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ABSTRACT

We present in this paper a set of several results of
the Three Components Deck Model for Diffractive Dissociation
Reactions. News and recently published results are summarized
to obtain a general overview of the model, its predictions and
comparison with experimental results. Two kinds of correlations
and amplitudes are given: The slope—mass—coseGJ correlation and

slope-mass-partial wave.
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1 INTRODUCTION

One of the most important part of the high energy scat
tering is the ‘-ine;lastic Diffractive Component or Diffraction Dis
sociation. The Three Components Deck Model (TCDM) gives a very
good description of the Diffractive Dissociation phenomena. We
have published! a set of applications in several reactions with
a very good result. Other applications will be presented here
giving a certain universalisation to the model. Our aim in this
review is summarize all known and new applications of the (7TDCM)
giving a general view of the mainproperties. For a general review
about all diffractive aspects of the scattering see reference £2:]

As the different aspects of the scattering, the Ine-
lastic Diffractive part have also soft and hard components in
physical regions. And while the soft component has been very
much studied and good models exist, the hard component is a
very unfamiliar part of the scattering. This is an open and in
teresting phenomenological and theoretical subject. |

In this paper we stick ourselves at the Diffractive
Dissociation soft component and specifically at the (TCDM)!'2, We
have shown that! this model reproduces the main aspects of the
Diffractive Dissociation reactions (DDR) . Here, we put together
all new and published results for different reactions,giving a
complete systematic of the spin—parity structure. The (TCDM) is the
only model describing, (among the main properties of the data),
the mass—s‘lope—coseG3 and mass-slope-partial-wave correlations.
A summary of the improvements, derivations, spin-parity struc-

tures for each reaction, approximations and hypothesis aregiven
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in the next sections. The section II 1is dedicated to the model
and the main aspects of it .derivation. In the section III we
give the applications of the (TCDM) to several reactions with
di fferent spin and parity structure in the a+P ~» 1 + Z:aimeag
tion (where a is the beam—particle,_P'is +he TFomeron exchanged
in the complete inelastic reaction and (1 + 2) is the subsystem
in which we study the effective mass distributions and general
properties). Partial wave amplitudes for each reaction are given
in section IV. And finally in section V we present the discus

sions and conclusions.

-2 THREE COMPONENTS DECK MODEL

We present now the general description of the (TCDM)
its properties and main parts of the derivation.

In all cases we have considered a general reaction
a+b-> (1L +2) + 3, see fig. (1), where b =3=Nucleon, at very
high energy where the diffractive phenomena are dominant., 1In
(TCDM) the Diffractive character is represented by the Pomeron
(IP) exchange. The dissociation of the hadron (a) into a pair
(1 +2) is described by the coherent sum of the Born terms of
the exchange amplitudes of the (a), (1) and (2) particles or
the s, t and u channel respectively of the subreaction a+ P -
1 +2, see fig. (2). We use a standard parametrization of the
TPomeron exchange, as we will see below. The two parameters b
and o, , the slope and the asymptotic total cross section are

T

in .general experimentally known. But in our case the subreac
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tions: (2) +(b) > (2) +(3=b),Q) + (b) = (1) + (3 =b) and (a)+ (b) >
(a) + (3 =b) are off-mass-shell in the sense that (2), (1) and
(a) are off-mass-shell particles. Then we must correct  the

[oe}

off-shell problem by changing slightly the b and O in each
case. This is the best form to consider indirectly a "form fac
tor" without broke some other important properties as the in-
terference among the three terms.

The well known Gribov-Morrison rule?, AP=(—1)A% where
AP and AJ are the Parity and spin balance between the particles
in the diffractive vertex, is automatically satisfied in e-
lastic diffractive subreactions, which appear in the TCDM.

To obtain the hadronic current coupled to the IRomeron,
in the (TCDM), we assume the vector coupling hypothesis (VCH).
On the current constructed with this hypothesis we must impose
the s-channel helicity conservation (SCHC) which simplifies the
form of the coupling, and reduces the coupling constants to on
ly one. It is a well known experimental result that in the e-
lastic diffractive reactions, dominated by the TPomeron exchange,
the TPomeron couples only to the s-channel helicity conserving
hadronic vertex".

In the High Energy Approximation (HEA),defined in Ap-
pendix A, the S-channel helicity conservated. current, for a vertex
d (p,)) Pb(p',\') obtained with (VCH), has the general form®

x| /2

J§3\|}\(p'1p)2("'t)lx' V(KIIA)PB (l)

where t = (p'-p)? , P = (p'+p)/2 and
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V(X',)))are functions of the coupling constants, +the 'masses

W Mg and the momentum transfer t.

Imposing the SCHC on these currents they become ' 9

B ' B

In the diffractive region, dominated by the Pomeron
exchange, the helicity amplitudes are essentially imaginary.

For a generic diffractive reaction,
a(p,Aa) + b(q,Ab) > a(p',A;) + b(q',Ag)
the helicity amplitudes may be written as

Bt/2 B
e Jgsara A (3)
a a

Als,t)l 5 yu 50 =3
a’'b

a’"b*"a’’b
The relation among the coupling constants, which ap-
pear in the currents, and the total cross section is given by

the optical theorem

al
Otb‘ t
o

Jaar Ipbp = () (4)

Off mass shell corrections must be introduced in the
diffractive amplitudes contained in the TCDM. It is important
to emphasizes here the inconvenience of introducing form fac-
tors to take into account off mass shell effects. Thecamplica-
tions due to the presence of form factors could destroy the pos

sible interferences among the components of TCDM.
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The most convenient way to introduce the ~off mass
shell effects is via small variations of the experimental dif

fractive slopes (B, , B and Bab) and the cross sections val

1b
2b 1b ab
ues (oTot( ) GTot( ) and oTot( )).

In the (HEA), the general form of the common vertex
(b1P3), at the three components, considering that (b=3), is;

given by
~ 2g. _RBs | (5)
- bIP

where R = (pb + p3)/2.

The factorization property of the pomeron permits to
factorize this common vertex in the TCDM. This factorization
may be represented as in fig. (3).

A consequence of this property in the case of the
(TCDM) is that the spins of the (bP3) vertex donot affect the
general structure of the (TCDM). Then, at the (HEA), the spins
of the particles (b) and (3) may be neglected, and the cur=

rent (5) may be written as
P~ 2g rB (6)
- bP

To materialize the problem and to introduce a stand
ard notation for our applications of TCDM, let us consider a
particular type of reaction in which the particle (b) = (3)is
a nucleon and (a), (1) and (2) are spinless hadrons.

The amplitudes for each component of the TCDM, re-

presented in fig. (2), with the kinematic defined in Appendix
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A, are
(t) _i B, .t./2 B 1
At =3 et227 % (29, 1R )(ZgZIPQB)t ~ 9212
~m
. 1 2
(u) _i _Bjyptp/2 B 1
AV =5 el (29, pR7) (29,5 Pg) > Ja12
u, —m
1 1
and
(s) _i _Bypt,/2 , 3 i
A =y earn (ZgbIPR )(ZgaIPKB) - m? Ja12
1 a

To simplify these expressions we define

g (tz) Otot( e

u = P oy B1ptp/2
g (tz) Otot( Je

and

s ab B.w.to/2
g (tz) Gtot( e a

. 2b
where, accordingto (4), Oop (@) = IppT2p’
ab _
Otor (®) = IypJ pr and also
b — : t -
— > u —
U= ig_,,9 (tz)/(u1 m

and

- s -
S = lgalzg (tz)/(sl m

1
0(t

5)

)

2
a)

:'b _ .
ot (®) = 9ppI1p

(7a)

(7b)

(7¢)

(8)

and

(9)
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At the HEA (a-9), using (A-10) and the definitons a

bove, the components (7) become

Al = r =5 .7

2
(u) _ — u
A = U = 53.
and
A(S) - g=s5.8 (10)
The scattering amplitude is the coherent sum of the
three components, A = A(S) +-A(t) + A(u). Then for reactions

with spinless particles in the dissociative vertex, 5 =41 =

4, = 0, the TCDM yields
s to u
s.g (t.,) s,.g (t,) s,.g (t,)
A=S+T+U=dg_, f' +—2 22'-+ 3 i (11)
s1 —ma t1~-m2 uy -m1

The general forms of the components, considering the

spin factors, are A(S) = F(S).S, A(t) = F(t).T'and A(u) =

F(“)u; where F(S), F(t) and F(u) are functions of the masses

and invariants (A -3). It is clear that for spinless particles

F(t) = s2 and F(u) = s3.

