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Abstract

We propose an alternative dimensional reduction prescription which in respect with Green

functions corresponds to drop the extra spatial coordinate. From this, we construct the

dimensionally reduced Lagrangians both for scalars and fermions, discussing bosonization

and supersymmetry in the particular 2-dimensional case. We argue that our proposal is

in some situations more physical in the sense that it mantains the form of the interactions

between particles thus preserving the dynamics correspondig to the higher dimensional

space.
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Dimensional reduction is a well-honoured procedure to build theories in a given num-

ber of space-time dimensions starting from higher dimensional theories. Initiated with

the Kaluza-Klein proposal for unifying electromagnetic and gravitational forces, there are

many fields where it can be fruitfully exploited. Let us mention for example its wide ap-

plication in Supersymmetry and Supergravity for constructing extended supersymmetric

theories, studying spontaneous breaking of supersymmetry, etc [1]. Also in condensed

matter problems where charged particles are constrained to move on a plane, the connec-

tion between the models in the higher (3 + 1) and lower (2 + 1) dimensional spaces is of

relevance [2]-[3].

The dimensional reduction procedure, as it is usually applied, consists in dropping

out extra coordinates at the Lagrangian level, this amounting to mantain unchanged the

differential (kinetic energy) operator appearing in the Lagrangian. As a result, the Green

function in momentum space preserves its form but in configuration space drastically

changes. For example, if in the higher dimensional space the kinetic energy operator is a

D’Alembertian, the same operator will appear in the lower dimensional theory. Evidently,

the D’Alembertian Green function is different for different number of space-time dimen-

sions. This, in a sense to be clarified below, implies that the dynamics of the interacting

particles described by the dimensionally reduced Lagrangian is changed in configuration

space.

The statement above can be clarified with an example which is relevant for the study of

the Quantum Hall effect : electrodynamics of planar systems (see for example [2]). If one

decides that electrons compelled to move in a plane are to be described by a (2+1) gauge

theory coupled to matter then, the resulting Coulomb potential is logarithmic instead of

the 1/r potential to which electrons are actually subject even if they move on a plane. In

passing from 3 to 2 spatial dimensions dynamics has changed.

The opposite attitude for implementing a dimensional reduction can also be thought of.

Indeed, one can preserve the form of the Green function in configuration space dropping its

extra space coordinate dependence. In the case of electrons in the plane, their interaction

will then still be 1/r (with r depending only on planar coordinates). In this way one

keeps the dynamics of the higher dimensional space. As we shall see below, for the case of

planar electrons the Coulomb potential restricted to the plane, 1/
√

x2
1 + x2

2, is the Green

function of the operator (−∆)1/2:

(−∆)1/2 1√
x2

1 + x2
2

= δ(2)(x) (1)

The previous expression can be interpreted using Riesz method of analytical continuation
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[4] and distribution theory [5] for defining derivation of fractional order. Moreover, the

pseudodifferential operator (−∆)1/2 can be properly defined using the results of Seeley [6]

on complex powers of elliptic operators.

We investigate in the present work this alternative dimensional reduction prescription

which preserves higher dimensional dynamics in the restricted lower dimensional space-

time manifold. As we shall see, the prescription changes the Green function in momentum

space and leads to a change in the kinetic energy operator appearing in the Lagrangian.

We analyse both the cases of scalar and fermionic theories and, in particular, we discuss

bosonization and supersymmetry for the 3→ 2 dimensional reduction case.

Scalars

We start with a simple example. Consider the action for a scalar field φ in (D + 1)

Minkowski space-time dimensions

S(D+1) =
1

2

∫
dD+1xφ✷φ+ Sint (2)

where Sint includes interactions. The corresponding Green function is defined by

✷G(D+1)(x) = δ(x) (3)

so that in momentum space one has

G̃(D+1)(k) =
1

k2
0 − k2

1 − . . .− k2
D − i0

(4)

In configuration space one has [7]

G(D+1)(x) = −(i)D2D−1π(D+1)/2Γ

[
D − 1
2

]
×

(
t2 − ((x1)

2
+ . . .+ (xD)

2
) + i0

) 1−D
2

(5)

Let us first review how the usual dimensional reduction procedure manifests at the

Green function level and then present our alternative prescription which, as we shall see,

describes different Physics.

