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Abstract

A ßat membrane with given shape is displayed; two points in the membrane

are randomly selected; the probability that the separation between the points have

a speciÞc value is sought. A simple method to evaluate the probability density is

developed, and is easily extended to spaces with more dimensions.
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1 Introduction

A most common geometrical problem encountered in exact and natural sciences (engineering, physics,

chemistry, biology, etc) is: given a surface with Þnite area and deÞnite form, and randomly choosing two

points in it, Þnd the probability density P(l) that these points have a prescribed separation l.
To see the relevance of the subject consider the following example taken from biology: a live membrane

is infected at some spots, and the progress of the infection is suspected to depend on the mutual separation

between the infected points. A knowledge of the mean separation lmean, the mean inverse separation

(l−1)mean, and the mean squared inverse separation (l
−2)mean between points in the membrane, all

depend on the probability density, and are crucial to an analysis of the process.

In this note we Þnd the functions P(l) for three Þnite surfaces widely dealt with: the circle, the
square, and the rectangle. From these examples the method for obtaining P(l) for other surfaces is
trivially inferred. The method can also be easily extended to three-dimensional spaces, such as spherical

drops, or parallelepipeds.

2 Circular membranes

In a plane disk with diameter δ two points A, B are randomly chosen. We want the probability P(l)
dl that the separation between the points lies between l and l + dl. The probability density P(l) has to
satisfy the normalization condition ! δ

0

P(l)dl = 1. (1)

Our Þrst concern is: having chosen a point A in the (infinite) euclidian plane, next randomly choosing

another point B also in the plane, we seek the probability that their separation have a value l. That

probability clearly is proportional to the measure of the locus of B � the circle with center A and radius l

� so the locus has measure 2πl. However, since neither the Þniteness of the disk nor its shape were taken

into account, the analysis of the problem is still incomplete.

We have to examine all possible line segments entirely embedded in the disk. As a matter of fact,

the symmetry of the disk permits restrict the study to segments aligned in just one direction; we choose

the vertical direction, for deÞniteness.
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In Þgure 1 we note that the upper tip B of a vertical segment with length l has to lie in the lens

shaped region enclosed by the circles x2+ y2 = (δ/2)2 and x2+(y− l)2 = (δ/2)2. The area of this lens is

S(l) =
1

2

"
δ2 cos−1(l/δ)− l

#
δ2 − l2

$
. (2)

Writing the probability density as P(l) = k lS(l) and imposing the normalization condition (1) we Þnd
k = 32/(πδ4), and Þnally

P(l) = 16 l

πδ4

"
δ2 cos−1(l/δ)− l

#
δ2 − l2

$
. (3)

A graph of P(l) is given in the Þgure 2; also a normalized histogram obtained via computer simulation

is reproduced, to give conÞdence in the calculations.

3 Square membranes

Similarly as before, we randomly choose two points in a square with side a, and want the probability

density that their separation be l; the normalization condition now reads! a
√

2

0

P(l)dl = 1. (4)

Again an overall multiplicative factor l is expected in the expression of P(l) , and we are next interested
in the line segments lying entirely inside the square.

We initially consider the segments with length l<a; in this case the symmetries of the square allow

reduce our study to the segments with slope lying between φ = 0 and φ = π/4, as is seen in the Þgure 3.
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The locus of the upper tip B of a segment with slope φ and length l is a rectangle with area

S(l,φ) = (a− l cosφ)(a− l sinφ). (5)

Taking into account all slopes in the range [0,π/4] we write

P(l<a) = k l
! π/4

0

S(l,φ)dφ. (6)

For line segments with length l>a the minimum slope is cos−1 a/l, as is clear in the Þgure 3, so now

P(l>a) = k l
! π/4

cos−1 a/l

S(l,φ)dφ. (7)

The normalization constant is obtained from (4),! a

0

P(l<a)dl+
! a

√
2

a

P(l>a)dl = 1, (8)

and has value k = 8/a4. We then have P(l) given by the two expressions

P(l<a) = 2l

a4

%
l2 − 4al+ πa2

&
, (9)

P(l>a) = 2l

a4

"
4a
#
l2 − a2 + 4a2 sin−1 a/l− l2 − πa2 − 2a2

$
. (10)

A graph of P(l) is given in the Þgure 4; also a normalized histogram obtained via computer simulation

is superimposed for comparison.