The components of the TCDM summed up coherently may in

r() - g,

terfere ‘destructively in some kinematical regions. This intex-
ference is the mechanism which gives rise to the correlation
among three variables: the diffractive slope (B), the effec

tive mass (M = Vsl) of the dissociated system and the polar

12

coordinate w)GJcﬁ a dissociated particle momentum (51) rela-

tive to the incident beam momentum (ﬁa) in the GdJs.
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Another feature of this correlation is the slope-mass-
partial waves correlation, which will be studied in section IV.
A direct consequence of the interferences above referred is the lar-
ge slopes and/or fhe dips obtained in the dc/dtzdimzibmjnns.

In the spinless cases it is possible to obtain equa-
tions that give the positions of the dips and show clearly the

G.J.

cosbo and t.,.

12’ 2
At (HEA) s s, + Sy carring this into the equation

correlation among M

(11) and making equal to zero the coefficients of S, and S We

obtain,

|
[e]

= gs(tz)(tl-mz) + gt(tz)(s1 —mi)

N
1t

st
(12)

N
I

su gs(tz)(ul -mi) + gu(tZ)(sl _m;) =0

Some observations may be done on these equations:

a) They may be satisfied in the physical region since in

-m; is positive whereas t, -m2 and u -n@ are ne

thi .
is region s b 1

1

gative.

b) They may be rewritten as

GI _ . =
cos® = fl(tz) PoMy, fz(tz) (13)

which show clearly the correlation, among the three <variables

M coseGJ and t predicted by this model,

2/

c) The factorization of the elastic vertex (bP3) in the

12

TCDM, according to fig. (3), shows that +the position (Mlz,

GJ . Ca s
cosf ,t2) of the zero in the amplitude, or of the dip in dxﬁkz
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is independent of the hadron (b).

d) The parameters that fix the position of the zeros of
the amplitudes are the total asymptotic cross sectﬂmu;o;:tﬁﬂ

and the elastic slopes Bi (i = a,l,2).

b

Dual Reggeization of TCDM

In the present form of the TCDM, each component is
the Born term of the amplitudés of exchange of the particles
(a), (1) and (2). The validity of the model is restricted +to
the effective mass (M12==/§I) range between the threshold and

the resonances of the dissociated subsystem (1 + 2).

The need for reggeization has been finding out sihce
the beginning of the DDR fenemenology development.

The reggeization of the TCDM must be done with some -
care. The components of exchange of particles (a), (1) and (2)
must be handled in a symmetric way, because the inter-
ferences that generate the slopermass—cosecJcormﬂatﬂx1mum:not
be lost in the course of the process.

The solution of this problem is given . by duality.
Dﬁality supplies a Regge behaviour to the three channels, a-
voiding double counting and dealing with all the channels in
a symmetric way?!?,

The procedure for dual reggeization of the TCDM, in
the spinless case has been performed in reference!? using Venezi-

ano formula,

F(ras)F(rau) F(raS)F(rat)

A = ig S, Z + s, 7 , (14)
12 3 T - — — -
a su I'(1l o au) 2%t T (1 a at)
where
= -— 2 = - 2 = — 2
as s1 ma, at tt m2 and a u1 ml.
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3 APPLICATIONS OF TCDM TO SEVERAL TYPES OF DDR.

In this section we collect several results of TCDM
applications. The DDR studied here have different configurations

of spin and parity in the dissociative vertex (a +1+2). These

configurations will be denoted as (A§-+A§,Ag).

The following configurations are analysed here:
A-(0"»0%,07); B=(0"»17,07); c~-(1/27>1/2%,07);
and p-(1/2F+372%,07).

Some examples of reactions that correspond to these structures

of spin and parity are:
A-mTm+p-> (e +1m) +p; K+p > (k +7) + p;
B-m+p > (p® + m) + p; K +p = (K* + 1) + p;
+ +
C-rp+p~>n+7) +p;p +p > (A +K') + p;
D-p+p-UHr+ )+ p
The TCDM amplitudes for DDR of type A have already
been obtained in the precedent section.

For reactions of type B, the components of TCDM are,

using the kinematics of appendix A:
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_ll_

(£) _i _By,t,/2 B 1 ‘ * u
Ay T =% e B27277(2g, ;R (29,5,00) > 9a1255 P1r AP, v

1 t1 —m2

(s) _i B bt /2 B 1 * H
Ay =5 e 3PT2T7(2g, pRY) (28 pKg) ~ 9,125 (P A)Py -

1 S, —m

1 a .
. g _+k . k_/k?)
(’:’4)=}_ Blbt2/2 % MBVY VO Vg W \O
AyTEH e (ZngRB)eu(pl,Al)F - 9,1,0,4P,)°/2,

1 ul - ml

(15)

where eu(pl,kl) is the wave function for spin 1 particles and
pHBY _ zgm[z(guspv + pHgBY) _guvPB:’ (16)

is the s - channel helicity conserving COupling in the vertex
(1'm17).
In the HEA, and using thé notation introduced in sec-
tion II, those COmponents may be written as
NGRS

* H
kl - T‘Eliq)l’}‘l)pa !

(s)
A H
Al NS el’j(pl,kl)p2

and
al) o [:Upg +s up -pk) ~URM (s +'m2 -m} —t1>/4]e;<pl, ) (A7)

A

In the G.J.S. we have

-
p, =E,E" + |p 7" ana p" = /5[ E (18)

and at HEA
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r* N —f—(.Ep +sen ax” +.cos a le) (19)
2vYs
1
where
1 0 0
U _f O E I § u_{ 0
E 0 , X 5 and A 0 (20))
0 0 1

Carring these results into expressions (17) and sum

ming up the components, the helicity amplitudes read

2 —
A 2

A. = {Vs. S+E T+EU +sl'(m2 +m
1 1 a a 1

2 - u Zo.
m, +t, ul)/4/s1} el (P AIET + {SzlpalvT +
> _ o2 2 uo_
+ sl Dpal (sl+ m, -, tl)cos oc/4»/s]:l}€]j(pl, >\1) 7
- ' 2 2 . U
[su (Sl+ma m5 tl)senoc/4/sl:le;(p1}\l)x . (21)

The spin 1 wave functions are

p1 . 0
Elsine cosd +cosb cos¢—1sing
u* 0 = l }l* + — :
€ (pl’ ) m, Elsine sen¢ | ,° (pl"l) fcosH sing +i coso
Elcose tsin®

(22)

and the helicity amplitudes (21) are explicitly:
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- 1 2 2 _ 2
Ax1=o = lpll{/sl S+E,T + EU + sl (m] +m) - m’ +

> I
+t, - ul)/4,‘/,sl} /my - El{‘szlpalT +sU “pa! - (s) +
m? - m? - t )cosoc/4¢s—] cosf®/m, - sUE_ (s, + m? -
a 2 1 lJ 1 171 a

2

- tl)sina sen 6 cos d)/(4m1 ,/EI) , (23)

and

7 o¥id 32\-|§a| T + s'UIlgal - (s +m:‘1 - m -

o
|

- ; - 2 _ 2
tl)cos oc/4;/sl:]} sin 6 s U (sl +m m;

tl)sina(cose cos$ * isin ¢)/4fé—1— V2 . (24)

The possible zeros in these amplitudes may not be de
termined by simple equations like that for spinless reactions.
In this case they must be songht numerically.

