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ABSTRACT

A special class of degenerate second order Lagrangians,
those which differ from a nondegenerate first order Lagrangian
by a total time derivative.(or a four divergence) of a function
of both the coordinates and velocities, is studied in detail.
Using Dirac's theory of constrained systems, we show that the
canonical quantization starting from the second order Lagrangian
leads to the same physical results as those obtained ‘from the
nondegenerate first order Lagrangian. We thus clarify some
incorrect résu1ts.and misleading arguments encountered in the

literature on the subject.

Key-words: (Quwantum mechanics; Classical generalized mechanics;

Constrained hamiltonians systems.
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I = Introducticon

In spite of the fact that most physical systems can be
described by Lagrangians which depend at most on the first
derivatives of the dynamical variables, there is a continuing
interest in the so called generalized dynamics, that is, the study
of physical systems described by Lagrangians containing derivatives
of order higher than the first1.

Besides its mathematical interest connected with general
problems in the calculus of variations as first investigated by
OstrOgradskiiz, higher order terms were used in the past as
intended corrections to first order Lagrangians assotiated with
certain physical theories. The attempts were to generalize them or
to get rid of bad properties of those theories. To the best of
our knowledge the earliest attempts in this direction were those

by Weyl and Eddington3

who added curvature squared terms to the
Einstein-Hilbert Lagrangian so as to extend the theory of general
relativity. Modifications to Maxwell's electromagnetic theory
have been put forward'by.Bopp4 and Podolsk15 with the goal of
avoiding divergences such as the infinite self-energy of a point
charge (which, in a certain sense, they succeeded to do).
Stimulated by those findings Pais and Uhle.rnbeck6 investigated
whether the use of higher order field equations might conduce to
the diéappearance.of the divergent quantities that plague
guantum field theory. Their general conclusion was thai it is
impossible to reconcile finiteness, positivity of free field
energy and cdusality. In other words, ghost states with negative

norm and possibly unitarity violation are inherent to those

theories and these facts turned out to be serious arguments
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responsible for a bad reputation of higher order theories.

However, higher order Lagrangians are endowed with
nice properties too, and they have been the subject of some
recent interest for many reasons. It has been shawnT, for ins-
tance, that curvature squared terms show up as small corrections
in the effective action of superstring theories in the limit of
zero slope. The same kind of corrections have been proposed in
the quantum theory of gravitation to improve the ultraviolet
behavior of the Einstein-Hilbert action®, as higher order
derivatives terms are known to improve the. convergence of
Feynman diagrams.As a mechanism for regqularizing the ultravioclet
divergences of gauge invariant supersymmetric theories'it is the
only available method which preserves béth gauge invariance and
supersymmetryg. Just to mention one more example, higher order
Lagangians come forth naturally when one looks for a Hamiltonian
description of certain nonlinear physical systems like those
described by the equations associated with the names of
Boussinesq or Korteweg and de Vries10. Last but not léast,-the
Lagrangian of.one of the most outstanding physical theories of
our times, the Einstein theory of relativity, does in fact contain
second order derivatives of the metric field. It is -then clear that
such theories deserve a deeper investigation.

On the other hand the kinetic term of any first order
Lagrangian can be transformed into two terms, one of which is
linear in the "accelerations" and the other is a divergence, thus
generating a second order Lagrangian. Both Lagranglans are naively
expected to describe the very same physical system and should not

lead to different results even at the quantum level. But in the
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process of passing to the second order formulation one necessarily
ends up with-a degenerate (or singular) Lagrangian. It was pre-
cisely this fact that gave rise to some controversy in the
literature concerning the quantization of higher order mechanical
systems.

Hayes and-Jankowski11 analyzed a second order Lagrangian
which generates the correct equation of motion for a harmonic
oscillator but, they claimed,.yields.an energy spectrum different
from the ﬁsual.one upon quantization. Subseguently Hayes12 proposed
an unotthodox and peculiar quantization prescription to circunvent
the difficulties encountered in his previous work. H%s.quantization
procedute was immediately criticized by Ryén13”and Anderson14}
who, surprisingly enough, put the blame on the Lagrangian chosen
by Hayes because it was singular. AS a matter of fact they
entirely missed the point, for the fundamental shortcoming in
Bayes's approach was his lack of recognition that he was dealing
with a constrained dynamical system to which Dirac's formalism15
must be applied. This was perceived by-Tesser16 and also by
Cognola, Vanzo-and.Zerbini17. However, having disregarded the need
to substitute Dirac brackets for Poisson brackets before
quantizing, Tesser did not apply in a fully transparent and
systematic fashion Dirac's theory as developed for systems with
second class constraints., This was partly done by Cognola et al.,
who considered only a very particular class of one-dimensional
Lagrangians. Therefore they did not investigate the drawbacks
of Hayes's treatment in their complete generality, and it is

also worth mentioning that their reasoning did not furnish the

thoroughly reduced phase space as witnessed by the fact that their
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Hamiltonian and fundamental Dirac brackets retained a dependence
on an arbitrary parameter. Furthermore, in a recent paper
Tapia18 ~does not employ correctly Dirac's formalism to cons-
trained generalized mechanics and in his study of the quantum
.theory of the harmonic oscillator he arrives at an energy
spectrum which again does not coincide with the usual one. His
case is even worse than that of Hayes and Jankowski, because
the spectrum he obtained is unbounded below, not ﬁo
mention the misleading arguments that led to the above mentioned
spectrum. .

