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Abstract

We conjecture the operator content for the n-states quantum chains (n> 5) in the
domains of the coupling constants where the central charge of the Virasoro algebra is
equal to one. Free boundary conditions as well as boundary conditions compatible with
the torus are considered. The conjectured operator content is compared with finite-size
scaling estimates,
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L. INTRODUCTION

This paper is a continuation of our previous studies on the critical behaviour of
the n-states quantum chains, These chains are defined by the Hamiltonians:

N h-A1
h~Hf
Z Z Ay (o‘. + ‘)TfT"—H ) (11)
&‘:r‘ ‘h_;zd
where a, = a | arc real. coupling constants, A plays role of the inverse of the

temperature, N represents the number of sites and the n x n matrices & and 1 are:
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Here 6= ¢ and g is a normalisation factor which fixes the time scale, to be
discussed later. The Hamiltonian H is self-dual ie.

HOoy = nREG) 3

The cases n = 2 and n = 3 correspond to the Ising and 3-states Potts model and
their operator content is known. The case n = 4 which describes the Ashkin-Teller model
has also been recently understood (Rittenberg 1987, Baake et al. 19872 and 1987b, Yang
1987a and 1987b, Yang and Zheng 1987 and Saleur 1987). Starting with n = 5 the critical
properties of the system are more complex and several values of the central charge of
the Virasoro algebra occur for the same value of n. Roughly speaking one expects the
central charge which measures the number of degrees of freedom of the system to in-
crease with n and this indeed happens for certain values of the coupling constants, At
the same time there are regions in the space of the coupling constants where some
degrees of freedom are frozen and the central charge is smaller. From older work
(Elizur et al. 1979, Cardy 1978) and our own numerical studies, all the systems with
n > 4 have a domain of the coupling constants wherec ¢ = 1 and other domains where ¢ is
larger. Some partial results for the six and eight states models have been already
published (von Gehlen and Rittenberg 1986, 1987 and Schiitz 1987). E. g. for the choice
of parameters a, = 1 for k odd, a, = 0 for k even we obtained ¢~:125 for n=6 and
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c = 130 for n=8. For a, = 1/sin(T k/n) one has ¢ = 2(n-1)/(n+2) (Zamolodchikov and

Fateev 1985, Alcaraz 1986) whereas for the vector-Poits case a; = .. = a5 = 0,

ay = a_ . = 1 our numerical analysis gives ¢ = 1 for n > 5. For other values of the a,

still othl;rlvalues of ¢ appear.

In this present paper we confine ourselves to the domain in the space of the
coupling constants where ¢ = 1, It turns out that although the quantum chains defined
by eq. (1.1) have only the discrete dihedral group D, as global symmetry, at critica-
lity and large N, the symmetry is U(1) x U(1) for boundary conditions compatible with
the torus and U(1) for free boundary conditions. As a result the operator content of
these models can be expressed in terms of irreducible representations of two commuting
U(1) Kac-Moody algebras for the torus and onc U(1) Kac-Moody algebra for free boundary
conditions (see Baake ct al. 1987 a,b and references therein for the n=4 casc). The
higher symmetry at criticality and the value of the central charge c=1 suggest that the
dimensions of the primary fields of the model are given by the Gauss model (di Fran-
cesco et al. 1987 and references therein):

2
(M£aN)/lng
where M and N are integers and g is a parameter. There are some sectors of the models
which are not described by Eq. (1.4). In these sectors one gets

A 46
where m is integer or half-integer. This corresponds to an irreducible representation

of a twisted U(1) Kac-Moody algebra to be defined later,
We have now to explain how the parameter g is related to the physics of the

I

problem. Let us assume that for a certain choice of the coupling constants a, and =1
(the self-dual line) one finds c=1. Then the system stays critical in a domain of A,
called the critical fan:

SR S Yo

A iy
Now g=g(\) turns out to be a monotonic function of A such that:

GGn)=F e =1 , ) =1 -

The form of the function g(\) depends on the coupling constants a,.

To illustrate the picture let us consider the leading magnetic exponents xg
(periodic boundary conditions) corresponding to the charge Q sector of the theory
(Q = 1, 2, .., n-1). We find

(14)

(1.5)

(L6)

)
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X Xy = LA, = =
& = Xn-q %~ Ing
which gives:
1 2,
2?; < Xq £ % w9

and we recover a known result (Elizur et al. 1979, Cardy 1978).

Notice that for n=4, we read from eq. (1.7) that g== 1. Then we may have I)\max=
’Rmin= 1, which is only one point in the phase diagram of the Ashkin-Teller model. This
point corresponds to a Kosterlitz-Thouless phase transition.

Our paper is organized as follows. In Sec. 2 we discuss the symmétry of the
problem corresponding to different boundary conditions, In Sec. 3 we define the finite-
size scaling quantities which give the operator content of the model and we summarize
the necessary knowledge on the representation theory of Virasoro and U(1) Kac-Moody
algebras. In Sec. 4 we consider the case of free boundary conditions. We first review
the situation in the Ashkin-Teller model (n=4) and then conjecture the operator content
for n 2> 5. This conjecture is compared with numerical estimates on the self-dual line
(W =1) for n=5, 6, 8 and 12, The case of boundary conditions compatible with the torus
is considered in Sec. 5. We first conjecture the operator content for the whole mass-
less phase. Then we specialize to the case 'A = 1 where the operator content is inde-
pendent of the coupling constants and takes a simpler analytical form. This operator
content is then compared with numerical estimates. The conclusions of our work are
given in Sec. 6 where we also present the large n-limit of the model. In the Appendix,
for completeness, we review the known construction of the irreducible representations
of the U(1) untwisted and twisted Kac-Moody algebras.