Reactions of type C have the following components for-the TCDM:

alt) - 2"I'R.Qﬁ(,p1 ,\f)\l)ys\'u(pa,)\a)'
AL
l7a
A)EUi z‘uﬁ(pl,)\l)R(_k + ml)YBg(Pa'Aa)
1 a
and
A}ES})\ =g E(Plp)\l)Ys.(lé +ma)Ku(pa,?\a) . (25)
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The helicity amplitudes, obtained summing these components, may

be written as

T by - (4 B
AAlxa —RBu(plkl){Z (T +S)p,Ys (U+8)y zﬁzYs}u(pa,Aa) (26)

where we have assumed m1 = ma .

It may occur zerosin these amplitudes, due to inter-

ferences among the components, if
T +8=0 and U +585 =0 (27)

in the physical region. The equations for the zeros are

N3
]

st (Sl

it
o

- m2)gt (t,) + (t; - nd)g®(t,)

|
o

- — m2ysY - m2y~S :
ZSu = (s1 ma)g (t2) + (ul ml)g (tz) (28)
These equations are the same as that obtained for spinless reac

tions (12).

For the reaction pp +- n np'2, from eqs. (28) and us-

ing the relation s; +t + u, = 2m2 + m2 + t,, we obtain
1 N T 2
2
t1@ipy) T T
and
sl(dip) me t,.e 5, (29)

where
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§ = O‘NN/U,H, and A = (B

N - Biy)/2.

NN

These equations describe correctly the behaviour of
the zero in the amplitudes, or the dip in dd/dtz.

The helicity amplitudes for this typeof reaction may
be written in a form more convenient for calculations. Sum-

ming the components (25), in the HEA, we obtain
A = (8.4 T + U)ulp A )ygulp, A ) - islgal(u+3bincﬁ3@ﬁkaﬁl—
- cosa o’ +sina 003)y5u(pa)\a)/2/s—;. ' (30)
This gives explicitly:

A = * {,s + T + U)G_cos(8/2) =

+1/2,41/2

- S|I_531 (S +u.)si'noa[E+sin acos(6/2) - e'Fi-fb(G +

+
+ E_cos oc)sin(e/Z)]/Z/s_l'} . (31)
and
A =-—eii¢{;s + T + U)G,sin(6/2) +
¥1/2,%1/2 +
+;s|f)>a] (S +u )sinocl:E_sinasin(,e/Z) —e;i g")(G__ +
+ E cos a)cos (6/2 )1/2@ } ' : (32)

where
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E, = (El +ml):L/ZCEa +m )1/2¢ (El —ml)ljz('Ea _ma)l/z
G, = (El + ml)llz (Ea _ Jma)1/2 + (’El _ ml)ljz(_Ea + ma)lfz

(33)

Dual Resonance Parametrization

The TCDM for the reactions of type C may be reggeized

and dualized. The helicity amplitudes (26) may be written as

u(pa,ka).

{ PR-pyZoYs Z . KBy Vs
(34)

A =u(p,A,)
A A 171 2 2 2
a (sl-mi)(tl—mz) (sl---ma)(u1 m; )

1

The prescription for dual resonance parametrization

(DRP) consists in substitute in eq. (34)

I(-a,(s,))T (~a,(t)

- 2 —_m2
1/(sy ~m )ty ~my) bY Fog sy ma €T (35)
a 1 271
and
’ I'(-a_(s,))T (~a, ()
—m?2 2 a'""1 171
l/(sl ma)(‘ul ml) by I'(l=a_(s,)-a, (u,)) ° (36)
a 1 1 1
The Regge trajectories are parametrized as
— - 2 = - m2
and
(s,) = s, = m? +1i}r.¢( ;(m + )2)1/2 37
PR 1 a - t5y 1 T ' (37)

where the parameter ) controls ' the résohance width.
The TCDM has been applied to the reaction pp~A~ 1 pid, which

is of type D. Its components are



CBPF-NF-059/84

-17-

Ailia = 2R.Q7$p(pl,ll)pﬁu(pa,xa)
Aijia - Smucpl,kl)pgcp +.ma)Ru(pa,la)
and
A)glll)\a o uaﬁcpl')\l)RBrqu (ml + k)A\)GCk);g;(pa’Aa) (38)
where
Y o g®V 8 - apBm) o+ a(gMPp 4-p“g3Y)/m1 (39)

which 1is the coupling in the vertex (.3/2+IP3/2 +) that assures

the (SCHC) in this vertex, and
— - 2 —
h,gtk) = g o = 2k k. /3m] = v v /3 + (kv kUY\,)/3m1 (40)

Summing up these components, in the (HEA), we have the fol

lowing helicity amplitudes

_Fi¢ . m
_ € : Tay > .
Bigsa,e1/2 =% > {53 uQd +m1)|pa|E__s1n 6cos(6/2) +
> ma s1 .

+ Szlpa' [((2‘ +E)E- --I—n—i— E+) u- E__T:’sz.ne cos(6/2) +

s F1 F2 .
+ E‘U (—E_+ —--E+)oos (e/Z)Ei'n a{cos 6cos ¢+ isin¢) +

Vs m
1

5 . : > . "
+ cos o sin 8] -s U ((m1 + ma)2 -m;)lpalslnel_E_l_cos(e/Z) -

~ G,sin asin(6/2)e;i¢ - G,cos occos(G/Z)]/(Zmlfs—l) -~
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- slU (m, +m1)|_§a.|2sinoc sine[:G_si‘n acos (6/2) +

+ (E_ -G_ cosa)sin (_6/2)e$i¢]/(,6mlfs—l)} (41)
o ti20 m_ . _
A$3/2,i1/2 ='_/__2_— S3U(1 +ﬁ)lpa|E_Sln GSJ.n(B/Z) +
R m, /ey
+ Szlpal[((Z +ﬁ)E+_Tn—1—E4) u=- E T:Isine sin(6/2) +
Fy F,
-ELU(——E + E )sin(Ae/Z)l-s-;inoc(cos-.e cosd F isin¢) +
N tomy - -
+cosa sin 9] = su((m +m)?* - mg)lia’a [sin@’_E_sen(6/2) +

+ G_sin acos(8/2)e 9 - G_cos cxsin(e/Z):]/(Zml/Q) -

_ ‘ > 2 s . . _
sU.(m  + ml)lpal sin ocsene[(;+51n asin(6/2)

- (E+-G+cosoc)cos(6/2)e1i¢]/(6m1/§1—)} (42)
\/Z . o,

Ar172,50172=V 3 m, [1°1 E(ss + 5,1 ((1 +m_1) (2/8) ~EE_ -

2l sy (6/2) +s, U +=2 13 | |2 1

m, T4)%3 cos 84 +I—I-1—l- P, -§fn——1-E_cos ®cos(6/2) -

E - s
L - ' 272 - 3 2
= sin @ s:.n_(G/Z)J +V;m1 [:(q E ) Ipll-i ]palElcos 6:’ x

m, CH |

X [((2 +I_[II)E— - ‘Fl— E+) u - E_T]COS (8/2) -
S, m_ /'sl ,, _

‘:/_-6_|Pal ’:((.2 +I—n—1)-E+ - —I—n-l—E_) u - E+T] sen 6 sin(6/2) -
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s U F1 F2 >
- = (———-E_+——E )cos(G/Z)[:Ipll +E1(.senasinecos¢-
/6 71 /5] o