It is our pufpose in the present paper to provide a
general explanation why results such as those found,ﬁy Hayes and

Jankowski11 or Tapia18 for the harmonic oscillator are wrong,

9 for.the

whereas those abtained by Barcelos-Neto and Braga1
Klein-Gordon field are correct. It is also our aim to dismiss as
unnecessary and groundless odd-quantization procedures such as
the cone advanced by Hayes, and finally to characterize as mis-~

leading those arguments13'14

to. the effect that degenerate
Lagrangians should be avoided in generalized dynamics.

The paper is organized as follows. In Section II we
state and . prove- -our main result for systems with a finite number
of degrees of freedom, while its extension to field theory is

briefly sketched in the Appendix. Secticon III is devoted to a

few examples and a general conclusion.
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II - The Main Result

The generalization of Hamilton's least action principle
and of the Hamiltonian formulation to nondegenerate Lagrangians
depending on higher order derivatives was first achieved by
Ostrogradskiiz, and a more modern presentation of the canonical
formalism is available in Whittaker's classical treatisezo.

With an eye to physical applications, and.for the sake of
simplicity, we shall consider ohly the;secdnd.order case, although
our reasoning may be extended in a very direct way to Lagrangians
involving derivatives. up to an arbitrarily high order.

Let L(x,x,%,t) be a second order Lagrangién where we
are using the notation X = (x,,..-,%), X = (i1,...,iN),-etc..
The action principle

ot . |
88 = & J L(x,X,t)dt = 0 . {2.1)
i
where the variation.is performed under the condition that the

endpoints remain fixed, leads to the equations of motion

3L _ d (3L, d (3? ) =0 . (2.2)

For future convenience it will be useful to introduce the notation

The canonical momenta are defined as

i 2 d oL
Py =3y, T 3 =) (2.4)

L
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and

p,t = . (2.5)
3y, _
Egqs. (2.5) can be solved for the ii if and only if the Hessian

matrix W whose elements are

= 2 °F,
Byiayj

(2.6)
is nonsingular. Assuming this is the situation, the Hamiltonian

defined as (Einstein's summation cohvention over repeated indices

is understood from now on}
- i . i = . N
Hix,pyi¥,Pyit) = ¥;P," + ¥;Py~ - Lix,¥,¥,t) (2.7

generates Hamilton's equations of motiocon

. oH « i aH

%, = == , p = - = ' (2.8a)
i 3P1i 1 3xi

- 3H e i 3H :

v, = - ’ P = = {2.8Db)
i 3921 2 ayi

The pairs of canonically conjugate variables are (x,p1) and

(Y'pz)' the Poisson brackets being defined as follows:

IF 3G dF 3G 3F 3G oF 3G

- . + -
3K ap1i 3911 gxi 3yi_apzi apzi 3yi

{F,G} =

-

(2.9)
In terms of these brackets the equation of motion of any dynamical

variable F becomes simply

dF

it = {F,H4} + . (2.10)

wl=



CBPF-NF-060/87

Suppose now L is of the form .
L(x,y,¥,t) = L(x,y,t) + d—i f(x,y) {2.11)

where f stands for an arbitrary function and L is a nondegenerate
first order Lagrangian, that is, its Hessian matrix W whose

elements are

2 2
W,, = ——L& 2 L (2.12)
J axiaxj :

-

is nonsingular. Obviously, L and L generate the same equations
of motion. The explicit form of L is
3 f . Jf

YV, +
Bxi_ 1 Byi

Lix,y,7,t) = Lix,y,t) + Yy s (2.13)

from which it follows immediately that W = 0 according to Eq.
{2.6), so that L is singular. As a conseguence, we are sure to
meet relations of functional dependence among the canonical
variables.