The usual way in which dimensional reduction is implemented corresponds, in this

context, to drop k2
D in eq.(4). The Fourier transform, giving the configuration space

Green function in one dimension less, will be

G(d+1)(x) = −(i)d2d−1π(d+1)/2Γ

[
d− 1
2

]
×

(
t2 − ((x1)

2
+ . . .+ (xd)

2
) + i0

) 1−d
2

(6)
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d = D − 1 (7)

Of course, this expression is different from the one we would have obtained just by drop-

ping the extra space coordinate xD in (5).

We are now ready to specify our dimensional reduction prescription: one starts from

eq.(5) and drops the extra coordinate in the higher dimensional space Green function

G(D+1). The resulting Green function G(d+1) in the dimensionally reduced space (d =

D − 1) is then defined as

G(d+1)(x) = −(i)d+12dπ(d+2)/2Γ[
d

2
]
(
t2 − (x2

1 + . . .+ x2
d) + i0

)− d
2 (8)

The Fourier transform is given by

G̃(d+1)(k) = −2πi Γ[
d
2
]

Γ[d−1
2
]

(
k2

0 − (k2
1 + . . .+ k2

d)
)− 1

2 (9)

with the appropriate condition for the pole. One can convince oneself that G(d+1) is

nothing but the Green function for the operator ✷1/2 in d+ 1 dimensional space-time,

✷1/2G(d+1)(x) = δ(d+1)(x) (10)

Then, the action for a scalar theory in the dimensionally reduced space leading to this

Green function is

S(d+1) =
1

2

∫
dd+1xφ✷1/2φ (11)

In contrast, had we followed the habitual procedure consisting in dropping k2
D in eq.(4),

we would had arrived to the Green function for the operator ✷ in d + 1 dimensions and

the action would correspond to the usual one, given by eq.(2) in the reduced space.

Let us end this discussion by analysing a (3 + 1) case which, as mentionned above, is

relevant for example in the study of electrons compelled to move in a plane. The retarded

Green function for the (3 + 1) dimensional classical system can be obtained from the

general formula (5) as explained in ref.[8]

G(3+1)(t, R) =
1

4πR
δ(t− R) (12)

where

R2 = x2
1 + x2

2 + x2
3 (13)

Its Fourier transform is

G̃(3+1) =
1

k2
0 −K2

(14)
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where

K2 = k2
1 + k2

2 + k2
3 (15)

If, following our prescription, we drop in eq.(12) the x3 coordinate, we still have for the

wave equation Green function in the reduced (2 + 1) space-time

G(2+1) =
1

4πr
δ(t− r) (16)

where

r2 = x2
1 + x2

2 (17)

One can easily see that G(2+1) satisfies

✷1/2G(2+1)(x) = δ(3)(x) (18)

Hence, there are two ways of doing dimensional reduction. The usual one, looked upon

from the point of view of Green functions, is the one which drops the extra momentum

space coordinate. The one we propose in the present work consists in dropping the extra

spacial coordinate in the Green function and, from it, infer the resulting dimensionally

reduced Lagrangian. This last prescription seems to be more physical in situations as

that described for planar electrons which are suppose to be subject to (3+1) interactions

even when they are compelled to move in the plane.

It is important to stress that, independently of the number of dimensions, an action

with the operator ✷1/2 is always obtained if one starts from action (2) when one applies

the dimensional reduction prescription advocated here. In summary, when one passes

from D to D − 1 = d spacial dimensions, the action changes as follows

1

2

∫
dD+1xφ✷φ

D→d−→ 1

2

∫
dd+1xφ✷1/2φ (19)

Fermions

Eq.(19) gives the rule for the change in the scalar field action under our dimensional

reduction prescription. The case of fermions can be treated analogously. As an example

we will describe here reduction from (2 + 1) to (1 + 1) dimensional space-times and then

analyse how bosonization works for the reduced two-dimensional fermionic theory.