F

- COS O cos 6)] -—-{i—u-(-—-— E_’_+—z E_ Ysen(8/2)|sino(cos 6 cos ¢ *
2/8 /5] my

. . _ . 2 _ .2 ' - e
+isind¢)+ cosa s:.n@] s'U (,ml +ma) mz)((x/sl Ea)]pll +
> - . . ¥i¢
-l-Ellpalcose)’:E_'\_cos (8/2) - G sina 513(6/2)e
-5
2 2 _ 2 .
- Cﬂ_cosoc cos (6/2)]/(‘/651 ml) + s U ((m1 + ma) m2) Ipa]s1n 6 x

x [E_.sin (8/2) +G_sin acos(6/2 )e*id) -G_cos o.sin(8/2 )}(ZJGSlml) +

+72 s[5, 1[(((2ny =m) U= 3m S VAT + (m, +m)E 0B -

- (m, + ma)Ell—pya]‘U/cosej G_sin acos(e/é) + (E_ - G_cos a) X

1

. *id] . 2 z
xsin(8/2)e ]51noc/(,6mlx/§sl) + sl (.ma +m1)lpa|2 X

xs8in asin G{G_'_sinoc sin(6/2) —(_E+ - G+.cosa) x

% cos (G/Z)e;id)]/c&/gs.’f ml) ] ' (43)
- +l¢) lpl
Bzi/2,51/2°%© /s E L88+s,T)+ ((1 +-—)(2/" E)E,
o My
S1 . ma- > 2-‘.E1
'r—n—_:;E—)SB U]snl(e/Z) +s3U‘ (1 +;n:) lpal 3 a—l— E,cos 6 sin(8/2) +

E ' s m
L= 2 2 ) _ -> > a _
4,—-—6 sin 6 cos(e/Z)I +_\/— —3-m—-1|(/sl Ea)[pll +lpa[Elcose:|l((2 +EI)E+

vs] ' m_ VS|
- E)U- E T)Js1n(8/2) +—= lp ] ((2 +—-—)E -1 E yu -
1 /6 ny my
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F F R
—E_T]sine cos(6/2) - IS'_U ("—1E++E%E_)sin(e/2)[[pll +
' Ygm, /s 1
"6 Y1
u F1p .52
+E, (sina sin6 cos ¢ -~ cosa cose)] + 2= E +-= B )cos(6/2)x
1 2/6 /s 1

sina(cos B cos ¢ Fi sin¢) +cos asin 6]-s U ((m, +ma)2 —m%) x

X

x ((féI—Ea)lgll +E1|5a|cos 0)|E_sin(6/2) +G_sino¢cos(,e/2)e¥i¢_

s 2 . 2 _2y12
-G_cosoa 81nA(6/2)]/(:/651 ml) -s U-(.(.m1+ ma) m2) [palsene x

X [:E+cos (6/2) --G+sin o sin (e/2)e:Fi¢ -G+cosoc cos(6/2):l/(2/651 ml) +

+v2 slgall:(((Zml —ma)tu -3m;S )/EI + (m, +m1)Eau.)|§1| -
= (m, +ma)E1I§al'U cos e] [G_'_sinu sin(6/2) - (E_ - G:cos a) x
X cos (8/2)e;i¢:|sin 0L/(6mi/_3?l_) - sl.m_ +m1)|-§a|2 X

x sin o sen GJ:-G_sinOL cos(6/2)+ (E_-Gcosa) x

xsin(e/z)e‘_‘iq’]/(e-/’—"esi' m, ) } . (44)
where

P o= - -2 2 2 : 2
F1 {3 (,2m1+ma)(_sl uy m; = 2m2 + ma)/m1 + 2(m1_ +m1mé1 +

2 2 _ 2 - _ 2 2
+ma ul) +ma(m&l m; ul)/m1 (2m1 +ma)(mal m2

- 2 _ 3 2 2 o2
»_ul)(3u1 +m:L tz)/m1 + (3u1 + my tz)(lna u; mi +
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2 _ 2 2 _.2 _ - 2 2
+ mlma)/m1 (2ul +2m1 tg(ma m, - u, 2m1)m1 /3 .

and

- 4m?® - 3s, - 3n
a

2 4 (3u1 4+ m? -

_ _ 2
F2 = {th 2m1ma +5m2

2 _ 2 _ 2 _ 2
tz)(m1 m,m +-ma m, ul)/.ml /3. (45)

4 PARTIAL WAVE AMPLITUDES

.In this section we project the helicity amplitudes,
obtained in section III, into partial waves.

For reactions of type A,(O--+O+,O—), the partial wave
amplitudes are given by the eq. (B=-5), for A = 0 and N, ==1.

We have then

AT (g + 1y/am /2 aas™al (e)ace,¢)
and
ATML g , (46)
and the parity of these amplitudes is P = —(rl)J.
The amplitude A(6,¢), given by eq. (1l1l), may be written
as

ae,6) = a0 8) + a2 (). cost (47)

where
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Au>ce) = igalesgs (t,)/ (s, '—m:) +azgt (t,)/ (£ —m%) +
+,a39u (tz)/(,ul —mi )] (48)

at?) (o) =igalzb[gtct2)/<t1 -m3) - gU(t,)/ (u -m;)] (49)

At HEA we have

n s(E, + ]El!cosa cos 8) /s

ay x s(E - [El lcos @ cos 6)//5]
and
b n slgl |sen o sen 6/Vs] (50)

The integration on ¢ shows that there are non wvan-

ishing amplitudes only for M 0 and M = * 1, and that

AJ,M=—1,- — - AJ,M=+1,-

We introduce the notation

Py _ ,J,M,-
A(LJ)M—A . (51)

where J =1L, and the S, P and D partial wave amplitudes are

given by
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AS]), = ﬂljzfd(cos 9)a> (o a1 (o)

-1

Aoty = 1/2 1 (1)
A(P1 )'o = (37) fd(cos.@)doo(_e)A (8)
-1

1
ACBH, = ((.3n>”2/2>j acos 8)al 1 (8)a? (o)
-1
al) = 5m %[ acossraz_(01a® (s)
20 00
-1

1
A (D)), =(‘(5w)1/2/2)J d cos e)dio(e)A(Z) (0) (52)

-1

For reactions of type B(0 =1 ,0 ), the helicity am-

plitudes (23) and (24) have the form (B -1).

A, (8,6) = e 1% (0,0, (53)
1 1
and the partial wave amplitudes are given by egs. (B~-2) :and
(B-5), for Aa = 12==0and le = - 1l:

. . J Y J AT
AIME L (g +1)/8n)1/2stze“lM¢{ Gy, (83 (0,9) *dm,-xl‘e)"‘*--xl(e"”)}

kl 1
(54)
for ll = * 1,
IM, - _ 1/2 -iM¢ .J v
AA1=0 ((23 +1)/4m) .Jdﬂe dMo(e)AO(6,¢) (55)
JM,+ _
and A)\l=0 =0 for Al = 0,

The parities of these amplitudes are given by

P=zt (-1)7
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From eqgs. (23) and (24) we see that the expressions

of KA (6,9) have the form
1
X, (6,) =A§1> (6) +A>(:2) (6)cos ¢ +A§3) (6)sin ¢ (56)
1 1 1 1

where, for A; = 0 Ag3)(8) = 0, and for A, = il;Aﬁii(e)=-A§1%e)

(2) - _a€2) C s (1)
and A_17 (0) =-A;" (0). The coefficients B, (8)(1=1,2,3) may

be obtained from egs. (23) and (24).

