ISSN 0029 --3865

CBPF-NF-059/87
GAP ROAD TO CHAOS: LIAPUNOV.AND UNCERTAINTY
EXPONENTS AND MULTIFRACTALITY

by

M.C..de Sousa Vieira and L. Tsallis

Centro Brasileiro.de Pesquisas Fisicas - CBPF/CNPg
Rua Dr, Xavier Sigaud, 150
22290 - Rjo dé Janeiro, RJ - Brasil



CBPF-NF-059/87

ABSTRACT

We study numerically the prototype of the gap xoad. to chaos, name
ly x,,, = 1l-¢; -::;1]:-:1:1zi (1 =1,2 respectively correspond to x>0 and
x <0; €, #ez)l Intriguing properties are observed concerning the
(a,el,ez)-evolutionwpf the attractors and the Liapunov and uncex
tainty exponents; also, multifracﬁality is exhibited at the first

entrance to chaos.

Key~words: Chaos; Multifractality; Liapunov exponent; Uncertain-

ty exponent..
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Chaotic behavior in one-dimensional continuous maps . in

the interval has been studied extensively[11; These maps as
stated until now, present only three types of roads to chaos,

namely, period doubling, intermittency and quasiperiodicity.

{2,3]

Recent papers show that maps with an asymmetry at the

extremum display a variety of new features in their dynamica;
behavior. Experiments related to this type of dynamics  were
performed in forced nonlinear oscilators[4]. Also, experi-
ments for such maps were proposed for laser cavities[sl. Theo
retical studies show that discontinuocus maps at the extremum
can be generated byagmrpqume Poincare sections in the Lo-
renz modelts]. We have found that maps of such kind exhibit a

new universal road to chaos[3]; The ﬁrétotype map we conSidEr
is given by

. & .
1—;1 —alxtll if x >0
=f(x ) = { (1)

l~¢ .-a]xtlzz if x_< 0

2

with z,+ Z, 2 1. Other choices are. of course possible for £(0);

2
however  they are all expected to yield essentially the same dy-

.namics., If €1 T €, and z, = z, We recover the well known one-

2
dimensional map whose road to chaos is via period-doubling.. The
gap <oad to chaos refers to ¢; # €, This is the case wa« study
numerically in the present paper. Several intriguing pr0peﬁjes
are observed for the first time, which we now detail. Unless
otherwise stated we.shall focus the z, = z, case.

FPor fixed (a,el,ez) the iteration of the.map drives the
system to an attractor which typically is a finite cycle. The

period of this cycle is a complex function of (a,el,ez) pres
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enting a (presumably) infinite number of discontinuites. We
present in Fig. 1 a typical case: we shall refer to such "phase
diagrams" as buﬁch& of bananas.

In spite of its complexity, the phase diagram can be des-
cribed as follows. Let us fix e,

I
cascades 04 atiracions whose periods.grow arithmetically (e.g.,

and vary a. We have invenrse

cos #26 22 #18 «14 «10;..,+24 <2015 %12 + 8 «4; "inverse" re-
fers to the fact that a is decreasing). Each inverse .cascade
accumulates on a value of a, immediately below which appears
a cycle whose period precisely is the a&ding constant of that
inverse cascade (4, in our examplés). Furthermore, between any
two "bananas" of the bunch exists another inverse ca;cade‘Mrme
periods grow with the same rule (e.g., between periods 6 .= and
10, the cascade ... «26 «16 «6 exists). We ‘therefore always have,
- between any two .bananas, another banana, in a structure ' whose
simiiarity with a devil's staircase is evident. The same kind
of behavior: is observed by fixing a and varying el.(oi €4y or
both, with €y # sz}..The.accumulation points of the  cascades
in turn accumulate .(for incaeasing a if (el.,ez) arefixed) on a
“pdint which ,Czst the entrnance fo b.had»s;. In other words, we have " . (pre-
sumably) infinite number of accumulailion points where there is
no chaos (negative Liapuhov-exponents), ié this only emenges
at the accumulation point o4 the accumulation point#!

For fixed (31,52) a given banana exists.petween a minimal
value a™ and a maximal value aM. Within a given cascade of
bananas (whose sequence is.noted with k=1,2,3,4,...) we ve-

rify
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as wedl as
lap - ajl ~ lap_, - apl®1 (=) (3)

The game laws  hold for {az}, for all cascades, for all values:
of (el,ez) such that £y #-52, in the presence or absence of
‘higher. prider terms in Eq. (1), and algso if we.fix a and wvary
(e;,5,). Egs. (2) and (3) - replace the well kndwn law
(ak=fak;t)/(ak+1fak) ~ -§{z) valid for €, =€, and_zl'=z2 zz.

The Liapunov exponent A characterizes the sensitivity to
initial conditions (» > 0 and X < O respectively correspond to
the sensitive and non-sensitive cases). Ianig. 2 we present-
a typlcal a-evolution for fixed gap. We remark: (i) The struc
ture is roughly self-similar; (ii) the §ingets . corresponding
to high periods are very narrow; for a given . cascade. ,they
monqtonously become narrower - and shift towards negative values
of A, thus exhibiting {(presumably) infinite periods with no
chaos; the highest and largest finger of each cascade corre-—
sponds to the lowest period of that cascade; if we .. consider.
increasingly largellowest periods, the top of the fingers ap-
proach A = 0, and drive the system into chaos; {iii) changement
of periods occur for A +-~ =, in remarkable contrast with change
ments of periods in the doubling-period road which occur at
a = 0.

