

3D =m(z=0)«

8

being the standard three-dimensional critical emxnnt;ms

(TzD—T)Bl where Bl is a new critical exponent in general different

3
from both two-and three-~dimensional values; the same law (T’(':D—T)Bl

holds for 0 <z <), and the patamagnetic phase (noted P) emerges.

3D B3D

In the second case (A>Ac), m_ vanishes (mBm(Tc -T) ), whereas

B

m(0< z < ») (possibly) present only a soft singularity, retaining a

finite value (surgace perromagnet, noted SF) up to T:=Ti(A),v&ere

B2D 2D

they in turn vanish (m(ng‘<w)a(T§—T) , B being the standard

two-dimensional critical exponent), thus restoring the P phase; it

2D
c

is intuitive that Ti necessarily satisfies Ti>>T (from where it

2D—l, as stated before). The marginal case

comes that AC<<n3D/n
A::Ac corresponds to a multicritical point (referred to as thesur
face-bulk point, noted SB), which is associated to a new univer-.
2D_T)83D’ B%B

but m(0< z < @)« (T°0-T) Pl , where the

sality class (mBm(T .

critical exponent BiB is in general different from all three pre-

viously mentioned, namely B3D, BZD

and B,; note. TS(A )=T3D). In
1 c ¢ c
the neighbourhood of the SB point (Ae-Aain,mxaemxmts(TiUU/T?{JJ%
N A(A/Ac—l)1/¢ (see Fig.l), which defines the critical amplitude
A and the crossover exponent ¢,
If we focuse the correlation length rather than the mag-

netisation, we expect, consistently with what said before,the fol

lowing critical exponents: whereas the bulk correlation length di-~
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3D
verges at TiD as IT—TiDI—v for all values of A, the surface cor
. 3D|-v
relation length diverges, on the P -BF line (A<A.), as |T—TC| 1,
SB
on the multicritical point (A=A ), as |T-T2D|—v1', and, on the

g —vZD
P-SF line (A>A_ ), as [T-T_(4) | .

singularity might be present in the surface correlation length on

In addition to that, a soft

the BF-SF line (A >Ac).

The picture described above has already been satisfacto-
rily (although partially) exhibited for the spin 1/2 Ising model
in semi-infinite simple cubic lattice; in particular the follow-
ing (reliable) numerical values have been obtained: AC=O.6 £ 0.1
(series, Binder and Hohenberg 1974) and 0.50 £ 0.03 (Monte Carlo,
Binder and Landau 1984), and ¢=0.68 (c-expansion, Diehl and Die-
trich 1980) and 0.56 + 0,04 (Monte Carlo, Binder and Landau 1984).
No such (relatively "hard") information is available for the g-
~state Potts ferromagnet, which recovers the spin 1/2 Ising model.
for g=2, and bond percolation for g=1 (Kasteleyn and Fortuin 1969).
Some real space renormalisation group (RG) approaches have al-
ready been performed (Lipowsky 1982 (a,b), Lam and Zhang 1983,
Tsallis and Sarmento 1984) but they stress the qualitative as-
pects of the problem more than the guantitative ones.

In the present paper we develope a RG calculation which
precisely follows along the lines of Tsallis and Sarmento 1984;
however we use (instead of the Migdal-Kadanoff-like cluster therein
introduced) a recent cluster (da Silva et al 1984) which has al-
ready exhibited high performance for the simple cubic lattice. As
a consequence of the quality of this cluster (whose size is such
that quite heavy computation is involved), it has been possible

to obtain quantitatively satisfactory g-dependence of A.r &, A,
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viB and Ti(A) (the results for TE(A), and consequently for Q:and

A, have been improved by performing a convenient extrapolation on
top of the RG treatment).

In Section II we introduce the model and the formalism;
in\Section III we present the results, compare them with other a
vailable works, and discuss the bond percolation problem; final-

ly we conclude in Section IV.