The integrations on ¢ in egs., (54) and (55) show that
only the values M = 0 and M = # 1 correspond to non vanishing
amplitudes.

As we are seeking for possible interferences among
the components of TCDM we choose M = 0, which select the coef

ficients A%l)(e). The coefficient Agl)(e) is the only one that
1

contains the three components of TCDM, and is the more prob-
able to gives rise to strong interferences.

From egs. (54) and (55) we obtain, for M = O:

1

J,M=0,- _ 1/2 J (1)
AA1=0 =(m(2J3 +1)) j d(cosB)dOO(G)Ao (6) (58)
-1
J,M=0 1/2f’
201707 2 2n2a +1)) ZJ dosera (@)alt (o) , (59
1= ) 0 1
J,M=0,- _ ,J,M=0,~- J,M=0,+ _
A)\1=_1 = A)L1=1 and A,A1 = 0.

The amplitudes for well defined orbital angular mo-

mentum are given by eq. (B=-10). Using the notation
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P, _ .,J,M=0
A(LJ) = A.(L) (60)

the S, P and D partial wave amplitudes are, for M = O0:

o 1/2,..J=1,M=0, J=1,M=0, -
-y _ _ .J=0,M=0,-
BB == B oo
1
__— 1/2 J=2,M=0,- . .J=2,M=0,~
A(Pz) = (2/5) (V3 All;1 + AA1=O )
+ 1/2, J=1,M=0,~ J=1,M=0, -
1 1
amh = /N2 z alT3N0- 3 xT=3,M50, -, (61))
3 X =1 A, =0

The helicity amplitudes for reactions of type C also

factorize similarly to eq. (B-1). The partial wave amplitudes

are given by eq. (B-2), for A, =0 and N, =~ 1:
IM,* 1/2( (o —i0-2 ) ¢ o - n
AT = (23 +1)/8m)" [dde a {d‘}{p\ (6)A, 5 (6,9 +d§4,'—x (B)A_, B (,e,q)%
17a 1 1l a 1 1’"a
(62)
and the parities of these amplitudes are
p=2 (-1)771/2 (63)

From the helicity amplitudes shown in egs. (31) and

(32) we see that
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ALA AL A A %
17a 17 a 1"a 1%a )
(64)
where the coefficients >(: )>\( ) may ‘be obtained from those am—
a

plitudes.
The integration on ¢ shows that the non vanishing ampli-

tudes correspond to M = * )*a and M = }‘a t 1. We choose M = A

(D
(8).
>\l>\a

Only these coefficients contain the three components of TCDM,

a

because this condition selects the coefficients A

and are the most probable source of the interferences we are see-

king for. From egs. (62) and (64) we obtain for M = )\a:

A“;’;H >t (ﬂ(J+1/2))1/2J d(cose)[-d‘] e (8)al (1) d; (G)A(D B (e)]

- (65)

The partial wave amplitudes for well defined orbital

angular momentum (L), according to eq. (B -10), are

R, - 200/ Ga v BT W
KL, = 200+ 1/a3 412 AT
Agii{ﬁﬁ;)xa =0 and AiLIfJi\?;Z))\ =0 (66)

and satisfy the relations
A%{‘;}ﬁf) -1/2° ‘AgLiﬁiiz),llz (67)

Introducing the notation
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J,M=1_/2,i (60)

P = (V)
ALg)y y = Bry1)2 :

the S,P and D waves are, for M = Aa =1/2,

J=1/2,M=1/2,-

A8y 5)q70 = 72 AA1=1/2,Aa=1/2
Lt _ J=1/2,M=1/2,¥

AP p)y/p =~ 72 AA1=1/2,Aa=1/2
+ _ I=3/2,M=1/2,~-

ARy p)y p = V2 AA1=1/2.Aa=1/2

o _ 5 ad=3/2,M=1/2,¢

A(Dg5)1/2 A =1/2,),=1/2

- /3 AJ=5/2,M=1/

) - = =
1/2 A—l/Z,Xa 1

A ?5' . (69)

P52
The partial wave amplitudes for reactions of type
D, (1727 +3/2%,07), are given by eq. (B -2) for A, =0 and N_, =

12
+ 1, and the parities of these amplitudes are

P=t (-1)7"1/2 (70}

The helicity amplitudes (41,42,43 and 44) factorize as

eq. (B-1) and the expressions for K% 3 (6,¢) may be written in
17a
the form
X 8) = a1 (8) +af? (0).cosis +a$3) (8).sino (71)
Alk AL AL AL
a 17a 17a 17 a

As may be verified in the helicity amplitudes, only
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the coefficients
(1) @) (2) (2)
Aiyy2,+172 ¢ Briy2,x1/2 ¢ Biiya,x172 3PQ Baiya,x 172

centain the three components of TCDM, consequently if there
exists strong interferences of TCDM type they are expecteéed to
occur in these coefficients. The other coefficients containonly
one or two of the TCDM components.

The integration on ¢ that appears in eq. (B -2) may
be performed using eq. (71), and shows that the non vanishing
amplitudes correspond to M = Aa and M = Aa £ 1.

As we want to show that there may -happen interferences
in the partial wave amplitudes, we choose, as simplifying, on

ly M = Aa. This choice selects the coefficients Ak 3 in

which the stronginterferences are expected to occur.

The partial wave amplitudes for M = Aa are

AL A

1
a0 oM Rat (w(J+l/2))1/2J dlcos e)[d]'. \ (,e)A)SDA (8) +d] (G)A(l) (e)]
17a al a

-1
(72)
and the partial wave amplitudes for well defined orbital an-

gular momentum (L), given by eq. (B -10), for M= ka read

ad M=, - = adsM=d, = 0

J,M=A,,+ J, as*t -
(L=J-1/2) X (L-J+1/2)A B (L-J+3/2)A

a =
A(L=J—3/2)Aa A

(73)

and



Ag,M=Aa,+

RO

J

J:\ :Ms}\a""

AJ ’M=)\a,-
(L=J+3/2)k

(L=J-3/2)Aa

(L;J-llz)xa -

(L=J+1/2) )\a
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1/2 J M=),, 1/2

T, M=)y,
B372, A )

B ),

= {((2J+3)/J) + (3(23-1)/0)

a

_{(B(ZJ +#3)/@ 0} 22l + 2o/ @Y
252,

— 1/2 J M=) v _ 1/2 J M=)\ o+

= {(3(2J -1)/3) 3/2 }\: - ((20+3)YJ) 1/2 a

= {((2J 1)/(3+1) 12 AT+ (32 +3)/(3+1) ) 2 a0 Aa»™ } /2
*"a

These amplitudes satisfy the relations

J,- as»— + Jska,
Ba,=a, TR,
To denote these amplitudes we define
_ T M=1/2,%
A (L )1/2 B A(L)Aa=1/2
Using (74) with the notation (76), the S,P and D partial
amplitudes read:
_ a3/2,1/2,+ 3/2,1/2,+
A(S3/5)1 9 BA3yra.1/2 T R1y2.172,
- _ 1/2,1/2
AR50 12 ERSVERVE
+ _ o 1/2 3/2,1/2,- 3/2,1/2,-
A('P3/2)1/2 (L/5) (3 A3/2,1/2 + A 1/2,1/2
_ 1/2 5/2,1/2,+ 5/2,1/25+
A P - ? L4
(Fg/p)1, = W/ 0 Bysar,1r2 T AL )