II. SYMMETRY OF THE HAMILTONIAN FOR VARIOUS BOUNDARY CONDITIONS

In this section we study the symmetry of thc Hamiltonian eq. (1.1) for various
boundary conditions (b.c.) and the resulting decomposition of the spectra into sectors.
We first consider free b.c.

T?4+4 =0 @1)
and periodic b.c.

= 2.2
T = T 2
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and denote the corresponding Hamiltonians by HF and HO, respectively. Both HF and HO
are invariant under the global transformations

) = A7

i (23)
where A is one of the (n-1)x(n-1) matrices Z Z{z C (Lk=290,1,.,n1) and
wo o o o...A
oLt o e =1 : @9
Z o . :h-"‘ ’ o O A o -
- W Ao -..0

The matrices Z,{ and Z"C Lk =0, 1 ., o1} form the dihedral group D, with 2n ob-
jects. Let us write n=2p+1 for n odd and n=2p+2 for n cven, |
The group D, has p two dimensional representations

WXt o o 4
:DQ(Z{)= i CS_Q{_).DQ(C)ﬂ(A O)
CQ“";*")P)

and for o odd there are 2 one-dimensional representations

_Do}_,_ (Z{) =1 }o,-}- (C) =1 (2.6)
S(E9=1 Do @ =1

For n ¢ven we have two more one-dimensional representations:
3)_}3_ + (Z-L) = (_'0{ , bb_ + (C) =
2.} i)
Dy (ZV =G, Dy - (=1

Since HF and HP are invariant under the transformations eq. (2.3), their spectra
decompose into sectors (.9 HOA , respectively, according to the irreducible
representations A of D, eqs. (2.5) - (2.7) (For special choices of the coupling
constants a, in eq. (1.1), the symmetry can be larger than D,, but for the present

23)

@

discussion we consider general a,). In order to simplify the notation, we shall make

use of the fact that D, is a semidirect product of Z; and Z,. For periodic b.c. we

write H? for Q#0 and Q#1/2 where I-Ig =H° p.(y build together the two-dimensional represen-
tation DQ eq. (25). If Q 0 we have the two one-dimensional representations D and

0,+

D0 and we write H0 + and I-I0 , respectively, Similarly for Q =n/2 (n even) and the
] 14
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representations eqs. (2.7) we write H® w2, + and H:!,’Z,_ . The signs % correspond to the

C=+ 1, D i(C)-= + 1. The case of free b.c. is completely analogous.

0,:
Now we procoed to the other boundary conditions compatible with the torus. If
T"&. _ :E)&.m ™
N+A4 A . @28

we denote the corresponding Hamiltonian by HB, where B is one of the matrices J
or Z.RC(a, R=0,1, ..,n-1). In general the symmetry of HE will be smaller than D, It

is given by the group Gg (Gg < D,,) of those matrices A in eq. (2.8) which commute

with B, Now it is trivial to show that two Hamiltonians H-" and H>*corresponding to

two b.c. B, and B, have the same spectrum if the group elements B, and B, belong to the
same conjugacy class, For n=2p+1 (odd) the 2n group elements of D, form p+2 conjugacy

classes: “ et
{Z"‘]I ; {Z ,Z } ('k=411':"'3f'>
{c,zc,. ,2"c}

If n is even, n=2p+2, and there are two more conjugacy classes: the last class of eq.
(2.9) splits into:

{s¢,5%,.., 27y, {c,5c ... 27%)

(29)

(210)

)

and in addition we also have {Z /1]] .

In Table 1 we show the symmetry groups Gg corresponding to the various boundary
conditions B. The spectrum of HE can now be decomposed into sectors HB ACO according
to the u*rcduclble reprcsentatlons A’B of Gg. If Q=2 (n even), we have :Bxe y

n/2,
scctors HYZ a @ + 0, ), HO N (corrcSpondmg to the representations D_ ) and H | /2, 4
(corresponding to D 02,4 (eq. 2.7)). If the boundary condition i IS Z-R C, thc symmetry
is Z, x Z.z(forncvcn)andthcscetorsvnllbcdcnotcd%H . s
= +, =

n odd the symmetry is only Z, and the sectors are H IC

To sum up, for n even we have the sectors:
o h/2. h/?-'
HQ ) o3 Hh/:’.;j'_ ) o,t ) h/?..,'.l: )
puae

HZ“"ai)Z“Cﬁﬂ: ’

(2.11)
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andfornoddwehavethesecton

WE O we WL e
Q o, ) JRC=%
The case of free boundary conditions parallcls the case of periodic boundary
conditions (Q = 0). We have

F F

H = Hh e ) HO;:t > H"‘/?-)t o (213)
F F (0 odd)

Hcsa = Hh-a ) Ho,t-

III. FINITE-SIZE SCALING, VIRASORQO AND U(1) KAC-MOODY ALGEBRAS

In this section we summarize the standard lore. We start with finite-size scaling.
First we consider the case of free boundary conditions (Baake et al. 1987a, b and
references therein). We denote by l':‘F @ (1; N) the emergy levels of the Hamiltonian HF
with N sites (/A labels the sectors), r = 0 denotes the lowest energy level, r = 1 the
first excited state, etc. Since the Hamiltonian HF is invariant under parity, HF &
denotes the parity sectors * of the Hamiltonian, This is a space symmetry unrelated
to the internal symmetries discussed in Sec. 2. Let E‘F;(N) be the ground-state energy
for a chain of N sites. This is the lowest energy level in H‘l:,(_: ). We consider the

quantities:

EX (0 = fim S (BN - EL(V).

