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ABSTRACT

We study the phase diagram for the Ising Model on a Cayley
tree with competing nearest-neighbour interactions J, andnext-nearest-

neighbour interactions J2 and J, in the presence of an extemal

3
magnetic field. To perform this study, an iterative scheme similar
to that appearing in real space renormalization group frame-
works is established; it recovers, as particular cases, previous
works by Vannimenus and by Inawashiro et al. At vanishing tem-
perature, the phase diagram is fully determined, for all values
and signs of J2/J1 and J3/J2; in particular, we verify that val
ues of J3/J2 high enough favour the paramagnetic phase. At fi-
nite temperatures, several interesting features (evolution of
re—entrances, separation of the modulated region in two discon

nected pieces, etc,) are exhibited for typical values of J2/J1

and J3/J2.

Key-words: Ising model; Cayley tree; Devil's staircase; Spin-

glass.



I INTRODUCTION

The Ising model on a Cayley tree with competing interac-
tions has recently been studied extensively because of the ap
pearance of non trivial magnetic orderings. The Cayley tree
is not a realistic lattice; however its amazing topology makes
the exact caiculation of various quantities possible. It 1is
believed that several among its interesting thermal properties
could persist for regular lattices, for which the exact calcula
tion is so far untractable. Furthemore it is equivalent to the
standard Bethe-Rierls theory El]. In particular, considering
a system with ferromagnetic nearest-neighbour (nn) interac-
tions and competing (antiferromagnetic) next-nearest-neighbour
(nn) interactions on a Cayley tree, Vannimenus [ 2] was able
to find new modulated phases, in addition to the expected pa-
ramagnetic (P) and ferromagnetic (F) enes. These new phases
consist in a period-four one (noted <2> from now on), and in a
complex set of higher-order commensurate or incommensurate mo-
dulated phases (noted M from now on). The detailed analysis of
the complex M phase has revealed the existence of a "devil's
staircase" (similar facts are observed in other models [3-7]). More
‘recently, Inawashiro et al. [b ,9] investigated the same sys-
tem on a Cayley tree but, unlike Vannimenus, they included in
the model same-generation next-nearest-neighbour interactions;
this situation corresponds to the usual Bethe-Peierls approxira
tion on the hexagonal lattice. Using an iteration scheme dif-
ferent from that introduced by Vannimenus, they found similar features.

Their detailed analysis of the M phase shows that the local-magnetization



presents chaotic oscillatory glass-like behaviour.

The aim of this paper is to extend in several senses these
previous results. First,the presence of an external magnetic
field is assumed.Second, our model consists of a gpin 1/2
Ising model on a Cayleytree of branching ratio 2 (like hawashiro
et al. | 9]) where all three interactions are characterized by
general strengths (Jl’JZ’Jé 5'0); see Fig., l(a). This model re-
covers that of Vannimenus for Jé = 0, and that of Inawashiroet

al, for J, = J This choice is not a mere mathematical complica

3 2°
tion of the previous results since, as we shall see later on,

a significantly richer phase diagram is obtained. In spite of

its simplicity, the branching ratio 2 Cayley tree, already pres
ents several non trivial effects. These effects should not be
very different in higher (but finite) branching ratio trees,
excepting for the possible appearence, at {{ndite temperatures,
of Lifshitz points (see Ref. | _6]).

The outline of this paper is as follows: in section 2 we
set up the basic equations of our model and we find the recur-
rence relations. Section 3 is devoted to the analysis of the
phase diagram. '~ Finally, the conclusions are presented in

section 4.