We start from (two-component) free Dirac fermions in Euclidean 3 dimensional space-

time and take for the Dirac matrices γ0 = σ1, γ1 = σ2 and γ2 = σ3 with σa the Pauli
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matrices. To obtain the dimensionally reduced fermion action, we consider the fermion

Green function,

G(3)(X) = −
∫

d3K

(2π)3
exp(iKX)

�K
K2

(20)

We use X (in general capital letters) for variables in 3 dimensional space time (X =

(X0, X1, X2)). If we make X2 = 0 in (20) and integrate out over K2 we obtain

G(2)(x) ≡ G(3)(X)|X2=0 = − 1

4π

∫
d2k

(2π)2
exp(ikx)

�k
k

(21)

One can easily see that the resulting Green function G(2)(x) in the reduced two-dimensional

space satisfies
i�∂

(−✷)1/2
G(2)(x, x′) =

1

4π
δ(2)(x− x′) (22)

From this result we can infer the corresponding two-dimensional fermionic action

S
(2)
fermion =

∫
d2xψ̄

i�∂
(−✷)1/2

ψ (23)

As in the scalar case, we see that our dimensional reduction prescription reduces to change

the operator A appearing in the original Lagrangian to A/(−✷)1/2. In the fermionic

case we have arrived to a non-local expression where the Dirac operator i � ∂ appears

convolutionned with the Green function ((−✷)−1/2)xy.

We shall now investigate how bosonization works when the fermionic action is given

by eq.(23). To this end, we consider the two-dimensional partition function

ZF =

∫
Dψ̄Dψ exp

(
−

∫
ψ̄

i�∂
(−✷)1/2

ψd2x

)
(24)

and follow the path-integral bosonization approach described in [9]. This approach starts

by performing the change of variables

ψ → exp (iθ(x))ψ (25)

ψ̄ → ψ̄ exp (−iθ(x)) (26)

with θ a real function. After this change, the partition function reads

ZF =

∫
Dψ̄Dψ exp−

∫
ψ̄

(
i�∂

(−✷)1/2
+ i

i�∂
(−✷)1/2

θ

)
ψd2x (27)

Being ZF θ-independent, we can integrate out over θ both sides in eq.(27), this amounting

to a trivial change in the normalization of the path-integral

ZF = N
∫

Dψ̄DψDθ exp−
∫

ψ̄

(
i�∂

✷1/2
+ �∂α

)
ψd2x (28)
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with

α(x) ≡ −(−✷)−1/2θ = −
∫

d2y
(
(−✷)−1/2

)
xy
θ(y) (29)

It is evident that ∂µα in (28) can be thougth as a flat connection and hence it can be

replaced by a “true” gauge field provided a constraint is introduced to assure its flatness.

Hence, we can replace the θ integration by an integration over a flat connection bµ by

writing

ZF = N
∫

Dψ̄DψDbµδ(εµνfµν) exp−
∫

ψ̄

(
i�∂

(−✷)1/2
+ �b

)
ψd2x (30)

where

fµν = ∂µbν − ∂νbµ (31)

Here µ = 0, 1 labels components in the reduced space-time. Now, performing the fermionic

path integral, one has

ZF =

∫
Dbµδ(εµνfµν)det

(
i�∂

(−✷)1/2
+ �b

)
(32)

One can compute the two-dimensional fermionic determinant in (32) as a Fujikawa ja-

cobian following the method described for the Schwinger model determinant in ref.[10].

The answer is

log det

(
i�∂

(−✷)1/2
− �b

)
= − 1

2π

∫
d2xbµ

(
(−✷)−1/2δµν − ∂µ(−✷)−3/2∂ν

)
bν (33)

This, together with the representation

δ[εµνfµν ] =

∫
Dφ exp(− 1√

π

∫
d2xφεµνfµν) (34)

leads, after a trivial gaussian integration over bµ to the result:

ZF =

∫
Dφ exp

(
− 1

2π

∫
d2xφ(−✷)1/2φ

)
(35)

Hence, as one should expect, the two-dimensional fermion action (23), obtained within

our dimensional reduction prescription, bosonizes to the two-dimensional scalar action

(eq.(11)), precisely the one we obtained when applying the prescription to scalar fields.