N—w

G.1)

It is a consequence of conformal invariance that an irreducible representation (A)y, of
the Virasoro algebra

D“"‘ L“] (m=— ~n) Lh'\+h + .C__ CW\ _M) 6M+h)o (32
with a highest weight A gives the following contribution to the spectra Ef?-r);

z?\-)(v{’) = A "l" ?_'f (l' = 0’ 1$ --‘)

(3.30)
Zi')(_e) = A+ 244 (t = 0,1,.)
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or
©) 9. t=01.)
A ®) = A+ 4+t r , 1, ..
_ (33b)
Eaif)cfﬁ — A+2¢ 4+ A t =0 1, .)
with a degeneracy d(A ;) given by the corresponding generating function:
== _ +
@, (D ,éf d(s,+). %
Since we are conmsidering here only the case ¢ = 1, we have
o -4 .

ha=A

for any A , except for A-'[:VH- with t an integer number. In the latter case we have

_t
(F'Wq = (A~ 2 -H) T, (2). (3.6)

The various values of /A which occur in the spectra are usually denoted by x, and
arc called surface critical exponents.
We now consider the case of the boundary conditions compatible with the torus, Let
Ei(f), P; N) be the energy levels of the Hamiltonians H}B\ (boundary condition B and
irreducible representation /A } with N sites. P denotes the momentum (we have transla-
tional invariance in this case) and ¢ the level. Let E,(N) be the ground state energy
(it is in the Hoo, .. sector). We consider the quantities:

En(o,?) = Lim 1% (ER(e,P5 N) = E,(W).

N—> a0 @D

It is a consequence of conformal invariance that the tensor product of two irreducible
presentations ((A),, (A),) of two commuting Virasoro algebras gives the following
contribution to the spectra (3.7):
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\Zf=£&+f+ﬁ+? (359)

P - Asv - (E+F) |

with a degeneracy d(A, 1) d(A, 7). The combinations
X =A+A ,s==A~E

arc called scaling dimension and spin,

Since, as we shall sec, in the scaling limit the symmetry of the problem is U(1)
Kac-Moody we first describe this algebra (see also the Appendix). We add to the Viraso-
ro generators L, the gencrators T, (m &€ Z) and completc the Virasoro algebra (3.2) for
¢ = 1 with the relations:

[T*h ) L‘“] = m—rhwh ) l——T*"‘ 3T‘“] =m J"“*"‘"’ ' (39)

(3.8b)

An irreducible representation of the U(1) Kac-Moody algebra with ¢ = 1 is given by the
highest weight / and charge q such that

To\A,q> = \A:q> ) Lv\A;q> = A\A1q> (3.10)

where A and q are related by A = g2/2 . All states of an irreducible represeatation
have the same charge q and their degeneracy is independent of q and so also of A . It
is always given by Trv (z) of eqs (3.4), (3.5). In the following, we shall denote the
irreducible representations of the U(1) Kac-Moody algebra simply by (A ), leaving the
sign of q unspecified.
Sincc the representations of the Virasoro subalgebra (A)\, have a lower degeneracy
for A= 34 (t € 2), see eq. (3.6), the U(1) Kac-Moody representations (0), (1/4),
(1), (9/4), ..., ctc. are reducible in terms of Virasoro representations. So

(0) - {O\] ® {4\] (3.11a)

where

{0} =go@+ﬁ)\, , {4‘] -_—.& ((Q.ﬁ.+4)2')v Gty

and

B - 8 (%),
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We now consider the U(l)-twisted Kac-Moody algebra which will turn out to be
relevant in Sec. 5. This algebra is similar to the algebra (3.9), the only difference
is that instcad of taking T,,(m € Z) we take TP’ ( € Z+1/2):

[T, Lad = p Teen , D, Tl = o fino >

There is no U(1) charge in this algebra. This algebra has only one irreducible repre-
sentation (see the Appendix):

(9 = Ly (&) e
where

v .
(=0 (E2) (2] - o (t825)

In the sums which appear in eq. (3.14b) cach of the representations (/) has the .
standard degeneracy -“\./(z) given by eqs. (34), (3.5).
We have finished by now the necessary mathematical introduction and turn now to

(3.14b)
the physical problem,

IV. OPERATOR CONTENT OF THE n-STATES MODELS WITH FREE BOUNDARY
CONDITIONS

Before starting to consider the n> 5 situation, we first remind the reader about
the o = 4 Ashkin-Teller model since the physics in the two cases is very different. The
Ashkin-Teller quantum chain is defined by the Hamiltonian

N
H=4_LH"’ 2. (6-+£o’3?'+653+
b Ay oo & ot B
vy | @1)

ST TS + e TR+ TPT)
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where

- 1Y
b= b arcons (—£) “2

The phasc diagram of the system (Kohmoto et al. 1981) is shown in Fig. 1. It consists

of a fully ordered ferromagnetic region {I), a partially orderd phase (II) separated by

two Ising lines from the ferromagmetic phase (I) and the paramagmetic phase (III), an

antiferromagnetic phase (IV) and a critical fan region (V). This system is massless

with ¢ = 1 along the sclf-dual line A = 1 between the Kosterlitz-Thouless point

A(E =—~4/VZ, b=1) and the four-states Potts point B( £ = 1, h=1/4). It is also mass-

less- in .the. critical fan (1< £ < ~1/2, 1 € h o0 ;m <N L D W)

again with ¢ = 1,
It is cssential to observe that the cnifical exponents are dependent only on h but

(inside the critical fan) not on A . To illustrate this point, the operator content of

the Ashkin-Teller model for free boundary conditions is (Rittenberg 1987, Baake et al..

1987, Yang 1987a)

Z = i” @ (,ki-) (4.3)
o kez

(for the whole critical region with 1/4 { b <=0 , including the critical fan).

