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Abstract

The physics of fluid interfaces between domains of different magne-
tization in the ordered phase of the 3D Z3 Potts model is studied by
means of a Monte Carlo simulation. The interface free energy is shown
to be in agreement with the predictions of the capillary wave model,
supporting the idea of the universality of this description of interfaces
in 3D statistical models.

Key-words: Statistical modes; Thermal physics



CBPF-NF-058/93

It is well known that, between the critical and the roughening tem-
perature, 3D spin syvstems on finite volumes show domain walls separating
coexisting phases which behave as fluid interfaces.

The finite-size effects in the free energy of a fluid interface are dominated
by long-wavelength fluctuations and a correct physical description of the
critical properties of the surface cannot neglect their contributions [1].

The capillary wave (CW) approach [2] assumes an effective hamiltonian,
proportional to the area of the surface. describing the collective degrees
of freedom. It has been recently shown [3] that rather strong finite-size
effects, depending on the shape of the lattice, can be described in terms
of a gaussian model of CW: the predictions of the model have been tested
with high accuracy in the scaling region of the 3D Ising model. It has also
been pointed out that higher order corrections to the gaussian model can be
taken into account, at least in principle. to verify the CW approach.

In this paper we study the finite-size scaling behaviour of fluid ordered-
ordered interfaces of a different statistical system: the 3D three-state Potts
model. We verify the high degree of universality of the CW description and
we show that higher order contributions to the "area” effective hamiltonian
cannot be ignored. ‘

;.
$

According to the CW model, the interface between two domains of dif-
ferent magnetization in the ordered phase of a 3D spin system, above the
roughening temperature, is described by the partition function

Zo= [(Dslexp{-0A[s]} , 1)

where the function z(r,t) describe the displacement from the equilibrium
position of the interface, o is the reduced (ordered-ordered) interface tension
and Alz] is the area of the interface

o [0 @G o

It should be mentioned that (2) coincides with the Nambu-Goto string action
in D = 3 in a particular gauge if one neglects the longitudinal degrees of
freedom, which however decouple only in D = 26. From this point of view
(2) is not expected to be the ezact action describing fluid interfaces but at
least the dominant contribution: as we will show this is indeed the case.
To compare the predictions of the CW model with numerical results
from Monte Carlo (MC) simulations, we have chosen generic 3D lattices
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of R x T x L sites, with L 3» R,T. Periodic boundary conditions are
taken in each direction. the 2D field z(r,t) being defined on the rectangle
(r.t) € [0, R] x [0, T} with opposite edges identified, i.e. on a torus.

The partition function (1) cannot be computed exactly, but it is possible
to express it as an expansion in powers of the adimensional parameter o RT:
the two-loop expansion of Z,, can then be written as

ch{R.T) o e-oRT Z({;l loop) (;) . Zé-z ivop) (R,T) . (3)

The 1-loop contribution (namely the gaussian approximation), obtained re-
taining only the quadratic term in the expansion of (2), is nothing eise than
the exact partition function of a 2D conformal invariant free boson on a
torus of modular parameter r = i [4, 5, 3]

R T R
(1 foop) | 2} — -  —
Zq (T) = \/; " ('T)

while the 2-loop term can be calculated perturbatively expanding (2) at the
next-to-leading order {6]

;
1 TR B\N1* »R_‘{.R 3
{2 loop) = e o led o il v
&' TR 1+20RT{ 6T (‘T)] 6T (‘T)+4}

+ Olwern)] . ‘ (5)

+

-2

, (4)

The two functions  and E, appearing above are respectively the Dedekind
function and the second Eisenstein series:

niry = ¢™[[(1-¢"), g¢=exp(2mir)
n=l

Esr) = 1-24211'_%; .
n=1

The three-state Potts model is defined by the partition function

z=Y exp {—ﬁZ[l - Re(o.-'am.)]} (6)
{=i} VB
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where the variables o; are defined on a three—dimensional hypercubic lattice
and take the values '