IT MODEL AND FORMALISM

We consider the system whose Hamiltonian is given by

H = —q 2 J(S ~ .
<ivy ij Oi'gj (Oi-l,Z,...,q,Vl) (1)

where <i,j> runs over all pairs of nearest-neighbouring sites of
a semi-infinite simple cubic lattice; Jij equals J,(J 20) if both
sites belong to the free surface, and equals JB(JB>O) otherwise.
Let us introduce the following convenient variable (theamal Lhans

missivity; Tsallis and Levy 1981 and references therein)

1_e"4 Jy/kgT

t = e(0,1] (r=B,S) (2)
T l+(q—l)e“q Jr/kBT
therefore
l+(q—l)tS
Jg tn T-t
Az —= ~1= -1 (3)
N) l+(g-1)t
B wm—8
1-t

B
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We construct now a RG following along the lines of Tsallis
and Sarmento 1984 (where two-~terminal graphs are used). The re-~

cursive relation for the bulk transmissivity is given by

' —
ty! o= f(ty) (4)
where f(tB) is the equivalent transmissivity associated with the
cluster of Fig. 2 (see da Silva et al 1984); f(tB) is a very long

ratio of polynomials in t_  with g-dependent coefficients which has

B
been calculated through analytic implementation (in computer) of

the Break-Collapse Method (Tsallis and Levy 1981). Analogously the

recursive relation for the surface transmissivity is given by

ty = gltgrty) (5)

where g(ts,tB) is the equivalent transmissivity associated with
the cluster of Fig. 3; to calculate g(tS,tB) we have used once
more the program just mentioned.

The flow, in the ty - tg space, associated with Egs. (4) and

(5) yields, for arbitrary g, the phase diagram (and thereforeAc,

¢ and A) as well as the thermal critical exponents vZD, 3D and

VSB
1 -

IITI RESULTS

I11.1 Flow diagram

The flow diagram is, for any value of g, of the type in-
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dicated in Fig.4. (qualitatively similar to that - appearing in
Tsallis and Sarmento 1984). In what follows we present the main
features:

i) the trivial (stable) fixed points (tB,tS)=(O,O), (0,1) and

(1,1) respectively correspond to the P, SF and BF phases;

ii) the critical (semi-stable) fixed points [(tB,ts)=(0,l//§+l»]
recovers the c¢xact two-dimensional critical point;

3D

©1ii) the critical (semi-stable) fixed points iBl[(tB’ts) =(tB ’

tél))] and B2[(tB,tS) =(th,l)] respectively correspond to:  the
cases where m_, and m, vanish and do not wvanish simultaneously;

B S
th is, for let us say g<4, about 10% lower than the best avai-

lable values (see Table I);

iv) the multicritical (fully unstable) fixed point SB[(tB,t ) =

= (th,th)] constitutes a universality class by itself;

S

v): the critical lines P-SF, P-BF and SF-BF belong to the uni-
versality classes respectively associated with the S, B1 and B2
fixed points.

IIT.2 Extrapolation

The P-SF critical line in the (tB,ts) space can be guan-
titatively improved through a very simple extrapolation procedure
which consists in a streching of the tB—axis (without any distor
tion of the ts—axis) such that th coincides, by construction, with

the best available value (referred to as t%D(exact)). In other

3D 3D . .
words (tB,tS) becomes (tB,tB (exact)/tB ’ ts). This extrapolation
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consistently improves TE(A), Ac and A (see Figs. 5 and 6). For

3D

B (ex-

example, AC is given by Eg. (3) where t, is replaced by t

SB
g *

B

act), and tg is replaced by t

IIT.3 Critical exponents

The Jacobian matrix MEB(t',té)/a(tB,t ) evaluated at-

S

a particular fixed point of the present RG recursion is given by

where AB’ A

S and U are positive numbers, the first two being the

eigenvalues. By evaluating M at the S, B B, and SB fixed points,

)

by taking into account that the RG linear expansion factor b e-
quals 3 (Melrose 1983 (a,b) arguments indicate this walue rather
than b=2 previously adopted by da Silva et al 1984), and by using

the following formulae (see, for example, Svrakic and Wortis 1977,

Burkhardt and Eisenriegler, 1977, 1978)

w20 o en b/fn x: (7)
v = 2n b/en AEL=tn b/en 222 = 2n b/en ASE (8)
vi® = 2n b/en 25P (9)