The situation changes completely when one considers systems with ¢ = 1 and with
five states or more. Here the Hamiltonian eq. (1.1) has a set of couplings a, (which
correspond to £ in eq. (4.1) for n = 4) and the critical exponents are independent of
the coupling constants on the self-dual line A = 1 but inside the critical fan they
are dependent on A . This is a reversed situation as compared to the Ashkin-Teller
critical fan.

If we take a certain curve in the space of the coupling constants a, where ¢ = 1
and parametrize this curve by a parameter £ , the typical situation looks like in
Fig. 2. One has a critical fan which ends in the point A and inside the critical fan,
for a given value of £ , the exponents change with A . We will discuss in detail
in the next Section the variation of the critical exponents for the case of boundary
conditions compatible with the torus. Here we start with the simpler case of free
boundary conditions.

We begin with the observation obtained from finite-size calculations, that in the
domain of the a, where ¢ = 1, the lowest levels of the n-states models (we have calcu-
lated n = §, 6, 8, and 12) indeed turn out to be independent of the a, and show a
simple n- and Q-dependence, For free boundary conditions we find for the %, ’s of the

lowest states of the various sectors at 9\ =1
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F .
CE (lowest state) = 1 (4.4a)
Q 7

a;(lowcst state) = _@:% Q=1 .., [%-._1

n (4.4b)

¥ F
zn (lowest state) = & b—," (lowest statc) = n/4 (for n ecven) {4.4c)

)
Now this is precisely the set of lowest levels of the Ashkin-Teller model for free
b.c. if for the coupling constant h we use the values

L = 2 (4.5)
4
(which in the Ashkin-Teller phase diagram are values within the critical fan region).
However, the sectors in eqs. (4.4) appear reshuffeld with respect to the sectors of the
Ashkin-Teller model.
We now conjecture that the operator content summed over all sectors of the n-
states models {(n>> 5) for free b.c. and A= 1 in the parameter domain corresponding to
= 1 is the same as that of the Ashkin-Teller model, eq. (4.3), if we substitute

cq. (4.5):
For n even:
F F F F - CF _ (ﬁ)
Eo}.f@ Eo,—e Zh};,_,+@ Z,,,z:_ @3" (5& _?z " (4.60)
QFn/z €
and for n odd:
o+@ %b 9@ E’Q =£7_ ) - (4.6)
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We still have to give the distribution of the various U(1) Kac-Moody representa-
tions appcaring on the right hand side of eq. (4.6) into the different sectors of our
model.

For k = 0 the right hand side of eq. (4.6) contains a serics of n-independent
Virasoro representations, see eq. (3.11). Inspection of the numencal results in Tables
3, 4 and 5 shows that n-independent levels appear only in + and E, 0- with the
correct multiplicities for {0} in 'E,FO , and for {1} in ﬁ;

For the n-dependent terms we :obscrvc that an integer k can always be written as
k = or + Quwith r&€Z and 0< Q<& n-l. The expression 4_292-(11: + Q% is
symmetric with respect to Q€>n - Q (see eq. (2.12)) and has as its lowest level
x, = Q%n as observed numerically in the sectors EIZ IfweputQ = Oin (nr + Q)%m
we obtain x, = nr?, This gives rise to an additional lowest state with x, = 0. In
Table 3 we observe for n = 5 that indeed there is a state with x, = 5 in the sectors

F e F4)
) and IE, _ which cannot come from {0} or {1}, respectively, because of its

panty.
So we arrive to write the operator content of the various sectors:

a) n=2p + 2 (neven):

F + A
Eoﬂ— = {.O‘J @ -:% A (hT D) (4.7a)
¥T_ ={1Y o9 (et (@.70)
O)—' < 2‘1
F O’TT + &)")
(EF = 5 =& ( (4.70)
R R ceZ " L
F +
%, =8 nQRx+4) ) 79
o, + 5T 40 L
byn =2p + 1 (nodd):
(473) + (47b) + (47c) without (4.7d). 48)

In egs. (4.7a) and (4.7b) we have used the definitions egs. (3.11b). The superscripts
+ in (4.7a) and (4.7b) indicate the relative space parity of the lowest levels of the
two terms appearing in each sector.
For a detailed check of our conjecture, we have made an extensive numerical study
of the n-states Hamiltonians eq. (1.1) using finite-size scaling methods. For n = 5, 6,
8 and 12 we have used chains up to N = 9, 8, 7 and 6 sites, respectively. Applying the
by now standard method (von Gehlen et al. 1985a) the normalization factor g in eq.
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(L1) is determined such that the sound velocity becomes equal to ome. The values of %
for particular choices of the coupling constants are listed in Table 2. In each case we
have checked from the finite-size corrections to the ground state energy (Bldte et
al.1986, Affleck 1986) that the central charge ¢ of the Virasoro algebra is compatible
with the value ¢ = 1. We then have determined the finite-size quantities Ei defined
by eq. (3.1) and have compared them to our conjecture eq. (4.7), {4.8). Tables 3, 4
and 5 illustrate these results by giving our mumerically calculated EE&) together with
the surface exponents x, expected from cgs. (4.7), (4.8). The gencral agreement also in
non-trivial cases is good enough to decide that our conjecture is correct,

Before proceeding to boundary conditions compatible with the torus in the next
section, we conclude the free boundary condition case by extending our conjecture eq.
(4.6) which was valid for the self-dual line A = 1 to the whole critical region with
¢ = 1. Numerical finite-size studics, the details of which will be given in a subse-

quent publication, show that we simply must generalize the right hand side of eq. (4.6)

to F &q_ )

if we abbreviate the sum of sectors on the left hand side of (4.6) by ZF The func-
tion g(A) was discussed in eg. (L.7).