+} p

e}

\

(74)

(75)

(76)

wave
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- ~ 1/2,1/2,-
A(1)1/2)1/2 =72 A1/2,1/2
- _3/2,1/2,+ _ ,3/2,1/2,+
A(Dg )10 = B3 50172 Ayya.1/2
- - 1/2 5/2,1/2,- 5/2,1/2-
A(D5/2)1/2-u%2/7) (/6 A3/2’1/2 + A1/2,1/2 )
- _ 1/2 7/2,1/2,+ 7/2,1/2,+
B(D,,0) 0 =/T)V0WE A5 05" F 3 Byt 90 ) (77)

RESULTS AND CONCLUSIONS

In this paper we analyse the TCDM applications to
several types of (DDR). A part of the results presented here
"was not published previously. We put together all spin-parity
structures of the subreaction a + IP > 1 +2. These amplitudes can
be useful for a complete understanding to the (DDR) phenomenology.
In this sense the model is universal, describing the multiple
aspects of the data The TCDM is a natural consequence of the
earlier Diell-Hiida-Deck- Model® until the discovery of the slope
(B), mass (Mlz), angular (cos GG'J') and the slope-mass-partial
waves correlations’.

The application of TCDM to these different types of
reactions permits us testing the model in those feactions for
which there are experimental results, and to give a Vtheore{:i‘cal
prediction for the others. '

The DDR studied here have different spin and parity

structures in the subreactions (a +IP > 1 + 2).
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The reactions studied here have the following spin
and parity structures in the dissociative process (a ~+~1 +2),
(3ha » 1+ 352y a-(0” 07,07y, B-(07-17,07), c- @/2t-1/2,07
and D - (1/2% » 3/2%,07),

We choose only one reaction of each type to apply
the TCDM. The reactions chosen are respectively:

A-: K +p»>(k +7) +p, B-:K +p + (K* +7) +p, C—;qp+p+(n+ﬂ_)+p,
and D-:p +p ~ (A++ + 7T ) + p.

Following we discuss the results obtained for each
reaction.

The reactions of type A have the simplest spinand parity
structure. The TCDM for these reactions may ‘be reggeized,
what extends the validity of the model beyond the region of
resonances in the dissociated subsystem (1 + 2).

The partial wave amplitudes for the reaction K +
p~> (k +7) +p are given by eq. (52). A slope-mass correla-
tion may be observed in S wave. The fig. (4) shows the theoreti
cal distributions for the S wave in the effective mass ranges

1.25 < M, < 1.35GeV and 1,35 < M. < 1.50GeV respectively.

km

The slopes of these distributions, calculated in the
interval 0 < ]t2| < 0.002 GeV?, are repectively B = 14.6GeV >
and B = 11.,8GeV . These results may be compared with the ex

perimental ones®, showed in fig. (8).

The parameters of TCDM used to obtain the results

. TN _ KN kN _ ~2

above are: ot =23 nb, 0ot =20 mb, S 524 mb, BﬁN-—7GeV ’
_ -2 _ ; -2
BKN-—G.SGeV and BkN = 6,5GeV .

The reaction of type B studied here is K+p+ &% 1) + p.

The helicity amplitudes and the partial wave amplitudes are
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given by egs. (23) and (6l1l) respectively.

A slope mass correlation may be observed in the S and
P waves. In figs. (5,6,7) we see the distributions for 1%s ana
0" P waves, restricted by M = 0, in the effective mass ranges

< 1.35GeV and 1.35< M . < 1.50:GeV.

1.04 < M, < 1.20Gev, 1.20< M

K*m K& R&T

The slopes of these distributions calculated in the
interval 0 < ltzl < 0.02GeV?, are given in those figures.

The results for the two higher mass intervals may be

compared with the experimental distributions® and slopes of

fig. (8).

The TCDM parameters used to find these ‘~experimental

TN  _ R*N _ KN _ , -
slopes are Oror = 22 mb, Orot = 18 mb, O ot 21 nb, BTTN
~2 -2 , _ -2
9.0Gev , BK*N = 4,5GeV and %KN = 3.0GevV .

As may be observed in fig. 5 there exists a strongin
terference in the 0 P wave, whose slope is much higher than
that of the 17S wave. As a vconsequence of that interference there
appears a dip in the 0 P wave. The dip deslocates slowly to

higher values of |t as MK*TT increases.

2|

It must be remembered however that in the mass inter
vals where the data are given, mainly in the higher ones,
there exists K*m resonances.

The dip in the 0 P wave, predicted by the model, is
not seen in the data. Possibly it is AcoveredAby resonance ef
fects, or the large errors near t2 = - 0.3GeV? do not permits
distinghish it.

The reaction of type C,p +p = (n +n+) +p, permits an

excellent test for the TCDM. This reaction has the best data

among the DDR. A clear slope-—mass-—coseGJ correlation may be
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observed in these data.

That reaction has some spin complications. However
the TCDM may be reggeized and dualized, Two parametrizations
have been obtained for the dualized TCDM. The dual iresonance
parametrization (DRP) is obtained according the Veneziano
ansatz. We cannot expect that the theoretical mass -‘spectrum
fits well the experimental one with this rigid parametrization.

To obtain a parametrization more flexible to describe
the resonances, it may be used the dual reggeized Deck para-
metrization. In this case the Veneziano functions are replaced
by their Regge.limits.

The fits of these parametrizations to the data are

show in figs. (9) to (16). The values of the (TCDM) parameters

(which are the same for the two cases) are: “Zﬁt =25 mb,(igtz
30 mb, oPP = 40 mb, B =10GeV ', B =B _=9GeV - and
tot mp np PP

A = 0.3GeV,

The total mass spectrum, fig. (9), fixes the overall
normalizations for the‘two parametrizaﬁions.Fig. (10) shows
the do/dt2 distributions for some windows in MnTr and masGGJ.
These windows appear in fig. (11), where the zeros of the am
plitudes, determined by the egs. (29), are located. Fig. (12)
shows the net diffractive slape (B) as a function of the ef-
fective mass and the ¢good fitting of the slope predicted by
the DRP.

There is a satisfactory agreement of the parametriza
tions with the cos GGJ 'andd)GJ distributions, fig. (13). The ('I'CDM’
dualized reproduces well the turnover of the coseGJ dsitribu-

tion a.t.cosBGJ = + 1.
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Although there are no experimental results to be con
fronted with, it is interesting to see how the slope mass cor
relation appears in partial waves. Figs. (14,15,16) show the
S, P and D wave distributions, restricted by M = ka. It may
be seen that the strongest interferences occur in the P and D
waves, in which there appear dips and turnovers..

Another reaction, of the same type, which is very well
described by the dualized TCDM is p + p > (A + K+) + p. - See
figures (17-21) taken from reference [?é]. Where the cammarison
with the experimental data was made.

The reaction of type D analyzed here, p + p-+(A++ +
m ) + p, has helicity amplitudes and partial wave amplitudes
given by eqgs. (41-44) and (77) respectively. The complexity
of these amplitudes does not permit derive simple ‘:equations
to determine the positions of possible zeros. But thenumerical
calculations of dd/dt2 show that there exists slope-mass cor
relations in the distributions for that reaction. In fig. (22)
we see that the slope decreases as the effective mass ‘increases.
Fig. (23) shows as the slope depends on the effective mass and
on the coseGJ intervals,

The set of parameters of TCDM used in this calculations

NN NA

=25 mb, o, =40 mb, o = 50 mb, B_

i
are o N
tot

-2
tot = 10 Gev p

N
Byy = 9Gev™ > and Byp = 8GeV °, and the slopes are calculated
in the interval 0 ¢ |t,| < 0.02Gev ?.