The canonical momenta are easily found to be

i oL d L 3L o f
pt o= S - & 2L + Y (2.14)
1 a_i dt 3Yi Byi axi
dyy Yy

Pefine the functions

_ oL({x,y,t) af{x,y)
gi(\X;Y:t) = 3Yi + 3"1 . (2.16)
and
hi(x,y) = EEiELXL . (2.17)

ayi_
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Then we have the following primary constraints:

¢i P11 = gi(lert) = 0 r {(2.18)
i ;
'1’1 = pz - hi(x:'Yrt) g 0 - {2.19)

The Poisson brackets of the constraints are easily calculated

from definition (2.9)}. They are

39, 95 3y 2L - .
{,00.) = ==L = - - = Y,., {(2.20)
i7%5 axi axj 3xiayj...3xjayi 1]
{¢ir¢-} =‘:‘;i-;ﬁ=—aa_2];“—'_— i ’ (2.21)
S i Yj Yi Yj ]
ah. ah
SR R
{wi,ﬂj} 3yi 5y, - 0 . (2.22})
- ]
It is convenient to define
(x.l'o-.'xZN) = (¢-1f.n.;¢uf¢1'n..ap‘pn) (2.23)

and agree that small Latin indices from the beginning of the
alphabet always run from 1 to 2N. The 2Nx2N matrix built up with
the Poisson. brackets of the constraints is, therefore,

Y -W

€ = [ixgrxy,}l = ' (2.24)

0

where W and Y are the NxN matrices defined by Egs. (2.12)
and (2.20), respectively. It is readily shown that & is non-

singular. In fact,

det || (x ,x )l = @etm? 4 0 (2.25)
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since L is nohsingular by hypothesis. Thus, all of our constraints
are of the second class, and no linear combination of the Xa can
become a first c¢lass constraint, so that the extended Hamiltonian
is nothing but the usual one given by Eq. (2.7).

15

According to Dirac's formalism -, one must replace the

original Poisson brackets by. the new Dirac brackets defined by

-1

(F,6}" = (7,6} - (Fuxy} (€3 (xp,6} ,  (2.26)

where E-1

is the inverse of the matrix given by Eq. (2.24). It
is an easy task to construct ¢_1 and check that it can be put

in the form

0 W

! - ) (2.27)
o] iy

The Hamiltonian (2.7) may be written as

-_— 1 . 1 3-f 3f - )
H=y;Py +¥4Py - L~ '5';1' Yy - -3_}.7:'_'}'1 ’ (2.28)
where use has been made of Eq. (2.13). Once we are working with

Dirac brackets, we are allowed to regard the constraints (2.18)

and (2.19) as strong equations. Therefore, taking

i AL of i _ of

and inserting these equations into Eq. (2.28), we are left with

%
o

£{2.30)

il

L3

e
|
e

[
|
)
*
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Defining

Pi = 8L - , (\2.}3_1_,
331

these equations can be uniquely solved for the velocitiles ii and

Eq. {(2.30) ensures that

H = Hix,p,t) | (2.32)

where H is the ordinary Hamiltonian corresponding to the.nonsin-
gular first order Lagrangian L. Notice that the momenta < and

Py have been wholly removed from the theory. It remains to examine
the fundamental Dirac brackets of the new presumably.canonical
pair (x,p). Performing a few straightforward computations one

finds successively

_ -1,kb 3L
= -{xil¢k} (c {Xbiay } =
J
| - 3L , 3L

where we have made use of the explicit form of E“1 given by

Eq. (2.27). From Egs. (2.9) and (2.19) it follows at once that

——
3L, _ _ _3°L  _
0’ 3Yj} = = - W, ’ (2.34)

ty SIS

whence, after its insertion into Eq. (2.33), one finally gets

.
(x,py)" = 8y, . (2.35)
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With a little more effort, a similar kind of calculation allows

us to show that

-{xi,xj}* = {pi,pj}* =0 . (2.36)

This establishes unequivocally that at the level of Dirac brackets

{x,p) indeed constitute a pair of canonically conjugate variables.
So long as the canonical guantization then proceeds in

a standard manner by requiring that the fundamental commutators

be made equal to il times the corresponding fundamental Dirac

brackets, we have proved that the correct way of quantizing the

classical theory associated with the singular second order

Lagrangian L conduces to the same physical results ;s the quantum

theory based upon the nonsingular first order Lagrangian L.

. III - Examples and Conclusion

11,12

The Lagrangian introduced by Hayes and Jankowski is.

2

T = = = XX = = kx° , (3.1)

1
2

(V)

which gives rise to the equation of motion of a harmonic oscillator:
mi + kx = 0 . (3.2)
The above Lagrangian is clearly of the form (2.11) with

and . m
fix,x) = - 3 XX . (3.4)
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Thus, the correct quantum theory of the harmonic oscillator based
on the second order Lagrangian.(3.1) is the same as the usual one
whose starting point is the first order Lagrangian (3.3). The
ambiguities encountered in Ref. 10 are just a consequence of an
inaccurate treatment of the constraints. |

Tapia's approach18 corresponds to taking f of the
form (2.11) with L the same as the one given by the above Eq.
(3.3) and f = 0. His mistake stems. from an incomplete treatment
of the second class constraints in Section 5 of his paper. To'go_
ahead to the guantum theory it would have been indispensable
first to introduce Dirac brackets, which he did not;.In the
Appendix he falls into another error because he treaés the cano-
nical variables as independent, paying no attention to the cons-
traints. Finally, it is not true that his energy spectrum differs
from the standard one merely by an additive constant. From his
method of obtaining the energy'eigenﬁalues E, = nbw, it is plain
to see that n may be any negative or positive integer, so that
his spectrum is unbounded below, and this is unacceptable‘
on physical grounds.