2 BASIC EQUATIONS

We consider a Cayley tree with branching ratio 2 (see Fig. la). Let
us introduce g EJ?)/J2 and p E—Jz/Jl; obvicusly for gq=0 we recover Van-

nimenus model, while g = 1 is the case focused by Inawashiro



et al. In order to set up our basic equations in a recurrence
scheme relating the partition function of an N-generation tree
to the partition functions of its subsystems, we should take
into account the partial partition functions for all the possible
configurations of the spins in two successive generations. I¢
we identify (following along the lines of Vannimenus)ZN(—+?)as
the partition function of a branch of an N-generation tree where the spin
in the last generation is up and the two spins in the preced-
ing one are down, there are only six different ZN to consider.
We define for convenience the following variables (see Eq. (1)
of Ref. |_2]): z1=zN(+++), z, = ZN(++—). 2, = ZN('+‘)' z, =
Be(F7+), zg = 2y (+7=), 2,573 (- =) and u; 2VZ (i=1,2,...,6).
The effect of the'J3 interaction is appropriately included by

a factor exp(iJB/kBT) into each Z;, as obtained inRefJ:QJ;the

plus (minus) sign corresponds to the same (opposed) orienta-

tion of the two spins of the preceding generation.
It is straightforward to establish the following recursive re-

lations:
uj = aE:zcui + (2/c)u1u3 + (c/bz)ugj (1)
ul — a_l b2 2 + 2 2 2
3 3 cu, ( /c)u[*u6 + (c¢/b Jug (2)
u, = a-l[(,c/bz)ui + (2/c)ugu, + bzcu_§J (3)
ué = a[(c/bz)uz + (2-/c)u4u6 + bzcuz:i (4)

where the prime denotes recurrence image and where the equa-

tions for u, and ug have been omitted as they satisfy u, =

u.u_ and u? = u u., with
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a = exp(Jl/kBT) (5)
b = exp(J,/k;T) (6)
cffmm(%ﬂ%T) (7)

We note that, in the paramagnetic phase (high symmetry phase),

u; = ug and u; = u,. For discussing the phase diagram, the

following choice of reduced variables is convenient:

X = (u3 + u4)/(u1‘+ u6)

11

Y, (w, - u6)/(u1 +ug)

1K

Y, (uy - u4)/(u1 + uc)

Egs. (1)-(4) yield

X' = (azD)_IEOL'(x2 +y3) + 2(b/ci(x + Y,¥,) + (1 + yi)] (8)

yl = 2D_1[%“y1 + (b/c)?(y, +y x) + yzxﬂ (9)

yé =-2(a2D)-%[%“y2x + (b/c)z(y2 + ylx) + yi] (10)
where

D = b*(1 + yi) + 2(b/c)?(x + y,¥,) + (x? + yg) (11)



These expressions generalize those obtained in I:2] which are
recovered for ¢ = 1. Furthermore for b = ¢ we recover the e-
quations of Appendix B of Ref. | 9].

In order to find the stability limit surface (in thekkIVJ,
p,q space for instance)of the paramagnetic phase, we meedto
linearize Fgs. (8) to (10) around the fixed point (x*,0,0), since
yl'and y, are parameters which vanish in this region (since U, =ug and
u =U4).F§yx'does not depend on Yy and Yy in first order, the non trivial

3
part of the linearization is expressed in terms of the Jatobian

Yy Moo 41
= : (12)
Y2 Ay A, Y2
where
A= 2E3‘* + (b/c)zx*:’/Dl (13)
A, = 2[(b/c)2 + x*:]/Dl (14)
Ay = - 2x*-:l + (b/c)zx*:l/Dz (15)
A, = - 2x* :b"‘x* + (b/c)ﬂ/Dz (16)
with
D, = b* + 2(b/c)?x* + x*? (17)
D, = 1 + 2(b/c)?x* + b*x*? (18)



and

x* = b'x*? + 2(b/c)?x* + 1 (19)

a?[b" + 2(b/c)?x* + x*7]

Two cases should be examined now, according to whether the

eigenvalues of (12) are real or complex:

a) The para~ferro (para-antiferro) transition

When the eigenvalues of (12) are real, the transitionline
will be characterized by the criterium that the largest (in
absolute value), eigenvalue (Amax) should be equal to one.
This determines the stability limit surface we were looking
for. If the para-ferro (para-antiferro if J1 < 0) phase transi

tion is a second order one (and it is, as we shall see later

on), this surface coincides with the critical surface.

b) The para-modulated transition

When the eigenvalues of (12) are complex conjugate, the
fixed point is approached in an oscillatory way andthe stability
limit (which coincides with the critical limit for second order
phase transitions) is achieved if we consider the modulus of
A equal to one. This requirement completely determines the

(critical) surface we are looking for.