» = vP /3P (10)

we obtain the set of critical exponents we were looking for (see

Table I and Fig. 7).
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ITT.4 Bond percolation

It is worthly to note that through the isomorphism (Kas
teleyn and Fortuin 1969) between the g+ 1 Potts ferromagnet and
bond percolation, and by identifying pBEftB(q=l) and Psz-t§q=l)
(see, for example, Tsallis and Levy 1981), we can exhibit the pha
se diagram (see Fig. 8) of a geometriéal problem, namely bonds
present ("active") with probability P, in the surface, and Py in
the bulk. Three phases are possible: the non percolating one (NP),
the bulk percolating one (BP), and finally the surface percola-
ting one (SP), where percolation has disappeared in the bulk but
not in the surface. For ps>0.4l7, surface percolation becomes
possible, even in the absence of bulk percolation U”e.,pB<0.24H:

in this case, the bulk helps the surface to percolate, although

not percolating itself,

IV CONCLUSION

Within a real space renormalisation grouo which uses quite
sophisticated clusters, we have substantially improved and com-
pleted the results recently obtained (Tsallis and Sarmento 1984)
for the criticality of the semi-infinite g-state Potts ferromagnet
in simple cubic lattice. The exact critical point is recovered in
the two-dimensional asymptotic limit (A EJS/JB—1-+W) for all val-
ues of qg.

The present RG three-dimensional critical points exhibit

a discrepancy of about 10% with the best available results (se-
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ries among others). This discrepancy is eliminated through a sim
ple extrapolation. The phase diagrams (kBT/JB vs.A) are consequen
tly believed to be quantitatively quite reliable. From these pha
se diagrams we have extracted Ac(q) (value of A above which sur-
face magnetism becomes possible even in the absence of bulk mag-
netism) and A(g) (critical amplitude in the surface-bulk multi-
critical point). For the Ising particular case we have obtained
AC(Z) =0.569, to be compared with the series result (Binder and
Hohenberg 1974) 0.6 £ 0.1, and the Monte Carlo one (Binder and Lan
dau 1984) 0.50+0.03; we have obtained also A(2) =0.4 (as far as
we know, no other values arevavailable for comparison at the mo-
ment in the literature; the same holds for Ac(q) and A(qg) for
g # 2). The present treatment yields, in the<q+0]jmit,Ac(q)=2/ﬁf

At the surface-bulk multicritical point, the present
theory provides also the crossover exponent ¢ (q), and the - ther-
mal critical exponent viB(q) (these quantities have been left free
of any extrapolation)., For the 1Ising case, we have obtained
v3°(2) =1.623, and ¢(2) =0.641; the latter is to be compared with
the e—éxpansion result 0.68 (Diehl and Dietrich 1980), and the
Monte Carlo one 0.56 £+ 0.04 (Binder and Landau 1984).

In contrast with the theory by Lipowsky 1982 (a,b), our
treatment presents no indication of new phases for g high enough.
This might be a real evidence, or a mathematical artefact of the
approximation: we have no clear-cut arguments discriminating a-
mong these two possibilities.

All of the above results concern the simple cubic lat-
tice and only hold for second order phase transitions. Consequen

tly g has to be smaller than a critical wvalue qc(qc=4 for strict
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ly two-dimensional systems (Baxter 1973, Straley and Fisher 1973);
qc4=3 for three-dimensional systems (Jensen and Mouritsen 1979,
Pytte 1980)). However the latent heat is small for 29, and con
‘sequently the whole picture can be retained up to g=4.

An alternative point of view (see Berker and Ostlund 1979)
the hierarchical lattice associated with the clusters (two-termi
nal graphs; see da Silva et al 1984) of Figs. 2 and 3 (see also
Tsallis and Sarmento 1984). For this lattice, all the (non extra
polated) results presented in this work are exact, and hold for
all g>0.

We acknowledge valuable discussions with L.R. da Silva.