0; = exp (é‘:;l) n; =012 . (7)
In the termodynamic limit the Potts model is known to undergo a {weak)
first—order phase transition at §. = 0.36708(2) [7] and the roughening tem-
perature can be estimate to be §, ~ 0.93 [8). For # > f. the symmetry is
spontaneously broken and there are three ordered vacua, while at 3 = g,
also the disordered vacuum coexists with the previous ones.
In the finite cylindric geometry we are considering spontaneous svmmetry
breaking at low temperature cannot occur: the degeneracy of the ground
state is removed. the energy of the symmetric, Z; invariant, ground state
being separated by an energy splitting E from the two degenerate mixed-
symmetry states. ‘
The energy splitting is due to tunneling between the vacua and is directly
linked to the free energy of the interface {9). According to the CW model,
for 8, > 8 > B, we assume (1. 2. 3], R> T,

E(R,T) = C e ofT Z{ toow (g) - Z{ 1) (R, T) 8
_ §
A .

where é is an unpredicted constant and a convenient normalization has been
chosen.

We would like to stress that the 2-loop contribution {3) does not depend
only on the ratio z = R/T, like the 1-loop term (4}, but also on the minimal
area A, = RT. If we put z = 1. A,, = R?, in (8) we obtain

2
E(R,R)=é§ ¢ % {1 + 2:32 [(%f) - %f+ -j;] } ' (9)

where f = E»{(i}. The classical result [9]

E4 {R)y=4d e °F (10)

can be recovered only neglecting the 2-loop contribution.

The comparison between the formula (8-10) and the computation of £ from
MC simulations provides a simple and stringent way to verify the CW pre-
dictions.
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To extract the energy splitting £ from MC~generated ensembles we fol-
low the procedure of {10]. Defining the time-slice magnetization

1 & J
k= ‘é— Z Z 0(..".'1 I?v 1 (1.1) ’
where k= 0,1,..., ., , we compute the correlation function
G{k) = (S:5;) (12)

and we extract the transfer matrix low energv levels from the asymptotic
k—dependence of G (k)

G(k}-Z = cofexp(—kE)+exp[—(L - k}E]}
+c1 {exp(~kE"} +exp[—(L - k) E']} + ... (13)
Z = 14274, (14)

Z = tr e~L# being the partition function (the next-to-leading energy level
E’ turns out to be non—negligible in our range of parameters).

Having so extracted the energy splitting E from the MC data for different
values of the lattice sizes, we can compute the ordered-ofdered interface
tension ¢ and the constant é by fitting our data with the formula (8).

We have performed our simulations at § = 0.3680, the longest lattice
size was fixed at L = 120, the other sizes varied in the range 9 < T < 11,
10 € R < 36, {R > T). This value of 3 is enough inside the ordered phase to
make highly suppressed the probability of formation of ordered-disordered
interfaces [11] but presents a correlation length large enough to make the
lattice artifacts negligible and to consider domain walls as fluid interfaces.

The fact that the disordered phase is substantially absent at this 8 can
be seen from the hystograms of the real part of the magnetization [12]

(1%
ReM = Re (IZ‘:S“) (15)

as is seen, for example. in Fig.1. The modulus of the magnetization at this
B is about 0.44 — 0.50 for the volumes we are considering: in this figure (the
projection on the real axis of)} the ordered vacua are clearly visible while
the peak centered at ReM = (), which would signal the presence of the
disordered phase. is absent.
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Fig. 2 represents a typical distribution of the magnetization M for a sam-
ple of onr MC-generated configurations. Most of the configurations consist
of a single phase or of two phases separated by two interfaces (the minimum
number compatible with periodic boundary conditions). The single-phase
configurations are represented by the three clusters of points corresponding
to the three degenerate vacua: the two-interface configurations form the
straight lines joining these clusters. Three—interface configurations, which
tend to fill uniformly the interior of the triangle, are clearly visible in Fig. 3:
it corresponds to a T = 10, R = 20 lattice and to a larger probability of hav-
ing tunneling events (i.e. interfaces) while these are much more suppressed
for the lattice of Fig. 2 (T = R = 18).