Ifan external magnetic field H (B = H/kBT is a oonvenient
reduced variable) is applied on the system, the corresponding
recursive relations can be quite straightforwardly obtained
following along the lines of Inawashiro et al. [9]. The i~
terative scheme can be set up by summing successively over

spins as can be seen in Fig. l(b). We obtain



exp[%l(leA+ cch) + K2(020A+ GZGE) + K3UAGB

+ X(0A+ qB)] = C:exp(Wclo2 + Uo, + Vol)

where K, = Ji/kBT' (i =1,2,3) and

U = UX,K,) =4—l£n-w(l,l)w(l,—l)/w(.—l,l)w(rl,-l)]

h—

V= V(X,K,) =4 tnlo,eE1,1) /0, 1) w1,-1)

WS W(X,K) =4 gn|wl,uE1,-1)/o(l,-1)u=1,1)
_ 1/4

C = C(X,K,) = Eu(l,l)w(l,-—l)w(—l,l)w(,—l,—l)]

with

S -K
w(d,gr) =2e“3"COSh(2'X + 2K20’ + ZKlO') + 2e 3
The recursive relations are given by

X(r) = B + 2U(X(r_2) ,Kgr_z)) + V(X(r-l) ,K](-r-].) )

and

{r-1)
{ )

(r) | (r-1)
Ky K, + W(X 'K

for r = 2,3.... The initial conditions are

xt0 - Kgo) =0

(20)

(21)

(22)

(23)

(2%)

(25)

(26)

(27)

(28)



L1 _ g (29)

K](_"l) = K (30)

where we have introduced the reduced applied fieleBSasaxﬁated
with the outer most shell.BS needs not to be equalto the "bulk"
reduced field B, and is introduced for numerical convenience.
Indeed the B = 0 phase diagram can only be determined numerical-
ly if the up-down symmetry is broken, which is achieved by
taking a small value for Bs' for example BS =0.0l. As a mat-
ter of fact, for most regions of the phase diagram, the re-
sult does not depend on Bg' which can be chosen to be any ar
bitrary non vanishing value; however regions of the phase diagram
might exist for which sufficiently high values of BS could
drive the system to different (high-field) phases (see Refs.
IEO,TI] for a discussion of this point for the particular
case J, = J3 = 0). Bgs. (21)-(27) recover,for J, =Jé and B =
Bs’ those appearing in Ref. |:9]; furthermore they lead, for

B = 0, and through appropriate variable transformations, to

Kgs. (8)-(10) of the present paper.

3 THE PHASE DIAGRAM

The recursion relations derived in section 2 (Egs. (21)=-(30)) provide
us the (numerically) exact phase diagram (in the kBTVUi,p,q,EVUispace,fbr
instance) of the problem. Ech phase (F,F,M«<2>,AF), is characterized by
a particular attractor in the (X(r),'(r)) space (note, in particular, that
X(r) plays the role of an effective field, thus characterizing the ¥~-th
shell mean magnetization) and the phase diagram is obtained by following

the evolution and detecting the qualitative changements of these attrac-



tors. These changements cén be either continuous or abrupt, respectively
characterizing second or first order phase transitions. A few typical at
tractors are presented in Fig. 2. 1In figures 3,4, and 5 we have
shown typical critical lines of the vanishing magnetic field
‘phase diagram. Tt is important to note, first of all,
that there is an isomorphism between the system characterized