V. OPERATOR CONTENT OF THE 2-STATES MODELS WITH BOUNDARY CONDITIONS
COMPATIBLE WITH THE TORUS

We now consider the boundary conditions compatible with the torus. We start with
the sectors which have Z, x Z, symmetry (n even) or Z, symmetry (n odd), see Table 1.
For these we find from our numerical studies, see Table 7¢, that the lowest values of
x (see eq. (3.8b)) are x = 1/8, 5/8, 9/8, ... independent of n and independent of the
couplings as long as ¢ = 1. The observed multiplicities fit prccisély with the assump-
tion that these sectors are built from the representations {1/16} and {9/16} introduced
in eq. (3.14b). So we conjecture:
neven (R =0,1, .., n-1)

Z?’;Q_"u: ZZZ:C"-—,Z'C_—J-;-: ( {%}){%) ® ((%‘] {%\])

£ - ( (@)
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nodd (R = 0 1 ., nl)

a4 o2 ({2), (4D

SR =

2 aa(l (e (e 6D

Notice that if we combine the sectors together one obtains

o (B, ()

for n both even and odd (we have used bere the notation (3.14a)). We observe that the
sectors with Z, x Z, (respectively Z,) symmeiry have an operator content independent on
g and are given by the twisted U(1) Kac-Moody algebra.

We now consider the other boundary conditions. The finite-size numerical calcula-
tion (Tables 6, 7a, T, we have also checked the 8-state model) shows that the lowest
levels of the various sectors again have a very simple dependence on n, Q and G

o
Eo _(lowcst state) = 1 (doublet)
7

~ (54)
Z,Q'Q (lowest state) = (QL + aL> / n .

In order to obtain (5.4) with a Gaussian form (1.4} of the primary fields which is
symmetric with respect to Q<> n-Q, 69n~6 (remember (2.9)), we introduce the expres-

(n(ﬁ_ﬂ&)’- h(ﬁ_z?{)) (h(&-&g)" n(«(+ﬁ3))
) kg 7 He //

(5.5)

n(¢+3 + @3)" h(e+d - (33)")
:Eg(?%) ==é%zoééieil.(: ‘+i} ) Hrﬁr |

(5.6)
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—H—

(Q+-nu+%(&+hf>))" (Q+hu_%(§+hﬁ»
b ha,. g }-I-hg, 57

which contain sums over (A ,K) where A and K are U(1}) Kac-Moody representations
with degeneracy given by -ITV(Z)’ eq. (3.5). The functon g(*) ) in eqs. (5.5 - (5.7)
has the properties eq. (1.7) and describes the behaviour as in the critical fan we move
away from the self-dual line A= 1. The places where g occurs are restricted by the
requirement that the spin s = A-A  should not vary with 9\ . Whether g or g'l ocecurs
has been checked from numerical calculations which will be presented in another publi-
cation. ~

We can now give the operator content for the cyclic boundary conditions Z,Q (see
Table 1). We have

£, = (1. LoDe ((Y, (1) & ()
g = (Lo} Ay @ (U, (o) @& ().

(58)

For n evenm:

Ep s = Ewne = D(3)
A £ 9 (% 59)

0,4+ = o, g
/2 nle
— - A n h
AR AEEINCE )

For n even and n odd we have for the remaining sectors (see eqgs. (2.10), (2.11)):

€2 _ (%) o

In eqs. (58) we have used the definitions (3.11) for {0} and {1}, Notice that the
duality reflection g«€—> 1/g interchanges Q and Q (von Gehlen and Rittenberg 1985b)
and lcavcsﬂ‘ unchanged:
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L(Q %) = L(d Q; (5.11)
#(q) = #(g7).

If we combine together the pairs of sectors in egs. (5.8) and (5.9) we get the

simple expressions

£ < E;,+® Eg)__ = L (0,0;9)

(5.12)
Ei‘l/:r_ = Zlﬂ/;’.,+ ® En?/:.,— = L (Az., ©; 3')
H/‘J_ T LS .
Zo = g:,/}_,_ & %V;/J_ =L (O;'?'.)%)
h/a, h n
Z’VL = h/:.)-q- g'\r\./z.—- = L(z_, 2- "%)
and thus the whole operator content of the n-states models witk all cyclic boundary
conditions takes the simple form:
! (o(,-\- ) (&~ j‘
¥ =2 2 L(Q, Q. ;9) =@ 8¢ A )(5.13)

Qe Fmo 4&2(@2 ng ° lng

Tet us discuss a few physical properties of the model. First the thermal sector
g,c;] + The first excited state is always the marginal operator (A ,E) = (1,1) and one
has aiways only one marginal except at '>\max(g=nf4) or at ?\mm ==1!)\max(g=4!n)
where one has two marginal operators. Actually in pumerical studies when it is diffi-
cult to establish the border of the massless region (see Fig. 2), especially in the
vicinity of the end point (A in Fig. 2), the most precise way to determine this border
is just to look for the value of 9\ when one observes the second marginal operator.
Consider also the leading magnetic exponent, it is obtained (see eq. (5.11)) from
L{Q, 6; g) and its scaling dimensions are those given by eq. (1.8).

Our numerical results which verify our conjecture on the operator content in a
nontrivial way not only for the lowest levels eq. (5.4), but which tesis also higher
levels, are given in Tables 6 and 7. For the 35-states model we have calculated chains up
to 9 sites and for the 6-states model up to 8 sites. The tables are given for only one
sct of values of the coupling constants (see Table 2) but the work was repeated for
other values of the a, and it was found that the operator content is unchanged as long

as we stay in the ¢=1 region. The agreement between the theoretical conjecture and the
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numerical estimates confirms our conjecture. Actually the check can be done in a more
precise way., For n = 6 it turns out that the system has N = 2 superconformal invariance
(Di Vecchia et al, 1985, Waterson 1986, Boucher et al. 1986) and thus the operator
content can be compared with the known character expressions once the irreducible
representations are determined, We will return to the problem of higher symmetries

(beyond the U(l) Kac-Moody algebra) in these models in another publication.