The best way to see the slope mass correlation inthis
reaction is to look at the partial wave distributions. It must

be remembered that the partial wave distributions here are re-

~tricted by the condition M = Aa. This condition has .the  ad-
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vantage of simplifying the calculations and is enough to verify
a possible slope-mass-partial wave correlation,

In fig. (24) we see the S, P and D wave distributions
for two effective mass intervals. The S wave shows a strongin
terference, with a dip at t, » - 0.35Gev?,

The examination of each amplitude A(Li)ljz,for P and
D wave distributions, allows us to seek for interference :struc:

tures not seen in fig. (24).

. + +
Fig. (25) shows the A(P1/2)1/2' A(P 3/2)1/2 and

+ v . + .
A(P5/2)1{2 distributions. Among these, the A(P3/2)l/2 is the

one that shows the strongest interfierence, with a dip at t2 N
- O.lGeVZ.

The relative normalization in fig. (25) shows that
)
1/2°1/2
, where the strongest interference occurs. By

the partial wave A(P is two orders of magnitude higher
o)
3/2°1/2
this reason the total P wave distributions, showed in fig.(24),

than A(P

do not present dips.

1/2°1/2 '

wave distributions are

)

)

The D wave spectrum for each J, i.e, A(D

Dyjalijg + BPs/p)  , and A, ,)), ),
showed in fig. (26). We remark that only the A(D

Al

1/2°1/2

. ’ _ . _
A(D7/2)1/2' waves present dips at t, & - 0.6GeV® and t,

0.4 Gev? respectively. The total D wave distribution, :showed

and

in fig. (24) .do:not present dips because all the contributions
from different values of J are added.
The net slopes for each wave, calculated in the in-

terval 0 < |t | < 0.02Gev?, are shown in tables D~-1 and D -2

ol
At . table D -2 we remark that all the waves, but P5==3/2, pre

sent an expected mass-slope-partial wave correlation, that
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is, the slope decreases as the effective mass M, increases.

Am

The abnormal behaviour of the P is because the

J=3/2

zero occurs for smaller [t2| when S1 increases.
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APPENDIX A

This appendix contains a summary of the kinematical
variables and expressions used in this paper.

The DDR a + b » (1 4+ 2) + 3 may be represented as in
fig. (1), and the TCDM which describes these reactionshas the
diagrams of fig. (2).

The fourmoménta corresponding to the external lines

are pi(i==a,b,l,2,3) and for the internal lines we define.

q=p, “P;s k=p_  -p, and p=p; +p, . (A-1)

At the diffractive vertices the following fourmomen-

ta are used:

P= (Pl"'k)/z y Q= (pz +q)/2'

K=(p,+p)/2 , R= (B, +P;)/2 . (a-2)

The invariants constructed withthese 4-vectors are,

S = (p,+py)% s = (p; +p,)?*, 5, = (p, +p,)?,

s = 2 - 2 - - 2
3 (p]. +p3) r tl (Pa Pl) ’ ul (Pa p2) 14

t, = (p, —103)2 (A-3)
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The energies Ei and the momenta IE,l (i=a,b,1,2,3)
i
. -+ >
are defined in the Gottfried-Jackson frame for (pl +p, = 0)
(1L +2) rest system (see fig. 27). The expressions of E. and
+ .
|p;| are given by,

— » 2 — = - 2 2
Ea—(sl»+ma- 1;2)/2;/5‘l ’ Eb (sl m_ -my +t2)/2;/s1 ’

= | 2 _m? R = 2 _ 2 2 S p
E1 (sl+ my m2)/2x/s1 ’ .E2 (sl +m; ml)/ Sy

, P _ 1/2 2
E,=(s-s; --m§)/2/s_1 . lpal = A (sl,ma,tz)/Z‘/s—1 ,

1/2 > 1/2 , I
I}—Sb! = A / (sl'mé'ta3)/2”51 ’ IPBl = A / (Sltmgrs)/z Sq

1/2 2 -
A (,sl,mi,mz)/Z/g-l' , (A-4)

o
3
(ol
oy
s
]
o
N—.——-
1

2 4m

= - - 2 2
s s tz-}ma +mB 3

a3 1

and 2 (x, y,z) is defined by
Ax,y,2) =x? +y2+ 22 =2(xy +x2 +y2Z) (A-5)
The angular coordinates of the momenta are:
B, =B,(8,0), B =P (x,0) and B, =B, (a,0), (a-7)
The angles in GJS are related by

cosB =coso cos ® +sena send cos ¢. (A-8)
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High energy approximations (HEA)

These approximations correspond to
S,S,18, *>8q, |tll,|u1|,lt2|,m§ (i=a,b,1,2,3). (A-9)
Using (A-9) we obtain

2Q0.R"Vvs 2P.Rvs, and 2K.Rxs , (A-10)

27 3

1/2

_ 2 2
cosa v (sl m’ +t2)/)\ (‘Sl’ ma,tz) and

sena_T_Z/EIV—tz/Al/Z(,sl,m;, t2) ’ - (A-11)

s, vs(E, +|E>>1 |cos B)//é_l' and s, vs(E, - lisllcos B)/Ys, (A-12)

3 1

For very small values of Itzl the relation (A-8) becomes
cosBN - cosb + (2/slv-t2/ (s, —m;) )sen 6 cos ¢, (Aa-13)
then, carrying into (A-12) we obtain

s, vs(E, - 151 |cos 6)//57 + (,ZSIEII:/—t-Z/(sl —mza) )sen 6 cos ¢
and

S, s (E, -+ |Bl |cos e)//§; - (25[51 l SIVACH -m;))sen 8 cos ¢
(A-14)

At the same approximations we have
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(£, -m2) ~ - (s; =m2)(E, - |B, |cos 6)/¥/5] and
(u, ~m2) n - (s; =m2) (B, +|p, |cos 8)/V5] (A-15)

From (A-14) and (A-15) we obtain

s 2|p, | /S7V=E, sen 6 cos ¢
3 . __5S 1 - 1 1 2
-m?2 -m? -m2)( o
u, -m3 s, —m> (s, =m )(E, +Ip1|cos8)
and
S, o . 2|§1]V51V—t2 sen 6 cos ¢
= =l - , (A-16)
t, —mj s, -m (s, =m2)(E, -|p1|cos )
and at the limit t2 = 0, we have the relation
s s
2 _ 3 -2 (A-17)
- —m?2 -
Epmmy vy mmy §; ~m,

For a.three particles final state reaction the cross-

section is given by

1/2 2 2

A
do = cJ -ds_dt,d cos 6 d¢|Aa|? (A-18)
s) 172

where

C = l/(,21 OTT.’}\ cslmzlmi) ).
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APPENDIX B

Partial wave projection of the final state subsystem (1 +2)
of aa + b~ (l>+ 2) + 3, (DDR).

In this appendix we collect some results usefull to
the projection into partial waves of the helicity amplitudes,
obtained through the TCDM, for the DDR.

Neglecting the spin structure of (bIP3) vertex, dueto
the factorization property, the helicity amplitude, given by
the TCDM for the DDR a + b - (1 +2) 43, in the GJS, making use

of the Jacob-Wick convention, has an explicit phase,

(55515t250,0) =e P72 (5,51, 6,30,4) (-1)

A A
>\1‘7‘2 a >\1}\2 a

where X = ) - )
1 2

The helicity amplitudes for total angular momentum

(J), of the dissociated subsystem (1 + 2) and its projection

(M), on the incident beam direction (Ea), and normality (%),

are given by

JM —
A(s;s,t,) = ((23 +1)/87r)1/2jd§2 e~ (M=200 o

1 a

0,0)=N v(6,¢)

x {d (6) 12, d (6)A (B-2)

{ 12 Al, Ay }

where
Nyp = n1n2(-1f61+4?"vlz ' (B-3)

In the above expression n, and nz»and Al and 52 are
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the intrinsic parities and spins of the particles (1) and (2)

= 0 for J integer and v = 1/2 for J half

respectively;, 12

Vi2
integer.