The results obtained for the Klein-Gordon fiedd by
Barcelos-~Neto and Br.aga19 can also be easily explained as a
particular example of -our general result {(see the Appendix). Their’
Lagrangian is

T=-5¢[de+vier (3.5)
which is of the form (A.1) with

L = % auqsa“cp + Vi$) (3.6)
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being the usual Klein-Gordon Lagrangian, and

1 _
8, = -3 ¢3¢ . {3.7)

Since they treat the constraints correctlyig, it is no surprise

that they recover the well-known guantum theory of the Klein-
-Gordon field.

As a conclusion, let us. emphasize that degenerate
Lagrangians are not to be rejected in generalized.mechaniés; all one
has to do is apply correctly the formalism designed by Dirac to
cope ﬁith cohstrained systems. In particulay, Dirac's method can
be applied to quantum gravity taking as the starting point the
usual Einstein~Hilbert Lagrangian, it being apparent, then, that
it is not necessary to change the standard aetion for the
gravitational field through the addition of a surface term, as is

commonly done in quantum cosmologyziw
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APPENDIX: EXTENSION. TO. FIELD THEORY -

The extension of the results of Section II to field
theory is quite straightforward and- for this reason we shall only
briefly sketch the Hamiltonian approach. We denote a set of fields
on Minkowski. space-time by y(x) = {¢A(x)}, A=1,2,...,N, where
x = {x"} = {xo,xi}, i=1,2,3, are the space-time coordinates.
Derivatives of the fields will be denoted by 9y = {auwa(x)},

-3 ¢ = {8 P ¢ (x}}, etc., and, in particular, 30¢A = &A = ¢A.

The analogue of the Lagrangian (2.11) in field theory is

T = Liv,09) + aun“w,w)
-~ ag¥ A, aq* A
= L(y,39) + 3 ¥ =223 3 ¢ . (A.1)
: apP ¥ 3 (s ﬁll uoo

We shall assume that the Hessian matrix associated with L 1is

nonsingular:

2 2
9 L 3 L
W = —F= = =55 det W£ O . {a.2)
AB 3¢A3¢B af§3¢B

It follows from (A.1) that

2—
— 2°T
W =—L __o ,
AB 3R, 3B

so that I is degenerate.
The canonical variables of the theory are (wA, n, )

a_ a2 22
and (¢ = w ' ), with the momenta defined™ ™ by
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(1) = - -
35 AL ol
N, . = — - 23, ( ) - 3 (—-T—- ’
Al 3¢ k 3(303k¢h’ 0 8¢A
(2) -
T, =k .
T 5%
Using (A.1) we obtain
(1) 0 0
al 1Y) ag
i = + 3, ) ., (A. 3)
I Y R YT |
(2) 0
34
A 8¢A

It is worth remarking that only Qotw,aw) shows up in the above
expressions. This 1s to be expected,.as one can be e;sily-convinced
by looking at the action functional constructed with the Lagrangian
(a.1).

Expressions (A.3) and (A.4) give us the primary cons-

traints

(1)

na= I, - FA(w,akw,¢,ak¢) = 0 v {A.5)
(2) '
Ay = L = GA(w,ak¢,¢,ak¢) = 0 . {A.6)

We have, after a straightforward calculation,

BFB BFA
{naenpl = — - —2 = ¢ ’ (A.7a)
"atTBY T AT 7B T CaB
) .
fngirg) = - _332_3 = - Wy (A.7b)
' a¢ 3¢
Dagt =0, (A.7c)

so that, as in the case of Section II, the constraints are second
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class. Since the matrix T constructed with the above Poisson

=1

brackets is non-singular, using its inverse, € ', the Dirac

brackets are now defined as

{a(x),B(z)}" = (A(x),B(2)}

- [ dwdy{A(x),xa(w)}(mf1)ab(w,y){xb(y),B(z)}
(A.8)

where Xg = (nA,l ).

A _
In analogy with Secticn II, the constraints can be re-
garded as strong equations; thus removing from the theory the

(1) (2)

momenta HA and HA. Defining

oL
I = =05 r {(A.9)
A awA
we find that the Hamiltonian 7 reduces to the ordinary Hamil-
tonian & associated'with the first order Lagrangian L , and it

may be easily verified that (¥,1) constitute a cancnical pailr in

terms of the Dirac brackets (A.8).
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