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I. INTRODUCTION

Rencently, static classical con�gurations that are exact solution of the equation of
motion in scalar potential model have drawn much attention mainly because they have
found interesting applications as a solitary wave [1]. There are several methods to build
up soliton (kink) solutions associated with some nonlinear di�erential equations [2]. The
kink of a scalar �eld theory is a static, non-singular, classically stable and �nite-localized
energy solution of the equation of motion [3]. When �(x; t) = f(x�vt); a kink solution is
called solitary wave. The role of classical solutions in quantum �eld theories have recently
been overviewed [4]. There, one can see how a quantum �eld theory has topological and
non-topological soliton solutions in higher spatial dimensions. In the literature, there is
a surprising number of scalar potential models in higher spatial dimensions with exactly
solvable equations of motion. Also, a variety of classical �nite-energy static solutions are
known.

The connection between supersymmetry in quantum mechanics (SUSY QM) [5{9] and
the topological and non-topological solitons in terms of a scalar potential (for the case
of a single �eld) has been discussed in the literature [11{15]. The connection between
SUSY QM associated with two-component eigenfunctions [9] and the topological solitons
in terms of two coupled scalar �elds have already been considered in [10]. Recently, the
reconstruction of 2-dimensional scalar �eld potential models has been considered starting
from the Morse and the Scarf II hyperbolic potential, and quantum corrections to the
solitonic sectors of both potentials are pointed out [16].

In the present work, from a non-polynomial potential in supersymmetric quantum me-
chanics, we shall propose new potentials as functions of one single real scalar �eld. Indeed,
in (1+1) dimensions, non-polynomial interactions are not really harmful, from the point of
view of renormalisation. Actually, non-linear ��models are the most representative class
of renormalisable models in 2D, and their interactions are described by non-polynomial
functions. We consider the interesting program of proposing new potential models in 1+1
dimensions, whose essential point is associated with the translational invariance of the
static �eld con�guration [11]. Here, the aim is to �nd �eld potential models via SUSY
QM considering a one-dimensional quantum mechanical isospectral potential class such
that the corresponding 
uctuation operator sets a Schr�odinger-like eigenvalue problem as
a stability equation exactly solvable for the �4�model. However, the corresponding �eld
potential cannot be put in a closed form. Indeed, we show that in such a procedure there
appears a new non-polynomial �eld potential model with in�nite-energy static con�gu-
ration, so that such a new potential may not be considered as a well-de�ned theoretical
�eld potential model.

Actually, we shall bring two constructions of classical solutions. In the �rst case, we
obtain the well-known topological kink, whereas in the second case we obtain a non-
topological static con�guration which is not a kink. In the second case the new static
�eld con�guration is not a smooth function over all the the spatial-time.

We also propose some pictures of the �eld potential models (�gures I and III) and the
static classical �eld con�gurations (�gures II and IV).
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II. STATIC CLASSICAL CONFIGURATION

Consider the Lagrangian density for a single scalar �eld, �(x; t); in (1+1)-dimensions,
in natural system (c = 1 = �h), given by

L (�; @��) =
1

2
@��@

��� V (�) ; (1)

where V (�) is any positive semi-de�nite function of �, which must have at least two zeros
for kinks to exist. It represents a well-behaved potential energy. However, as it will be
shown below, we have found a new potential which is exactly solvable exactly in the
context of the classical theory in (1+1)-D that not a kink.

The �eld equation for a static classical con�guration, � = �c (x) ; becomes

� d2

dx2
�c (x) +

d

d�c
V (�c) = 0; _�c = 0; (2)

with the following boundary conditions: �c(x) ! �vacuum(x) as x ! �1: Since the
potential is positive, it can be written as

V (�) =
1

2
U2(�); (3)

giving the well-known Bogomol'nyi condition,

d�

dx
= �U(�) (4)

where the solutions with the plus and minus signs represent two con�gurations.