This work has received partial support by CNPg and FINEP (Brazil).
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CAPTION FOR FIGURES AND TABLE

Fig.

Fig.

Fig.

Fig.

Figqg.

Fig.

Fig.

1 - The simple cubic lattice Ising (g=2) phase diagram in

the kBT/JB--JS/JB space. BF, SF and P respectively de-
note the bulk ferromagnetic, surface ferromagnetic and
paramagnetic phases. All three phases join at the SB (sur
face-bulk) multicritical point. The dot-dashed line cor
responds to the limiting case where the d=2 surface is

completely desconnected from the d=3 bulk.

Bulk RG cell; each bond is associated with the bulk coup-

ling constant Jgi the arrows indicate the terminal nodes.

Free surface RG cell; the dashed (full) bonds are asso-
ciated with the surface (bulk) coupling constant JE(JB”

the arrows are located at the terminal nodes.

g=2 RG flux diagram in the t (bulk transmissivity) - s
(free surface transmissivity) space. W, o and e respec
tively denote trivial (stable), multicritical (unstable)
and critical (semi-stable) fixed points. The dashed lines
are indicative. The three phases are bulk ferromagnet (BF),

surface ferromagnet (SF) and paramagnet (P).

g - evolution of the A - T phase diagram indicated in
Fig. 1.

g - evolution of AC and A (as well as of their extrapo-
lated values, A: and A* respectively) as obtained in the
present renormalization group. o, ¢, [J and B respec-
tively locate Binder and Hohenberg 1974, Binder and Lan
dau 1984, Sarmento et al 1982 and Mean Field Approxima-
tions results for AC corresponding to the Ising model.

RG g - dependence of the correlation length critical ex-

ponents, vZD(d=2), VSB

1
point), v3D(d=3), as well as the crossover exponent ¢.

(at the surface-bulk multicritical

The dot-dashed line indicates den Nijs 1979 exact result

for vZD. ¢ and ¢ respectively are Diehl and Dietrich
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1980, and Binder and Landau 1984 results for ¢, while o
and e respectively are Le Guillou and Zinn-Justin 1982
(g=2) and Heerman and Stauffer 1981 (g=1) results for v>P.
Bond percolation phase diagram in the Pg (surface proba-
bility) - Py (bulk probability) space. Three phases are
possible, namely the non percolating (NP), the bulk per-

colating (BP) and the surface percolating (SP) ones.

Present RG and exact (or series) results for the critical
points t_ and t. (the RG recover the exact result for all

B 5 2D 3D SB
q) , exponents vio(d=2), v’ (d=3), Vi

~-bulk (SB) multicritical point) and ¢ (crossover exponent),

(at the surface-

the critical amplitude A and the adimensional parameter
AC EJS/JB-l which locates the SB multicritical point.
* denotes our proposal (extrapolated); (a) Magalhdes and
Tsallis 1981; (b) Gaunt and Ruskin 1978; (c) Zinn-Justin
1979; (d) Jensen and Mouritsen 1979; (e) den Nijs MPM 1979 ;
(f) Heerman and Stauffer 1981l; (g) Le Guillon and Zinn-
-Justin 1980; (h) Diehl and Dietrich 1980; (i) Binder and
Landau 1984; (j) Binder and Hohenberg 1974.
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q 1/2 1 2 3
. 0.25102 0.22604 0.19492 0.17505
B
0.26682 0.247P 0.21811¢ 0.19669
tg 0.50580 0.41658 0.33448 0.29195
20 2.035 1.651 1.369 1.244
1.772¢ 4/3% 1€ 5/6¢
,3D 1.361 1.198 1.041 0.960
— 0.8sf 0.6308 —
SB
V2 2.531 2.008 1.623 1.452
0.538 0.597 0.641 0.661
¢ - — 0.68" —
0.56 + 0.04"
a 1.3 . .
1.1 % .6 * 4% .3
1.668 1.103 0.762 0.630
A * * * *
c 1.473 0.899 0.569% ;5 | 0.458
_ _ 0.6+0.17 =
0.5+0.31

TABLE 1




