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Abstract

We show that the full one-loop QED, regarded as an e�ective classical �eld the-

ory, generates a non-singular (homogeneous and isotropic) FRW universe. The main

di�culties of standard cosmology are thus overcome by considering the quantum

properties of matter, while the gravitational �eld is described by Einstein classical

general relativity.
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The e�ective Lagrangian, which describes the properties of magnetic �elds [1] when
quantum e�ects are taken into account, was numerically evaluated1 in the entire range of
magnetic �elds by many authors (see the review [2] and references therein). It is a well
known result [3] that the one-loop Euler-Heisenberg correction L(1)[H] is non-negative,
monotonically increasing, and does not exhibit a minimum as a function of the magnetic
�eld. Nevertheless, the total one-loop Lagrangian (L = L(0) + L(1)), as it represents the
energy density for arbitrary values of the magnetic �eld, breaks down the above monotonic
behavior, with remarkable consequences to cosmology.

The e�ective Lagrangian [2], in units ofH2
cr (whereHcr = m2

ec
3=e�h � 4:4�1013Gauss),
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In the standard cosmological scenario the geometry of the universe is given by FRW
line element2

ds2 = c2dt2 � A2(dx2 + dy2 + dz2): (2)

The Hubble expansion parameter is � = 3 _A=A, where A = A(t) is the dimensionless
scale-factor.

The associated energy-momentum tensor of this theory, obtained through a spatial av-
erage procedure [4], admits a simple interpretation in terms of a perfect uid con�guration
with energy density � and pressure p. The resulting expressions are

� = �L; (3)

p = ���
2H

3

@L

@H
: (4)

Energy conservation law yields that the magnetic �eld turns out to be a function of
the scale-factor A(t) as

H =
Ho

A2
; (5)

where Ho is an arbitrary constant.
Energy density � and pressure p can be numerically evaluated as functions of the

magnetic �eld. The result is plotted in �gures 1 and 2.
Einstein �eld equations for this model reduce to a single ordinary �rst order di�erential

equation for the scale-factor, namely

�2 = 3��; (6)

where � = 8�G=c4 is the Einstein gravitational constant. Whence it follows that (as
H � Hmax) the scale-factor is bounded from bellow at a �nite value3, Amin. Therefore, this

1Special limiting cases of interest, in which the e�ective Lagrangian had been analytically evaluated,
deals with low magnetic �elds (e�hH=m2

e
c3 � 1) and strong magnetic �elds (e�hH=m2

e
c3 � 1).

2We will restrict ourselves to the Euclidean section case.
3The actual minimum value of the scale-factor depends on the constant Ho, and is linked to spatial

units.
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Figure 1: (a) Energy density matches the Maxwell counterpart for small values of H, and
(b) presents a maximum value �max � 1:6� 108H2

cr. The maximum value of the magnetic
�eld is Hmax � 5:7� 1018Gauss, and occurs at the most condensed phase (corresponding
to the minimum value of the scale-factor).

cosmological model turns out to be of a non-singular type. The applicability of standard
singularity theorems are circumvented by the presence of a high (negative) pressure |
�gure 2.

Thus, one can conclude that the so called cosmological singularity of FRW models
is a distinguished feature of classical electrodynamics, and does not occur at all when
one-loop quantum corrections are considered.

The above model can thus overcome two of the nowadays most important di�culties
of cosmology:

� the horizon problem { being a non-singular universe there is no absolute physical
horizon, thus allowing cosmic microwave background radiation to be globally at
thermal equilibrium;

� the singularity problem { a non-singular universe provides a consistent framework
of classical gravitation, and no breakdown of physical laws are required.

It is worth to remark that this simple toy model is in complete agreement with all
cosmological observations, that is to say, up to nucleosynthesis. This led us to extrapolate
such model until the point of the minimum value of the scale-factor in order to exhibit its
non singular behavior. To go beyond this point would provoke a series of new questions,
the analysis of which is out of the scope of this letter.
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Figure 2: Pressure becomes highly (but �nitely, due to the existence of an upper bound
for the magnetic �eld) negative near the maximum condensation point Amin.
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