III. STABILITY EQUATION AND NEW POTENTIALS

The classical stability of the static solution is investigated by considering small per-
turbations around it,

�(x; t) = �c(x) + �(x; t); (5)

where we expand the 
uctuations in terms of the normal modes,

�(x; t) =
X
n

�n�n(x)e
i!nt; (6)

the �0ns are so chosen that �n(x) are real. A localised classical con�guration is said to be
dynamically stable if the 
uctuation does not destroy it. The equation of motion becomes
a Schr�odinger-like equation, viz.,

F�n(x) = !n
2�n(x); F = � d2

dx2
+ V 00(�c): (7)

According to (3), one obtains the supersymmetric form, [15]
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V 00(�c) = U 02(�c) + U(�c)U
00(�c); (8)

where the primes stand for a second derivative with respect to the argument.
If the normal modes of (7) satisfy !n

2 � 0 the stability of the Schr�odinger-like equation
is ensured. Now, we are able to implement a method that provides a new potential from
the potential term that appears in the 
uctuation operator.

Next, we consider the following generalized isospectral potential as being the potential
term (8) for the 
uctuation operator:

V (x;�; �) = m2

"
3tanh2

 
mp
2
x

!
� 1

#

+ 2m2�

"
sech4

 
mp
2
x

! 
2tanh

 
mp
2
x

!
+
�

2
sech4

 
mp
2
x

!
�

!
�

#
;

� = �(x;�; �) =

(
� + �

"
tanh

 
mp
2
x

!
� 1

3
tanh3

 
mp
2
x

!#)�1
; (9)

where � and � are constant parameters. This non-polynomial potential satis�es the
condition !n

2 � 0; and the ground state associated to the zero mode (!2
0 = 0) is given by

�(0)(x;�; �) = N�(x)sech2
 
mp
2
x

!
; (10)

where N is the normalization constant. Note that, if j�j > 2�
3
; the eigenfunction of the

ground state is non-singular. This ground state was independently found by two authors
[11,12] for � = 1

2

q
3mp
2
:

It is well-known that the bosonic zero-mode eigenfunction of the stability equation is
related with the kink by

�(0)(x;�; �) / d

dx
�c(x); (11)

so that, a priori, we may �nd the static classical con�guration by a �rst integration.
Therefore, the potential

V (�;�; �) =
1

2

 
d�

dx

!2

(12)

yields a class of scalar potentials, V (�) = V (�;�; �); which have exact solutions.
There, we can �nd various static �eld con�gurations; however, let us consider here

only two cases.

Case (i): � = 0 and � = 2N
qp

2
3m

In this case, �(x) ! 1
�
; so that from (9) and (10), we obtain the following bosonic

zero-mode solution:

�(0)(x) =
1

2

s
3mp
2
sech2

 
mp
2
x

!
; (13)
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and the non-polynomial potential becomes

V1�(x) = m2

"
3tanh2

 
mp
2
x

!
� 1

#
: (14)

Notice that the two Schr�odinger-like 
uctuation operators associated with both V (x;�; �)
and V (x) non-polynomial potentials are positive semi-de�nite and completly isospectrals.
However, their factorization has been implemented from distinct superpotentials. Indeed,
while the Ricatti equation,

V1�(x) = W 2
1 (x) +W 0

1(x); (15)

where W 0(x) = d
dx
W (x); has a particular solution given by

W1(x) = �
p
2mtgh

 
mp
2
x

!
; (16)

provides

�
(0)
1�(x) = e

R
W1(y)dy =

1

2

s
3mp
2
sech2

 
mp
2
x

!
= �(0)(x); (17)

with �(0)(x) given by Eq. (13), the Ricatti equation

V0� = V (x;�; �) = W 2
0 (x) +W 0

0(x)

has a particular solution given by W0(x) =
d
dx
`n (�0(x;�; �)) :

By substituting Eq. (13) in Eq. (11), we get the well-known kink of the double-well
potential,