Let us now focus .another interesting phenomenon. concerning
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the bagins of attraction. It is well established that contimwous
one~dimensional maps presenting an unique extremum, \have i at
most one finite attractor. We verify that this picture is mod-
ified in the presence of a'gap at the extremum. In .such. cases,
more Lthan one finite attracitons (typlcally. two attractors)appear
when we cross from one banana (see Fig. 1) to.a neighboring one
(we obseived this in several crossings, it might happen in alf
of them). The attractor which is chosen depends on the initial
value X, Two examples are presented in Fig. 3 for a=1.3 (a =
1.540344}; the black and white regions.reSPectively ﬁcorpespond.
to cycle periods 8 and 2. (25 and 21). We verify that the black
and white regions are. euclidean {dimensionality D =1{- whereas
the bonden-set between them is a fractal with capau';ty dimensionali
1y 4. The uncertainty __-.exPone:.ut'.l:T-] oy is given by o =D -4. The
system is said to. present §inal-stafe sensditivity on non-4ensi-
tivity - according to be 0 < @ <1 or.-'uu =1l. To calculate a  We
consider, in the interval of io corrASpbhding to finite attrac-
tors (roughly [1,1]), N randomly thosen values (typically N =
10%}.We then chcasn e (say 10 Sand below) and check whether both at
tractors starting from1x6.: ¢ coincide with that of X, . If not,
thét value of x is said urcexiain. We note N, the-&;al number
of uncertain points. The uncertainty ratio Nu/N varies as g*u,
We find au:3_0.85 (au ~ 0,22) for a =.1.3(a =1.540344). e, va-
ries quite irreqularly with a; we are presently studying .. whether
ozxossings between . long periodubanénas 5ysematically correspond :
to small uu'si.Numerical=experiments based on forth and  back.
variations of a might present hysteresis according to the ini

tial values X retained for the various steps.
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Let us finally focus the conection with multifractality.
Fractal measuxe is a phemomervlogical characterization ¢f many phy-
sical systems, in partidﬁi&r strange attractors.of .'dyhamical
systems. The central goal of such characterization is to dbtain.
the function: f.(u}l:sj; .Here a is the scaling index (p'i m-&:) of

the measure about a point on the multifractal and f(a) is vthe

dimengion of the set of points on. the multifractal owith .. the

same value of a. Through a Legendre transformation f(a) is re-

late.d to the generalized dimensidﬁality Dy EB] . The minimal and
maximal values of o respectively coincide with D_.and D__; the
-maximal value of f(a) coincides yith Ha;sderff .dimeneionality

DO. In Fig. (4).we present f (a)} for the.a£tractor ‘dﬁuacuaﬁzing
the entrance to chaos. in the présence.of a .gap. Its .shapei is
different (more square~like) from that obtained withcout.. gap

(period-doubling road to chaos):; and the.wvalues we obtain are.
DD ~ 0.95, D__ ~ 5.7 and D_ ~ 0.45 (they do not satisfy the re

lation D__ = éDw which holdé in the absence of gap; here z =2).

Summarizing. we have exhibited that.the preaencé of a gap in
the extremum of a one—dimensionai map drastically changes the
main dynamical properties of the system. Indeed, a rich-struc-
ture:,(bunch of bananas like) appears in the\phase -idijagram;
the Liapunov exponent ) presents, through a roughly self-simi-

lar scheme of fingers, an .unexpected situation, namely accumu
lation pdints corresﬁonding to infinite periods with negative
values of i; final-state sensitivity is observed, and an under .
lying fractal structure is exhibited for the border-set bet~
weenabasins.af attraction;. finally the attractor associated

with the entrance to chaos is shown to be a multifractal with
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a function f{a) very different from that of the period-doubling
road to chaos.

We acknowledge with pieasure very fruitful suggestions. by
H.W. Capel and M. NapiBrkbwski, as well as interesting . remarks
by A. Coniglio, E.M.F. Curado, .H.J. Herrmann, E.A. Huberman, Ph.

Noziéres and J.P. van der Weele.
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CAPTION FOR FIGURES

Fig.

Fig.

Fig.

Fig.

Phase diagram for z, =2, =2 and,.s2 =0. The numbers in-

dicate the period of the attractor. For e, =0 we .re-
cover the well known doubling-period sequence. We used

x = 0.5.
o

a-evolution of the Liapunov exponent for ey =0, e, =
0.1, zZ, =2, =2 and X, =0.5. The numbers in the. fingers
indicate the period of the attractor. (b) is the ex-
pansion of the smalliiectangle-in,{a).

Basins of attraction for two typical values of a  and

€1 =0, €,y =0.1 and 2z =z, =2 (see the text).

.
Multifragtal function f(a) for e; =0, e, =0.1, z, =

z, =2 and x_=0.5.(chaos appears at a* =1,/5447398)
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