VI, CONCLUSIONS

The main results of this paper are given in Egs. (4.7), (4.8) and (49) for the
operator content of the n-states model with free boundary conditions and in eqs. (5.1),
(52), (58), (55) and (510) for the other boundary conditions. As in the Ashkin-

Teller case (Baake et al. 1987a, 1987b), for special choices of the number of .states

and of the temperature (-%\- ) higher symmetries occur. These aspects of the models will
be discussed scparately. Before concluding let us present the large n-limit of the

model. This corresponds to the 0(2) symmetric model. Using (5.10) and (5.12) we have
for finite n:

¥ = L(a,&;9) (6.1)

where 1{Q, ﬁd; g) is given by eq. (5.7). In order to get the large n limit, we take

] .
= S = fxed (62)
which corresponds to the boundary condition:
27ccs T.
— <
TNM = ¢ & (0 51). 63)
We will also put
~ (6.4)

=g ; k=g
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Taking now the limit we have

. (Q+ %’(fﬂb))" (-3 (c+R)

(6.5)
@e?_

This is the operator content of the 0(2) theory in the charge sector Q with boundary
condition s, From eq. (64) we notice that since the temperature T ~ 1 , the tempe-
rature range of the massless phase spreads between 0 < T £ T, At Tc@' = 4), the

leading magnetic exponents are:

Xq = Q%/8

(6.6)

like for the n-states model for g = é‘: .
Before closing this paper, we like to mention that in a separate publication P.
Suranyi (1987) will show that our results are compatible with extended modular invari-

ance,
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APPENDIX: Irreducible representations of the U(l) Kac-Moody algebra (¢ = 1)

The untwisted U(1) Kac-Moody algebra is defined by:
[Lh\) Lh] = (m-—n) LM'I'V\ + % (W\S—W\) &N‘,h}o
[T L ] V\H—V\ J [._TM)T] m+4n, 0

(m, n € Z}. Its irreducible representations can be obtained using the Sugawara con-
struction (Goddard and Olive 1986 and references therein). We take

(A1)

A Z m—r (A2)
where:
T T, 0 = 00=-o)T Ty + 0= T T, (A3)
and
[ © X <0
= 4, axx
O (x) o X == O “s
L4 X >0

We get unitary representations taking the involution:

+ +
B T = Tom (A9

’
Making the change of notations
—l:.., = F Q_,{_

[a'f: E—f&' [Q‘VJQ'] EJQ"“]“O
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T2 4 ) cdha, (A

Lt L}

L, =

4
2

The highest weight states \A}q> (see eq. (3.10)) correspond to the bosonic vacuum and
the character of the corresponding irreducible representations is

N q (2) = Tm(z“) = 25T (2) a8

where A =q22 and |\ () is given by eq. (3.5).
The twisted U(1) Kac-Moody algebra is obtained from the untwisted one (A.1) taking
T“"( pe Z+1/2) instead of T,,(m € Z). We repeat the Sugawara construction and have:

- 4 . © LA
2
and Z + A
LO >0 "L }L 5 1e (A10)

The character function corresponding the vacuum representation is

Lo ¢
'sz(%) =Tm::e,(% ) = g”'¢ cPfECt)

(&_ (2:) = -ITV (2) i (1 + Em-‘%' )%(1— -',_!-_9'2) . (A.11)
i¢ =o

A=0

This gives the decomposition (3.14&)in terms of Virasoro representations. Taking the
subspace of even (odd) number of bosons one obtains {1/16} ( {9/16} } of eq. (3.14b).
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LIST OF TABLE CAPTIONS

Table 1:

Table 2:

Table 3:

Table 4;

Table 5:

Table 6:

Table 7:

Symmaetry of the n-states Hamiltonian for varipus boundary conditions.

Normalisation factorg for the n-states model and different values of the
coupling constants.

Surface critical exponents x, [d} width a degeneracy d computed from the
model. x, (Exp) represent the numerical estimates. The 5-states model (free

b.c). (ap = - 1/5).
Same in Table 4. The 6-states model (free b.c) (a; = a3 = 0).
Same in Table 4, The 8-states model (free b.c) (a; = a3 = a, = 0).

The 5-states model, Critical exponents x [d] with a degeneracy d computed
from the model and compared with the numerical estimates. The levels labeled
by (*) are double degenerate for any number of sites (a, = - 1/5).

Critical exponents for the 6 states models (the Tables 7a, 7Tb and 7¢
represent together all the sectors of the theory). The value indicated by
2.0* in Table 7a is exact by definition since the level was used to determine

€ (3 = 33 = 0).



CBPF-NF-058/87

-22 -

!Boundary - Group Nﬁmher of '£1ements
condition e1ements
Yﬁ n'“ 2n -2", ZmC
(g,m = 0,1,...n -1)
i z, n DO RN B
I’#l .on n .I!" Ilc
(2,m =0,1,...n -1)
B . _ I ,
& |1 Z,x2p | 4 100" e R e
1 (Re0,5..n-1)
-l z, 2 §°, I'¢
o
; (kso.. wew l'l-] } . s