We have used a Swendsen-\Wang cluster algorithm [13] to perform our
MC simulations. To keep under control correlations in MC time and cross-
correlations between the G(k) observables, we have systematically scattered
our measurements avoiding to measure two different observables at the same
MC time. We have made from 0.6 - 10°% to 1.8 - 10° sweep for each experi-
ment, depending on the lattice sizes, obtaining about 10* data per observ-
able. However, the covariance matrix turns out to be far different from the
diagonal form, which one expects from a sample of statistical independent
data. We have taken it into account including the covariahce matrix in the
fitting procedure to formula (13) to extract the energy gap E': the results
are reported in Tab. 1.

Fitting our results for the energy gaps E with the CW E)redictions (8)
we obtain the following values of the interface tension and of the constant:

o = 0.009912(75)
& = 0.1377(19)

with a x° per degree of freedom and confidence level
¥ =073 C.L.=0.82 (16)

thus confirming the accuracy of the CW model. In Tab. 1 the MC results
for E are compared with the predictions of formula (8) in which the best—fit
values of § and & have been substituted. This comparison is represented
graphically in Fig. 4.
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T{R| E(MC) v* |C.L. | E {CW)
10 | 10 | 0.06399(51) | 0.89 | 0.65 | 0.06399
12 | 12 | 0.03924(54) | 1.07 | 0.36 | 0.03882
14 | 14 | 0.02201(54) { 0.75 | 0.80 | 0.02227
16 | 16 { 0.01234(32) | 0.95 [ 0.52 | 0.01196
18 { 0.00508(71) | 1.03 | 0.42 | 0.00598
20 | 0.00305(68) | 0.95 | 0.57 | 0.00278
18 [ 0.04108(73) | 0.54 [ 0.97 | 0.04105
21 | 0.03467(96) | 0.99 | 0.47 |.0.03528
24 [ 0.0293(11) | 1.09 | 0.34 | 0.03082
27 | 0.0283(10) | 0.90 | 0.61 | 0.02723
30 [ 0.0235(11) | 1.16 | 0.27 | 0.02427
36 | 0.0188(13) [ 0.98 | 0.48 | 0.01959 S
18 | 0.03127(47) | 0.44 | 0.99 | 0.03119
10 [ 20 | 0.02670{61) | 1.01 | 0.45 | 0.02710

10 { 22 | 0.02339(34) | 0.88 | 0.64 | 0.02374
10 | 24 | 0.02049(46) | 0.79 | 0.75 | 0.02092
10 | 26 { 0.01960{47} { 1.02 | 0.44 | 0.01854
10 | 28 | 0.01644(70) | 0.83 | 0.69 | 0.01656
10 | 30 | 0.01473(88) | 0.84 | 0.80 | 0.01473
11 | 20 | 0.02024(75) | 1.17 | 0.25 | 0.02049
11 | 22 | 0.01766(78) | 1.05 | 0.39 | 0.01735 |
11 [ 24 ] 0.01495(61) | 0.77 | 0.77 | 0.01479
11 | 26 | 0.01292(69) | 0.67 | 0.84 | 0.01267
11 [ 28 | 0.01024¢91) | 0.66 { 0.87 | 0.01090
11| 32| 0.0078(12) | 0.85 [ 0.73 | 0.00815

| an b | =
Q‘-DQQ(DGDQD(DO@

Tab. 1. The values of E are reported with the x? per degree of freedom

and the confidence levels, as oblained from the fit of G(k) with formula

(13). The values in the last column are obtained from the best fit of all
data to formula (8). The same data are plotted in Fig. 4.