4 Rectangular membranes

We assume a rectangle with sides a and b<a; to investigate separations l between points in the rectangle

we need now distinguish three different possibilities, depending on the value of l relative to a and b. See

Þgure 5.
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In all cases the angular probability density P(l,φ) is similar as before,

P(l,φ) = k l(a− l cosφ)(b− l sinφ). (11)

The symmetries of the rectangle permit restrict the study to segments with slope from φ = 0 to φ = π/2.

When l<b<a we integrate (11) from φ = 0 to φ = π/2 and obtain P(l<b). When b<l<a the maximum
slope is reduced to φ = sin−1 b/l, and the integration gives P(b<l<a). Finally, when l>a>b the slope
ranges from φ = cos−1 a/l to φ = sin−1 b/l, and the integration gives P(l>a).

The normalization constant k is still unassigned; to Þx it we impose the normalization condition! b

0

P(l<b)dl+
! a

b

P(b<l<a)dl+
! √

a2+b2

a

P(l>a)dl = 1, (12)

and Þnd k = 4/(ab)2; the probability density P(l) is then expressed in the three stages

P(l<b) = 4 l

a2b2

%
l2/2− (a+ b)l + πab/2& , (13)

P(b<l<a) = 4 l

a2b2

"
ab sin−1 b/l− al + a

#
l2 − b2 − b2/2

$
, (14)

P(l>a) = 4 l

a2b2
[ab(sin−1 a/l+ sin−1 b/l)+

a
#
l2 − b2 + b

#
l2 − a2 − l2/2− πab/2− (a2 + b2)/2 ]. (15)

A graph of P(l) is given in the Þgure 6, drawn for b = a/2; also a normalized histogram obtained via

computer simulation is given as illustration.
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5 Discussion

The problem of investigating separations between points in a given space [1] recently received a strong

and unexpected stimulus coming from cosmology [2]; more speciÞcally, from the so-called cosmic crystal-

lography, which aims to unveil the shape of the universe [3] � [19].

The algorithm formerly used in the present note to Þnd the various probability densities P(l) closely
followed that of cosmologists. However, it soon became evident that a new approach was imperative to

circumvent the long calculations arising from that algorithm, when applied to spaces different from balls.

The idea of using normalized probability densities P(l) greatly simpliÞes the task of obtaining mean
quantities concerning separations; e.g., we have

lmean =

! lmax

0

lP(l) dl, (l−1)mean =

! lmax

0

l−1P(l) dl; (16)

these are particular instances of the general rule

[f(l)]mean =

! lmax

0

f(l)P(l) dl. (17)

In Þgures 2, 4, and 6 both abscissa and ordinate were chosen dimensionless; by simple inspection we

then conÞrm that the corresponding funtions P(l) are indeed normalized.
In Þgure 2 we note that the most probable separation in the disk with diameter δ is lmp ≈ 0.42δ,

corresponding to the value of l where the function P(l) of (3) is maximum; while the mean separation is
slightly greater, lmean ≈ 0.45δ. We also note that the function changes curvature at l/δ =

#
2/3 ≈ 0.82.

In Þgure 4 we see that the most probable separation between points in a square with side a is

lmp ≈ 0.48a, while the mean separation is lmean ≈ 0.52a. Although both the function P(l) in (9) and
(10) and its Þrst derivative are continuous at l = a, the second derivative is not: in fact, a2d2P(l)/dl2
abruply changes from the Þnite negative value −4 when l = a− $/2 to the diverging positive value 8/√$
when l = a + $/2. Of course the curvature of P(l) changes sign at l = a. We still note in Þgure 4

the rapidly decreasing density of separations when l/a approaches
√
2; this was already expected, since
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these large separations correspond to segments with both endpoints in diagonally opposite corners of the

square, and corner regions are small in comparison with the whole square.

In Þgure 6, corresponding to the rectangle, we again note that both P(l) of (13)-(15) and its Þrst
derivative are continuous throughout 0< l <

√
a2 + b2. And again the second derivative shows inÞnite

discontinuity, now at l= b and also at l= a; nevertheless P(l) changes curvature only at l= b. When b
diminishes relative to a we Þnd that the graph of P(l) gradually resembles a right triangle; when b/a→ 0

the plot is a straight line going from (0, 2) to (1, 0), as in the Þgure 6 of ref. [1] or Þgure 3 of ref. [14]:

namely, aP(l) = 2(1− l/a).
In extending the present note to three-dimensional euclidean spaces one should replace the overall

multiplicative factor l in the probability density with a factor l2; this is because the locus of the points

that are at a distance l from a Þxed point in three-space is a two-dimensional sphere, whose area 4πl 2

increases with l2.
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