Table 1}
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n ‘f ,az n 'g a, a3
5 | 1.677(5) 0 6 |1.474(2) 0 0
1.466(5) -1/11 1.643(3) 0.058 .05
1.203(6) -1/5 1.306(2) -0.058 ~0.05
0.8575(2) ~2/3 0.249(1) -(.9 1
8 | 1.21(1) 2,° 12 |0.88087(3) | a,=...=ag=0
=a4=
Tatﬂe__z
) &y () 'Ic-j
Eo.-o 80.4 Zﬂ,— O, -
x'[d] x_(Exp) xs[d] x_(Exp) xs[d] %, (Exp) xs[d] xs(Expj
3117 7.003(5) AT 2,950 T [Z.037(2) 15 BRI 6)
4[3] 3.98(8);4.11(6) 53] 4.9(2),5.2¢1) 4f2] 4,03(6);:4.03(9) 3fz1 3.04(3);3.06(2)
: 4.1(1) 5.06(2) sta]l | 4.802);4.9(1)
s{1] 4.99(3) si1] | 4.98(1) 4.97(1)35.03(3)
[ &y +) i~}
£, €, £, g,
xdl | x (Exp) x [d] | x_(Bxp) x (4] | x (Exp) x [a} | x_ (Exp)
%[-1] 0.209(1) %{1] 1.212(5) 0.8(1] | 0.814(1) 1.8[1] | 1.802¢4)
'5—‘_[2; 2.21(1);2.269(1) -'55[3] 3.21(2)33,18(3) | 1.8[11] t.8191) 2.8{1] {2.80(2)
3.2603). 2.8{2) | 2.80(2);2.82¢2) | 3.8031 |3.79(4);3.90(1)
-5—[1] 3.22(2)

Table 3
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{+) {-) {+} )
%oe"‘ ‘iﬂl" %oo' tO.'
xg{dl | x {Exp) xgld]l | x (Exp). xgldl | x (Exp) x4} | x(Exp)
A1) | 2.04Q) 3l | ey 211) | 2.08(5) 141 | 14
) " () (4] ) )
331 : ﬁfr, Egz_ €, "
xld) | x (Exp) x, (4] 1 x.(Exp) x[d]l | x/(Exp) xld] | x {Exp)
Lay | o.mesay %[11 1a7(5) '§[11 0.66(2) S | 1w
" 2.21(5);2.18(4) 3.12(3);3.19(2); 2.77(4);2.76(4); | 3.66(2);363(1);
Biz) B | a3 $31 | 2 Hear [3.9001):3.9004)
{+) (-) {+) (-)
3.¢ ?3.-& : (23.- z3.-- .
x [d] x4 (Exp) | xgla) % (Exp) xg[dl | x (Exp) _ x[d) x {Exp)
31 ] 160 S| 2s 31 | L) 3 | 26
Table 3
(+) -) (+) o ()
% 0.+ 2 [ 8 4 E Oy= ‘8 By
xid] | x.Exp) xld] | x (Exp) x(d) | x (Exp) x[d] | x {Exp)
2(1) 2.000(1) 3(1) | 2.91(8) 2(1] 1) | 1.098(3)
{+) ' {-) {#) {=)
T, €, Z, €,
xg[d] | x (Exp) x [d) x,(ﬁxpl x{dl { x_(exp) xgldl | %(Exp)
1 | 0.13(1) #u | vy | k| osy 3 | ueq)
-%ﬁz] 2.15(1);2.12(3) |
+ ' (-} (+) {-)
‘f 3 ? 3 24.+ z‘.‘t
xg8d] | K (Exp) x{d] | x (Exp) xgld] | x (Exp) xgld} | x4(Exp)
11| 1.185(s) Yy | 2.1302) 2t1] | 1.907(6) 31 | 2.98(1)
(+) ()
% .- % ‘.-
x,(d] | x (Exp) x [d] | xg(Exp)
211 | 2.04(1) 3] | 3.01(3)

Table &




CBPF-NF-058/87

—25_

9 3lqeL

{r)oze s
(e)oe"€ (3913 _
{1)e'c {1)8"2 (1}s'¢ (rissp'2 {z}oo'2 {1)1005°0
(1)ec {9)se°2 {r)s008°0 (9. [115°2 ok [tls'0 w
[y)e"¢ [218°2 g | & (2)s-¢ ot
neee (t)re-2 (s)ew'e (to'e (2)05°1 ()00’ 1 _
{8)99°¢ (2102 (vhoa'y . f2ls° (2l teis e | #4183,
fzls'e (2)e2 {tley 1° (D1'y Dzt
{1)es"¢e {1)69°2 (2)61°2 {1)5002°0
(v12'¥ {212 (12’2 mzo |
et | §-| §3 [Tosc (Ver'e (g2
(Tre's (tl6’¢ (s8¢ {v)s9°¢ (tor°¢ (t)g69°1 (et
_ lels e (2)e'e [212°¢ (211 frlzt m- “w
ﬁﬂuonjn (ehre (1)e°z
{2)eec {r)006°1 ﬁnunan.n 95"y (Dr'e (1es'2 (x)ecot"1
leive (1)6'1 Tt |t [sle"y 1211 [219°2 [t 1
(2)s°¢ 1)85°¢
exe . . ¥){5°E .
(2)st'¥ (X (e)ee°2 2)es°e ¥60°2 (2)65°1 {e)ooto
(rlvy [tle2 lelos (e (11 e | o} L3
(Vor2 {2)6006°0 {¥)66£°0 (Do
fth'z (tls'o {1150 o | §3 (1)6°¢ (2)000°2
{t}6"c {v)es'1 (2lv (112 2
It (t1z ? {1)9s°¢c
(Ver'e (2)6'y {Vove (s)es°2
(e)orc {2)96'z | (9)z2000°T 1215 {21s°¢ trls .
lzls°s (tle i | 1 {1)66°¢ (s)es°2
Sy Jldsse | (210572 (1s*y (¢)e6i°¢ (1)8¥ 2z {1661
l2ls°y 2 sz | o |03 [2]5°% (2iv (2)5'z e | o |*'sd
m lox PR P fo)x o Badiadd