Concerning bosonization rules for fermion currents, let us note that the addition of a

fermion source sµ in ZF amounts to the inclussion of this source in the fermion determinant

ZF [s] =

∫
Dbµdet

(
i�∂

(−✷)1/2
+ �b+ /s

)
δ[εµνfµν ]. (36)
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Now, a trivial shift b + s → b in the integration variable b puts the source dependence

into the constraint

ZF [s] =

∫
Dbµdet(

i�∂
(−✷)1/2

+ �b)δ[εµν(fµν − 2∂µsν)] (37)

so that, instead of (35) one ends with

ZF [s] =

∫
Dφ exp(−1

2

∫
d2x(φ(−✷)1/2φ+

2√
π
sµεµν∂νφ)). (38)

By simple differentiation with respect to the source one infers from this expression the

bosonization recipe for jµ

ψ̄γµψ → (1/
√
π)εµν∂νφ (39)

which coincides with the usual one [11] except for the fact that the partition function

with which one has to work in the scalar theory is given by eq.(35).

Another interesting issue where our alternative dimensional prescription can be inves-

tigated concerns supersymmetric models. The simplest supersymmetric action that one

can write in 3-dimensional space is

S(3) =

∫
d3X(φ∗✷φ− ψ̄i�∂ψ) . (40)

Here φ is a complex scalar and ψ a two component Dirac fermion. Action (40) is invariant

under the supersymmetry transformation

δφ = ε̄ψ (41)

δψ = (i�∂φ)ε (42)

Here ε is the real parameter associated with the supersymmetry transformation.

Using our dimensional reduction prescription one ends with a two dimensional action

of the form

S(2) =

∫
d2xφ✷1/2φ−

∫
d2xψ̄

i�∂
✷1/2

ψ (43)

One can prove that this action is invariant under the supersymmetry transformations (41)-

(42) now interpreted in two space-time dimensions. Hence, as in the case of bosonization,

we see that our dimensional reduction prescription can be consistently applied in the case

of supersymmetric models.

In summary, we have presented an alternative way for dimensional reduction which,

looked upon from the point of view of Green functions, implies to be attached to the
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form that they take in configuration space and just drop extra coordinates. From the

resulting reduced Green function one can infer the form that the Lagrangian takes in the

dimensionally reduced space-time. This can be done in arbitrary number of dimensions.

For the scalar theory, the answer is given in eq.(11). Concerning fermions, we have

discused the (2 + 1) → (1 + 1) case (eq.(23) giving the reduced action) but more general

cases can be envisaged. Of course, one has to take into account the appropriate number of

spinor components in different number of space-time dimensions but this can be handled

in the same way one does within the habitual dimensional reduction approach.

A comment is in order concerning the nonlocality arising from the ✷−1/2 kernel ap-

pearing in the dimensionally reduced Lagrangians. As shown in [7]-[8], [12], by choosing

the appropriate retarded or advanced prescriptions causality is in fact respected since the

kernel ✷−1/2 has support in the light-cone surface.

Our coments on the (3 + 1) → (2 + 1) case in connection with electrons compelled

to move in the plane shows that in certain situations our prescription seems to be more

physical than the usual one in the sense that it preserves the form of the interaction;

the resulting reduced Lagrangian can be thought to give an effective description of this

interaction. This is precisely the approach undertaken by Marino in ref.[3] in his study of

QED for particles on a plane. In this work, the relation between the resulting effective

gauge theory and the strictly (2 + 1) Chern-Simons theory usually employed to describe

fractional statistics is explored and the potential applications in condensed matter physics

are discussed.

We have studied in some detail bosonization of free fermions in the reduced (1 + 1)

theory showing that bosonization recipe can be derived and are much the same as for

the usual Dirac Lagrangian. This subject, as well as the issue of bosonization in (2 + 1)

space-time deserve a more thorough analysis. We hope to report on this aspects in a

future work.
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