The parities of the amplitudes are given by

p=t(-1)77V12 (B-4)

For Al = 12 = 0 instead of (B -2)we have

JM,Nq19 _

00,A
a

A (27 +1)_/4n)1/2Jasz e“iCM'Aald’d;O(;e),Xooz (6,6). (B-5)
: a

From parity conservation we obtain the relation:

Aii'Mli 5 = n(-1)47%a AiMii)& (B~6)
1’ 72* “a 172%a
where
Aqa+bo—4
= - 17°2 -7)
n= n,n,n, (-1) a (B=7)
The amplitudes (B ~2) also satisfy the relation
JM, *+ JM, * )
AT =+ N : (B-8)
P Y Yt Azlxzza

The amplitudes for well defined J,M, orbital angular momentum
L, spin 3= }1 + Zé and normality (*), of the subsystem (1 +2),

are given by

JM, % _ : 1/2 L83 ~4.4,4 JM,+ (B -9)
Alplgyy = (L #1173 +10)77 T coyy €1722° o ag™s™)
a 2.2 7 72 172%a

172



CBPF-NF-059/84

~43-
where CL‘SJ and Cdléz‘ are the Clebsh-Gordan coeficients.
0AA ll,-lz.)x

In the cases for which 42= 0, &= 490 the amplitudes (B-9) become

JM, * , 17215 J-L-4 L47J IM, *
AT =((2L +1)/(2J +1)) 1+N_,(-1) 1] 1 ‘ >
(12, S ¥ ol Pl P2
(B=10)
FProm the relations (B-6) and (B -8) we obtain
J,-M,* = - M")xa J,M, =z _
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-2
TABLE D1 - Values of the slopes in GeV corresponding to the

curves cila/dt2 shown at Fig. (D ~3). \

L | 1.37 < M, < 1.40GeV | 1.40 ¢ M,_ < 1.45GeV|
= TAm — 7 = A7

S B = 19.5 B =17.4

P B= 9.7 B = 7.3

D B = 16.7 B = 16.1

-2
TABLE D2 - Values of the slopes in GeV  for each wave with {L)

and (J) well defined, shown at figs. (D-4) and (D-5).

L J'-f_1}37 g_MAﬁ < 1.40CeV | 1.40 < M, < 1.45GeV
2 B=17.1 _ B = 4.5
P | 3/2 B = 24.2 . B = 33,2
5/2 B = 22.8 , B = 18.1 .
1/2 B=17.2 B = 16.4
3/2 B = 13.4 e B = 13,0
? 5/2 B = 18.9 B = 13.2
7/2 B = 43.2 | B = 34.7
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Fig. 3

Fig. 4

Fig, 5

Fig. 6
Fig, 7

Fig., 8
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CAPTIONS

- Single Romeron exchange in the a + b » ( l,+ 3) + 2 re-
action at high energy.

~ The three components of the (TCDM), representing the
tl—channel, ul—channel and sl—channel of the a +
b+~ (1 +2) 4+ 3 reaction.

- Graphical representation of the Pomeron factoriza-
tion property.

- Partial wave (0 S) t,-distributions and slopes of

2
the reaction Kp - (km)p,for two effective massranges.
- (l+S) and (0 P) partial wave distributions and slopes

of. the reaction Kp + (K*m)p, in the effective mass

range 1.04 < MK < 1.20 (Gev).

*r

- The same as fig. (5) for 1.20 g;MK*ﬁ < 1.35 (Gev)

- The same as Fig. (5) for 1.35 < Meyr < 1.50 (GeV)

—- Experimental results of the partial wave :cCross sections
for the reactions Kp + (km)p -0 S) and Kp~ (K*m) p -
(1¥¢ and 07P), in two effective mass ranges?®,

- Effective mass (MNn) distributions of the rnreaction
Np + (Nm)p for (a) -0.1< t,<0.02; (b)-0.08< t,<=0,02
and (c) -1.0¢< t2< -0.2, The full line representsthe

dual Deck parametrization and the dotted line repre

sents the dual resonance parametrization®2,

Fig. 10 - t2 distributions integrated in several regions of

MNTr and.cosGGJ.
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11 - The location of the zero of the amplitude for Np~ (N7)p,

12

13

14

15
16
17

18

19

20

as a function of cos 8%, M . and t,. The rectangles’
labelled from (a) to(£) are the regions in coseGJand
MNﬂ iﬁ which the t2 distributions of fig. (10) are
integrated.

The t2 slope as a function of MNW.

(a)wCOSGGJ distribution for 1.08¢< MN“~<1.4 (GeV) and

~0.23<t, < 0. (b) o% @istribution for 1.2< M <1.375(GeV),

-0.2<t,<=0.02 and 0.8< cos 6°7<1. (¢) The same as

T¢

(b) except -1 < cos GG ~-0.8.

S, P and D partial wave t, distributions for the re

2
action Np - (N7)p integrated in two effective mass

ranges, and restricted to (M = Aa).

and P ) partial wave t_, distributions.

2
partial wave t2 distributions.

Peg=1/2) (J=3/2

P3=3/2) (1=5/2)
The mass distribution of the (AK+) system., The full

and D

line shows the results of the (TpDM)!cC,

dd/dt2 distributions for wvarious M(AK+) intervals,
integrated over all cos 6% and ¢GJ. () for all
M(AK) masses,(b) for l.6l'g,M(AK) < 1.8Gev, (c) for
1.8 < M(AK) < 2.0GeV, (d) for 2.0< M(#K) < -2.5GevV.
dc/dt2 distributions for some coseGJ regions, for
all masses of AK' system and integrated over all ¢GJ
(a) in the interval cos 6% < -0.5; (b) for |cos 6%7<0.5;
(@) cos 8°7 > 0.8 (full line), cos 8% > 0.5 (dotted Line).
Theoretical dd/dt2 distributions calculated by (TCDIM).
(a) In the intervals 1.61 < M(AK) < 1.7 (GeV) and

-0.5 < cos SGJ <-0.3., (b) 1In the intervals
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1.7 < M(AK) < 1.8 (Gev) and -0.5 ¢ cos8™ ¢ ~0.3.
Gottfried-Jackson angle distributions for all masses
M(AK) and for 0< |t,| ¢ 1. (a)cos6®’ distribution
integrated over all ¢, (b) ¢%7 Qistribution  in-
tegrated over all cosGGJ.

t, distributions and slopes, for reaction pp -+ (A++h—)p, in
tegrated in two effective mass ranges.

t, distributions and slopes, for pp » (A" 1 )p, in

2

tegrated in two intervals of MATr and three inhtervals

of cosGGJ.

S, P and D partial wave t, distributions, restricted

‘ 2
to (M = Xa).

P(J=1/2), P(J=3/2) and PCFS/Z)padnal wave t, dis-
tributions, restricted to (M = Aa).

and D partial

Deg=1/2)" Pa=3720" Pa=5/2) (3=7/2)

wave t, distributions, restricted to (M = Aa).

Gottfried-Jackson coordinates for R12 (El +i§2 = 0).
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Fig., 1
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e
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Fig, 2

Fig, 3
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Fig. 27
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