The importance of the inclusion of the 2-loop contributions can be seen by
fitting the MC data with the formula

E(R,T) =6 e=°RT (17



-7- CBPF-NF-058/93

and with the 1-loop approximation (R 2> T)
(1 foop) (B
24 o (&)

E(R,T)=4¢e°RT
BO=0e =)

(18)

In the former case we obtain x* = 36.3, in the latter x* = 3.60: the 2-loop
correction must be included to obtain a good agreement with numerical
data. :
We have already noted that the 2-loop corrections affect the value of E
also for symmetric (T = R) lattices (cfr. (9)), in contrast to what happens
for the scale-invariant 1-loop contribution (18) [3]. Indeed, the importance
of including 2~loop corrections can be seen fitting only the energy gaps £
obtained on symmetric lattices (T = R): using the 2-loop expression (9)
we obtain x? = 0.79, while the classical formula (17) gives x* = 1.48. The
results of all these fits are summarized in Tab. 2. '

Data | Approx. o é x° | C.L.
all 2-loop | 0.009912(75) | 0.1377(19) [ 0.73 | 0.82
all 1-loop | 0.010053(75) | 0.1724(23) | 3.60 | 0.00
all class. | 0.008092(75) | 0.1395(19) | 36.3 | 0.00
T =R | 2-loop | 0.00981(14) | 0.1361(26) | 0.29 | 0.53
T =R | class. | 0.01075(14) | 0.1866(36) | 1.48 | 0.20
T =11 2-loop | 0.00997(69) | 0.140(24) [ 0.26 | 0.90
T=11| l-loop | 0.00065(69) | 0.151(26) | 0.22 1 0.92

Tab. 2. Resuits of the fit of E with 2-loop, 1-loop and classical
approzimations of the CW model, considering all values of (R, T},
symmetric (R, R) lattices or (R, T=11) lattices.

We would like to stress the remarkable stability of the results obtained with
the 2-loop approximation fitting all the data or only the symmetric ones.
This can be seen comparing the values of ¢ and § given in the first and
fourth fine of Tab. 2. On the other hand, the result obtained using the
classical formula (17) is not compatible with the previous ones even using
only the symmetric data, as it is shown in the fifth line of the same table.
The best fit curve obtained from (17) in the latter case is plotted in Fig. 5
were also the "asymmetric” MC data are reported for comparison.

We would also like to observe that a good agreement with the 1-loop ap-
proximation of the CW model can be obtained {3] if one considers low values

7



-8 CBPF-NF-058/93

of ratios z = R/T and hight values of the minimal area A, = RT, i.e. the
2-loop contribution (8) are maximally suppressed. This is show in the last
two lines of Tab. 2 and in Fig.6.

Finally it should be remarked that it is crucial to take into account the CW
contributions (i.e. to know the form of the finite size corrections to the fluid
interfaces free energy) to be able on one side to extract correct informations
on physical observable and on the other to use different lattice geometries.
as it has been very recently shown [14].

In conclusion, we have shown that the CW model in the 2-loop approxi-
mation provides an excellent description of order—order interfaces in the 3D
three—state Potts model. This result, together with the corresponding one
for the 3D Ising model [3], strongly supports the hypothesis of the univer-
sality of the CW description of interface physics in 3D statistical models.
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Figure Captions

Fig. 1. Hystogram of the real part of the magnetization for a typical MC
ensemble {in this case T = 20, R = 20). The absence of a peak in Re M =0
indicates that the disordered phase do not coezist with the ordered ones at
our 3 = 0.3680.

Fig. 2. Distribution of a sample of 1,000 configurations generated by the
MC simulation in the complez plane of the magnetization for a lattice T =
R = 20. The three clusters of points represent the one-phase configurations;
the straight lines joining the clusters are the two—interface configurations.

Fig. 8. The same of Fig. 2 for a lattice T = 10, R = 20. *The
three-interface configurations are uniformly distributed in the interior of the
triangle.

Fig. 4. Comparizon of the predictions of the CW model with the MC
data E versus z = R/T. The lines represent the best fit of all data to formula
(8): from up to down they correspond respectively to R = 9,110, 11 fized (cfr.
Tab. 1). '

Fig. 5. Comparison of the predictions of the classical formula model
with the MC data E versus A,, = RT. The line represent the best fit of the
symmetric T = R data to formula (17); the asymmetric MC data are also
reported (cfr. Tab. 1).

Fig. 6. Comparison of the predictions of the 2-loop (8) approzimation
and that of the 1-loop (18) for the (R, T = 11) data, with z = R/T. The
dashed line represent the I-loop best fit while the 2-loop is the dotted line.
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