CBPP-NF-058/87

-26 ~

(1)s'¢

()¢ (s)se1
[2lse ¢ (1)s52°1 e 3190}
(tls'y p
(v)9t'% (v)ose
(e {z)o°c (Drt
(s ()2 (U0 * feiscce | mser | v
Toisty sz [Tlsz0 A (tg'y ey
(s)ac‘y (e)r'¥ {glse 2 (5)av2°0
(e (t)eez _ frlsi tscz | tsce | o | ViR
(t)e'e (£)82°¢ (t)eez _ s
lelt/ot fele/t (r)v1°¢
(te'e {e)st'e (e)oo'e (t)oe (1)ees0°1
(t)ee (¢)ee"2 (1)ges 1 [¥3ev/ze [rlzt/et t
[2le/01 (tlest (Ylefy 2021y (2)2r
(z)zy . (e 2y (O1r
Ry (v lelse'e (2dory (2)0°y (s)50°2
: (vle/er [re/or {s)e1'v {z)0'# (€)580°2 (1)egs0°0
E.«n.u ()eeee’t {reece 0 [gl2tT/6% [Z)z1/52 inzin ¢ _.:w.
[11e/¢ (vesy e/t : 3
. (L)e6e
1)y . (1)6"% {(5)00"¥ 02
(Ve'y (s)es's (5)666°1 91§ 12y fuz 2
I¥ls i1le f1)z (5)¢0"y
(e)ss'e (s)e6°¢ {g)o0'e
{s)s6'¢ 00t (1)686"0 (zir (1 1
(2lv {te 131 {zh-s (e)26°¢ {2)20°¢
Llssey Jlss6e (¥)66°2 . {t)o's (e)s'e {262 (thaz
[2ls i2ly (2)¢ "k [21s {2h (2l i '
o] 10339 — = - ¢ [40359g




CBPF-NF-058/87

_27_

qL o1q®)

{s£)60°¢

(e)or°e (s (th's (1)g80°1
, [vl2t/ic [1lav/et 1
(€190 ¥ {1y
{s)ot"y {c)eoy (2)5°'¢ {c)s0°2
{cery {1}1°» {2i°e {s)ee0°2
(clos’e folzr/ey | (2lat/sz | o : 3
(elo'e (she'z (s)sp'e (e)ee
(1)e ¢ (Z)2e*2 {1)re1
2 (s)sk't (t)e'e {1)otr't
€15 [2h% gy | 4 (v1zt/18 et | £
(s)os*2 (g)se 1 {1)z2c8'0 -. )1y
[ i [ 2 53 {t)s‘y (89148 (2)05°2
it 11, . 5 1 !
_ _ {(2)2'» (2)vy (e)or2 £91y
{2y 4 t
(s [8l2t/cs felzn/ez [t12t/s 3 3
(2)z'* (v e (1}os"t
Tel1s's f1ls'e [115°1 1 (edey
S {v)z'» (s)os¢ {z)z0s'1.
(s)sy’v (tive [els°r [1is°¢ st | ot
(T)ry {s}ev'e {2)s5°2 _ (e)e's Doy (e)ss°s
2ls'y (2)5°¢ sz | of % (e)e's (2)s*e (2)er's (2)s°2 _
(elss (2)s'y [215'¢ (1152 0 ' "w.
(2)e'e
(s (DT
Eu.n . . 21y
{s)es¢ (¥)v9°2 (1)993°0 Wy (¥}v0'E
(' (1)r'e {eht'2 (1)se91°0
(p 15 [T} e | £
u 8 2 2 (¥19/52 {219/61 [re/t (nd m
(1)9'¢ {vig9°2 (2)80°€ (2)o1°2
(s)os"e (iesz | (119"t (V6°s (Dz'e (Darz | toert
z [219/52 1219/81 (29/e1 nee | 2.1 1
ey £33 ng | £ % m s '
Takx d ] Joyses (a)x 1 4§ aodes




CBPF-NF-058/87

_28_
c @€
. (él'g’:-t- 2yC=4 €z3=_' 2 C =%
nP x{d] x{Exp) x(Exp)
o| 1/8(11 | o0.12488(1) 0.1248(1)
o/81) | 1.125(1) 1.11(1)
17/801) | 2.12(1) 2.11(4)
25/8[4]1 |  3.1(1)33.1(1)33.1(1);3.1(1) 3.1(1)33.1(2)
1| o/8(1] | 1.125(2) 1.125(1)
17/8(2] | 2.15(5);2.12(2) © 2.1(1)32.20(3)
25/8[2] 3.1{1):3.05(4) 3.06(5)
. c . c .
%z."-’=+,c=- "if?’:-, =
P x[d] x(Exp} | x{Exp)
12| 3] 0.6249(3) 0.62502(2)
B 1.67(2) 1.620(3)
2y2) 2.67(3);2.70(3) 2.62(1)32.60(1)
24l 3.6(3);3.5(3) 3.47(3);3.5(1)
3.46(5)33.52(5)
321 Bray | 1.60(1)31.64(2) 1.620(5)31.62(1)
By2) 2.63(4);2.70(2) 2,55(3);2.55(5)
29 3.4(2) 3.4(2)33.4(1)
L 3.4(3)

Table 7¢




CBPF-NF-058/87

=29~

LIST OF FIGURE CAPTIONS

Fig. 1

Fig. 2:

Phase diagram of the Ashkin-Teller quantum chain. I is the ferromagnetic
region, 11 a partially ordered phase, ITI the paramagnetic phase, IV the
antiferromagnetic phase and V the critical phase.

Part of a phase diagram of the n-states model (n > 5). In the space of
coupling constants where ¢ = 1, one takes a curve parametrized by £. In the
& — O\ plane, the system is massless with ¢ = 1 in the dashed arca. This arca
has an end point in A. Outside the dashed area, for instance on the segment
AB on the self-dual line, the central charge might be different.
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