�k(x) =
mp
�
tanh

 
mp
2
x

!
: (18)

When we express the position coordinate in terms of the kink, i.e. x = x(�k); we �nd
the �4�potential model with spontaneously broken symmetry in scalar �eld theory, viz.,

V (�) =
�

4

 
�2 � m2

�

!2

: (19)

The mass of the kink is �nite, but, in the next case, we obtain an unde�ned kink mass.
Such a classical con�guration cannot represents a stable particle. The pictures of the
potential (19) and of the kink (18) are in Figures I and II. Note that both are smooth
functions of the �eld and the spatial coordinate, respectively.

Case (ii): � = 0:
In this case, from (9), (10) and (11), we obtain the following non-polynomial potential

in the singularity region associated to the ground state given by Eq. (10):

~V (�) =
�

2

�
1 + 3e�
�

��
1� 2

3
e
�
�2

; (20)
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where 
 = 2p
3
and � is a dimensionless constant.

The vacuum state, �v; is given by

�v =

p
3

2
`n(

3

2
): (21)

This non-polynomial potential does not have the discrete symmetry, �! ��; and there
exists only one vacuum state, so that it is non-topological.

From (3), (4) and (20), for the minus sign of the Bogomol'nyi condition and the
coupling constant � 6= 0, the static classical con�guration has the following explicit form

�c(x) =

p
3

2
`n

0
@ tanh2

�p
�x
�

1� 1
3
tanh2

�p
�x
�
1
A ; (22)

where the integration constant is taken to be zero. Note that this static con�guration
satis�es Eq. (11) and the following boundary conditions �c(x) ! �v as x ! �1: The
pictures of the non-polynomial potential and the static solution are in Figs. II and IV.
However, in Fig. IV, we have plotted this static �eld con�guration only for the region in
that it has a singularity in the origin.

The energy density for the static solution for the non-polynomial potential is given by

E(x) /
8<
:sinh2

�p
2mx

� 
1� 1

3
tanh2

 
mp
2
x

!!2
9=
;
�1

; (23)

which yields an unde�ned total energy or classical mass. Here, we have used the explicit
relations between the static con�guration and one-dimensional spatial coordinate.

IV. BROKEN SUSY QM

In this section, we consider the 
uctuation operator in the context of supersymmetry in
Quantum Mechanics (SUSY QM), where the supersymmetric partners are build up from
the stability equation. In N = 2�SUSY, we de�ne the following �rst order di�erential
operators:

A�
2 = � d

dx
+W2(x); A+

2 =
�
A�
2

�y
: (24)

The 
uctuation operator for the bosonic sector is given by

F2� � A+
2 A

�
2 = � d2

dx2
+ V2�(x); V2�(x) = ~V 00

j�=�c; (25)

so that in terms of the superpotential we obtain the following nonlinear �rst order di�er-
ential equation

V2�(x) = W 2
2 (x) +W 0

2(x) � V (x; 0; �); (26)

where the prime means a derivative with respect to x:
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The superpotential that solve this Riccati equation for the non-polynomial potential
has the following explicit form:

W2(x) = � mp
2

tanh4
�
mp
2
x
�
+ 3

tanh
�
mp
2
x
�
[3� tanh2

�
mp
2
x
�
]

(27)

Note that this particular solution to the Riccati di�erential equation has the following
asymptotic behavior: W2(x) ! �p2m as x !1 and W2(x) !

p
2m as x ! �1: The

supersymmetric partner of F2� is given by

F2+= A�
2 A

+
2 = � d2

dx2
+ V2+(x)

V2+(x)=W 2
2 (x)�W 0

2(x) = m2

(
1 + tanh2

 
mp
2
x

!)
: (28)

These 
uctuation operators are isospectral and consist of a pair Schr�odinger-like Hamil-
tonians of Witten's model of broken SUSY [5]. Note that the shape invariance condition
[6,8] is not satis�ed for V� given by Eqs. (26) and (28), i.e. V2+(x; a2) 6= V2�(x; a1) + R;

where a1; a2 and R are constants.
The eigenvalue equations for the supersymmetric partners F� are given by

F2��
(n)
2� (x) = !