by LJl,Jz, J3) and that characterized by (J J3xﬂje:mah1

1790
difference being the fact that the ferromagnetic phase cor-
regponds to an antiferromagnetic one. Also the.period four
modulated phase (<2>) is slightly altered through the iso+
morphism, changing the order f4+] by the order {4y} . where the

arrows denote four successive shell magnetizations (tkhe different

sizes of the arrows refer to different mean values). For the

remaining of our analysis we will focus our attention solely
to the semi-plane ]%TC/Jla 0 since, due to the isomorphism, we
can extend our remarks to the other semi-plane kBTc/Ji <0,
The T = 0 critical lines of the J1 > 0 phase diagram are
particula¥ly simple as they are segments of straight lines

(see Fig. 6). The F -<2> critical line lies along l/p = 3,

the F - M line along
1/p =3+ q, (31)
the M - <2> line along
3 -g if p< (2 + V2)/4

1/p = (32)
VZ2ig-1) if p> (2 +/2)/4 ,
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and the P-M line along
1/p=q -1 (33)

At low temperatures and for q < 1, the M phase presents

a small re-entrance into the paramagnetic phase; as illustrated

in Fig. 7. This re-entrance becomes more pronounced when g ap
pwaches zero from positive values, and decreases again for more and more ne
gative values of q. Another interesting feature is the fact that, for

g > 1, the J, > 0 P=M critical temperature attainsa maximum asa func

1
tion of p (see Fig. 5), in contrast With the q < 1 cases, where
it monotonously increases. Furthermore the M phase appears, for
q = 3/2, in two d4isconnected pieces (noted M, and M,; see Fig.
5), the M, and M, parts of it being respectively associated
with attractors of the types indicated in Figs. 2(h) and 2(f).
The M, - <2> critical line is a second order one, which is (pos

sibly) not the case for the M, - <2> critical line, where the

2
attractor changes suddenfy (it is of the type Fig. 2(d) forthe
<2> region, and of the type of Fig. 2(f) for the M, region). For
q 2 3/2 and qs, 3/2, the P -<2> =M, =M, multicritical point disappears
and the two regions Ml and M2 become connected through a narrow
path (see Fig. 8). An interesting "metastability" phenomenon oc
curs along this path: there is an intermediate region (shaded
in Fig. 8) where during a long transient the attractor seems to

be that of region M, (i.e. of the type of Fig. 2(f)), but, after

2
many iterations, numerical fluctuations drive the system to its final attrac

tor, namely that of region M1 (i.e., of the type of Fig.2(h)). The change of
attractor is abrupt and irreversible. This phenomenon means that there is a

quite large “"surface" region of the Cayley tree where the spin-glass like

(chaotic" in some sense) magnetic order is quite different from the "bulk"
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order (which also is spin=-glass like).
If a uniform external magnetic field H is considered, the
entire phase diagram will evoluate, excepting of course theF-P

critical surface which disappears, the magnetic field H being:

thermodynamically conjugated of the ferromagnetic order para-
meter (spontaneous magnetization). For the discussion of some
aspects of the J2 = J3 = 0 particular case, see Refs. 132,14].

The influence of non vanishing J2 and J3 coupling constants has

been illustrated in Fig. 9.

4 CONCLUSIONS

In this paper we have extended in several senses previous
works by Vannimenus[:Zj and by Ihawashiro et al.[?,9:] on the
Ising model on a Cayley tree with competing interactions. As before,
the paramagnetic (P), ferromagnetic (F), period four modulated
(<2>), and more complex modulated (M) phases are observed, and,
through the numerical observationof thevarious attractors (corresponding
to the relevant recurrences), the phase diagram has been determined.
Furthermore, we exhibit the vanishing magnetic field (H = 0)
(Jl,Jz,J3) - (—Ji,Jz,J3) isomorphism and show how. it 'is des-
troyed for H # 0 (see Fig., 9. Other new features that have been
established are the following:

i) The complete T = H = 0 phase diagram is made, in the (1/p,qg)
space (p. = -Jé/Jl, q EJ3/J2), of pieces of straight lines,
and their analytic equations have been established;

ii) The g-evolution of the small re-entrances, in the (p'kBT/Jl)
space, .of the M phase into the P phase has been discussed,

and it has been verified that the maximal re-entrance occurs



-12-

in the neighbourhood of g = 0;

iii)T™e H = 0, J1 >0 P = M critical temperature monotonously in
creases with p for g < 1, but, for g > 1, present a maximun
and then wvanishes for p high enough;

iv) The H=0 M-<2> critical temperature also monotonously increases with p
for g< 1 but, for q > 1, presents a maximumand then vanishes
for p high enough;

v) For q = 3/2, the H=0 M ~-<2> critical line touches in a
(multicritical) point the M - F critical line, in such a
way that the < 2> phase separates the M  phase into two
disconnected pieces (noted M, and Mz)’ the attractors as-
sociated with each piece are quite different in shape, and
naturally they must correspond to quite different "devil's
staircases”;

vi) All critical frontiers that have been observed are contin
uous ones (no latent heat), excepting the M, - <2> and
Ml"M2 critical 1lines in the neighbourhood of g = 3/2; in
this case jinteresting "metastability" phenomena have.been
exhibited, which essentially mean that the "surface" shells
(a quite large number of then) of the Cayley tree present a
modulated order quite different from that of the "bulk".
The detailed study of the g-evolution (including the meta-

stability effects) of the devil's stairdases associated with

the modulated phase(s) of the present competing - interactions

Cayley tree would be very welcome; it could reveal interesting

aspects that could exist even for regular lattices, and conse-

quently be of relevance for real spin-glasses. Although the
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Cayley tree-is not a realistic model, we hope that the re-
;uits obtained in the present work, can simulate the behaviour
of more realistic systems. As pointed by Vannimenus, a Cayley
tree is a counterpart of the ANNNI model, which is used to
provide an approximate description :of some materials, such  as
CeSb and ferroelectric NaN0O,. Other possible realizations of
a system with properties similar to those of the Cayley tree,

are those where there is a gradient in the density of-magnetic

atoms, as suggested by Moraal ‘jO].

We are indebted with S.G. Rosa Jr. for stressing our atten
tion on this problem, and with A.0. Caride for computational as

sistance. One of us (C.T.) also acknowledges useful remarks from

S.R. Salinas, M.J. de Oliveira, S.B. Cavalcanti, J.R. L. de

Almeida and S.G. Coutinho.
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FIGURE CAPTIONS

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1:

2

(a) Three successive generations of a Cayley tree
(full line: nearest-neighbour interactions; dot-
dashed line: next-nearest-neighbour interactions;
dashed line: interbranch interactions); (b) Sche-
matic diagram to illustrate the summation used in
Eq. (20).

Examples of attractors in the X-K space (X and K
determined by Egs. (26) and (27))for vanishing ex
ternal field and selected values of q==J3/J2, p =
—Jz/Jl and kBT/Jl‘ They correspond to the following
phases: (a) paramagnetic, (b) ferromagnetic, (c) anti-
ferromagnetic, (d) <2> modulated, (e) - (h) more
general modulated phases.

Phase diagram of the Cayley tree with competing in
teractions, showing the ferromagnetic (F), antifer
romagnetic (AF), paramagnetic (P), modulated (M)
and modulated <2> phases for q = J3/J2 =-1,

The same of Fig. (3) but with q=0.5

The same of Fig. (3) but with g=1.5 (the M phase

and Mz).

splits into two pieces, noted M1

T =0 phase diagram

Typical re-entrances of the modulated phase (M) into
the.paramagnetic one (P).

Phase diagram for gq=1.6., In the shaded region the

interesting "metastability" phenomenon described in

the text occurs.
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Figure 9: Phase diagram in the presence of an external magnetic

field H: (a) p=g=1; (b) p=~-g=-1.
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