(n)
2� �

(n)
2� (x); !

(n)
2� = !2

n; !2
0 = 0; (29)

for which, in general, F2� may have as eigenstates the well-known normal modes. However,
when � = 0; the bosonic zero-mode (!2

0 = 0) satis�es the annihilation condition

A�
2 �

(0)
2� = 0) �

(0)
2�(x) /

1

sinh
�p

2mx
� �

2 + sech2
�
mp
2
x
�� = �(0)(x; 0; �): (30)

This eigensolution is not normalizable, so that the 
uctuation operator for the bosonic

sector does not have a zero-mode. In this case, the integral
R+1
�1

�
�
(0)
2�(x)

�2
dx is unde�ned.

This result is in agreement with Eq. (10), for � = 0: Furthermore, bosonic zero mode

satis�es �
(0)
2�(x) =

d
dx
�c(x): The fermionic sector 
uctuation operator F2+ does not have

zero-modes because �
(0)
2+;

A+
2 �

(0)
2+ = 0) �

(0)
2+ / sinh

�p
2mx

� "
2 + sech2

 
mp
2
x

!#
(31)

because it is not normalizable. In this case we have broken SUSY. Indeed, it is easy to
see that Z +1

�1

�
�
(0)
2+(x)

�2
dx!1:

The eigenvalues !� and eigenfunctions �
(n)
2� can be exactly solved in a similar way for a

general potential. All eigenvalues of F2+ are eigenvalues of F2�; i.e. !
(n)
2� = !

(n)
2+ > 0; so

that the ground state and the excited state of both F2� have energy di�erent from zero.
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V. CONCLUSION

In this work, we investigate the classical stability of a new isospectral non-polynomial
potential model with static classical con�guration which solve exactly the equation of
motion.

Indeed, the classical �nite-energy static solutions appear in �eld theoretical models
with spontaneously broken symmetry (SUSY), for example, in the double-well potential
given by Eq. (19). It is well-known that the double-well potential model which has two
zeros corresponding to the vacuum states �1 and �2. In this case, the topological kink
interpolates smoothly and monotonically between �1 and �2, according to Figs. I and
II. But, in our non-polynomial scalar potential one builds a static, in�nite-energy and
classically singular �eld con�guration, which is in a non-topological sector. Indeed, we
have found a new potential model given by Eq. (20) that is solved exactly in the context
of classical theory in (1+1)-dimensions.

In conclusion, we found V1� and V1+ = V2+ is a supersymmetric potential pair with
unbroken SUSY, so that F1� refers to the bosonic sector of the SUSY 
uctuation operator

FSUSY ; while F1+ is the fermionic sector of FSUSY . In this case, �
(0)
1� then becomes the

unique normalizable eigenfunction of the FSUSY corresponding to the zero mode of the
ground state. On the other hand, the spectra to F2� are identical and in this case, there
are no zero mode for the ground state i.e. !� = !+ > 0; thus one has broken SUSY.

Therefore, our non-polynomial potential does not have the re
ection symmetry � !
��; with a stability equation so that it does not lead to either a bosonic zero mode or
its supersymmetric partner because both eigenfunctions are non-normalizable with SUSY
broken. Thus, the scheme above for proposing new �eld potential models is not always
physically acceptable, because it may lead to in�nite energy con�guration.
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FIG. 1. Double-well potential V (y) = 1
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FIG. 2. The Kink y = �(x) of the double-well potential, for � = 1
4 ; m = 1:
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FIG. 3. Non-polynomial potential, for � = 1; m = 1:
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FIG. 4. Static classical con�guration associated to the non-polynomial potential, for

� = 1; m = 1:


