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Abstract

Several examples of classical solutions of ✷, ✷✷ and ✷✷✷ with multiple times are

discussed in 4,6 and 8 dimensions.

It is shown how to quantize the theory and also that all multiple time quantum solu-

tions are contained in the euclidean one plus the appropriate analytical continuation.

Key-words: Wave equations; Iterated D’Alembertians; Classical field theory; Quantum

field theory.
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I Introduction

Multidimensionality is becoming fashion. But most of the interest goes to multidimen-

sional space coordinates with only one time. This revewed interest is due essentially to

supersymmetric theories but it has always been present in mathematical minded physicists

(see refs. [1], [2], [3], [4]).

There are no compelling reasons why not to consider extra time dimensions, a subject

which has attracted the attention of mathematicians see ref. [5].

In this note, we intend so discuss solutions of the homogeneous wave equations (outside

the origin) in spaces with p spaces and q times and shall use the notation (p+ q) to label

these spaces, (p + q) being the total dimensionality.

In ref. [4] we discussed how to generate solutions of the homogeneous eqs. in (p + 2)

or (q + 2) starting from solutions in (p + q) and differentiating (resp) with respect to r2

and t2.

In refs. [3], [6] and [7] we discussed real powers of D’Alembertian and its relations

with Huyghens’ principle in even and odd dimensions. We also discussed its application

to gravitational theories [8].

But always with only one time. It seems of interest to gain some experience by finding

some specific solutions of D’Alembertians or power of D’Alembertians in multiple time

dimensions.

Compatibility of high energy experimental results with multiple times were discussed

in ref. [9].

We shall use the following notation

✷ =
∂2

∂t21
+

∂2

∂t22
+ · · ·+ ∂2

∂t2q
− ∂2

∂x2
1

− ∂2

∂x2
2

− · · · ∂2

∂x2
p

(1)

for solutions which depend only on

t =
√

t21 + t22 + · · ·+ t2q and r =
√

x2
1 + · · ·+ x2

p (2)

We shall use

✷ =

(
∂2

∂t2
+

(q − 1)

t

∂

∂t

)
−

(
∂2

∂r2
+

(p − 1)

r

∂

∂r

)
(3)

It is also attractive the idea of discussing the quantization of multiple time theories.

The propagator is defined by the Green function and it will be shown that all quantum

theories are contained in the euclidean theory of (p + q) dimensions.
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In §II we discuss solutions in four dimensions with two times, in six dimensions with

two and three times for ✷ and ✷✷, in eight dimensions, ✷, ✷✷ and ✷✷✷ for two, three

and four times.

In §III a discussion is given on how to quantize the theory, and it is shown that with

the appropriate definition of the propagators, all quantum theories with multiple times

are contained in the euclidean one.

All discussions, except at the end are given outside the origin (o.o).

II Higher Dimensions

Dimension 4

2 + 2.

✷ =
∂2

∂t2
+

2

t
+

∂

∂t
− ∂2

∂r2
− 2

r

∂

∂r

and it can easily be verified that

ϕ =
δ(t − r)

r
with t =

√
t21 + t22 (4)

is a solution of ✷ϕ = 0 (o.o).

In verifying this solution, one has to use the property of the δ functions

xδ(x) = 0 xδ′(x) + δ(x) = 0 (5)

So, in (4) we cannot replace the δ function by an arbitrary function of (t − r) as can

be done in 3 + 1. Solution (4) has no deformation. Starting from this solution in 2 + 2

we obtain, by differentiating with respect to r2(t2), solutions in 4 + 2 (2 + 4). We shall

come back to this.

We see that causality can be violated with respect to any t1, or t2 but not with respect

to the modulus.

(4) is not the Green (classical) function of ✷.

3 + 1. It is already well known.

The signal propagates without deformation.

1 + 3

ϕ =
δ(t − r)

r
(6)
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t =
√

t21 + t22 + t33 (7)

✷ϕ = 0(o.o) (8)

valid only for δ functions as use is made of xδ(x) = 0 · · ·, etc.

Dimension 6

5+1 In six dimensions it is interesting to study not only the ✷ but also ✷✷, as the Green

function of the ✷✷ here is equal to δ(t−r)
r

which is the Green function in 4 dimensions of

✷.

It is also true that

✷✷
f(t − r)

r
= 0 (9)

and we observe here an interesting fact, that for the simple ✷ there is distortion, for

solutions depending only on r and t. This is not so for the ✷✷ (see refs. [1][2]). The

solution for the simple ✷ is

y =
f(t − r)

r3
+

f ′(t − r)

r2
(10)

and we see the distorsion when going from r << 1 to r >> 1.

3 + 3. Here we verify

✷✷
f(t − r)

r
= 0 f = arbitrary (11)

4 + 2

✷✷
δ(t − r)

r
= 0 (o.o) (12)

but use has been made of xδ(x) = 0 · · ·, so (12) is not true when replacing the δ by an

arbitrary f(t − r).

As we have already said, any solution of ✷ϕ = 0 in p, q will generate solutions in

(p + 2, q) and (p, q + 2) by simple differentiation. So, we have, starting from (4) that

y =
δ(t − r)

r3
+

δ′(t − r)

r2
t =

√
t21 + t22 (13)

is a solution of ✷y = 0 (o.o) but not the Green function.

2 + 4. Differentiating (4) with respect to t2 have a solution in 2 + 4.

✷
δ′(t − r)

tr
= 0 t =

√
t21 + · · ·+ t24 (14)
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(14) is not true for an arbitrary f(t − r).

3 + 3 For the same reasons, starting from eq. (6) we obtain (o.o)

✷
δ′(t − r)

tr
= 0 with t =

√
t21 + t22 + t23 (15)

this is true for an arbitrary function f(t − r). It will be shown below that in fact δ′(t−r)
tr

is the Green function in 3 + 3 .

Dimension 8

7 + 1 Here
δ(t − r)

r
(16)

is the Green function of ✷✷✷ (see ref. 5). It is also true

✷✷✷
f(t − r)

r
= 0 (o.o)

6 + 2 Here, also

✷✷✷
δ(t − r)

r
= 0 (o.o) (17)

but now t =
√

t21 + t22.

In order to prove (17) in 6 + 2 use has to be made of the property xδ(x) = 0 · · · etc.
So, it is not valid if we change δ(t − r) by an arbitrary functions f(t − r).
δ(t−r)

r
is not the Green function in 6 + 2.

4 + 4 Again, it can easily be proved.

✷✷✷
δ(t − r)

r
= 0 (o.o) t =

√
t21 + · · ·+ t24 (18)

Here specific use has to be made of the properties of the δ function, so it is not true

for an arbitrary function f(t − r).

It is to be observed that Green functions of ✷ and ✷✷ can be obtained by differenti-

ating with respect to r2 and t2.

Differentiating (13) we find that

y =
3δ′(t − r)

r4
+

3δ(t − r)

r5
+

δ”(t − r)

r3
(19)

is the Green function up to a constant in 7 + 1 (for proof see below) and

y =
δ′(t − r)

tr
+

δ”(t − r)

r2t
(20)
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satisfies

✷y = 0 (o.o) in3 + 5witht =
√

t21 + t22 + t23. (21)

It is the Green function in this space.

And so on · · ·

III Quantum Theory

To make it simple, we consider an ordinary D’Alembertian theory

L = ϕ✷ϕ (22)

we consider first an euclidean theory. The Green function of the laplacian in 4 dimensions

is

∆4G = δ4(x) (23)

G =
1

t2 + r2
(24)

which is the propagator of the theory.

In order to obtain the Feynman propagator (see ref. [10] we make t′ = at a > 0 which

defines an analytic distribution in a. We perform the analytic continuation to a = i + ε,

so (24) goes over to

G =
1

r2 − t2 + iε
(25)

and the analogous with the Fourier transform.

Observe that this is not the Wick rotation t = iτ which would lead to (iτ + ε)2 =

−τ 2 + iετ and this is not the Feynman propagator but the positive Schwinger Green

function in momentum space.

This is exactly the procedure to be followed when we have multiple times.

t =
√

t21 + t22 + · · ·+ t2q (26)

G =
1

(t2 + r2)
n
2
−1

n = p + q. (27)

we do as before. t′i = ati a > 0 (the same a for every ti) and in the same way as before

we are led to:

G =
1

(r2 − t2 + iε)
n
2
−1

(28)



– 6 – CBPF-NF-055/95

Formula (26) and (27) can be generalized for the Lagrangian

L = ϕ✷λϕ λ <
n

2
λ = integer (29)

when the generalizations of (27) and (28) will be:

G =
1

(t2 + r2)
n
2
−λ

(27′)

and the quantum propagator would be:

G =
1

(r2 − t2 + iε)
n
2
−λ

. (28′)

See ref. [5] p. 275.

For k ≥ n
2
see ref. [5] p. 276.

This is the quantum propagator for a massless particle. For a massive one, the proce-

dure follows exactly parallel with the result that

(✷ + m2)λGk
m = δ (30)

leads to

Gk
m � K n

2
− λ(m

√
t2 − r2 + iε)

{m(t2 − r2 + io)1/2}n
2
−λ

(31)

Using (28’) and (31) all the calculations can be performed.

IV Discussion

The different solutions discussed in the second paragraph show that the modulus of the

vector time, with components t1t2t3 plays the role of a real time. Causality can be

violated with respect to an individual time ti but not with respect to the modulus t, as

made explicit by the δ(t − r) in eq. (4).

We see also that the properties of solutions of ✷ϕ = 0 (or a δ) in four dimensions are

analogous to those of ✷✷ϕ in six or to ✷✷✷ϕ in eight. For instance, δ(t−r)
r

is a solution

of ✷ϕ = 0 in 2+ 2; of ✷✷ϕ = 0 in 4+ 2 and of ✷✷✷ϕ = 0 in 6+ 2 and in the three cases

the δ(t − r) cannot be changed to an arbitrary function f(t − r).

In all these cases we discussed-except when specifically mentioned-solutions of equa-

tions outside the origin (o.o) of space time where a δ function type singularity may be
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present. The specific appearance of a δn(x) in the second member will be covered by the

following theorem.

If Gλ(p, q; rt) is the Green function of

✷λGλ(p, q; rt = δ) (32)

then 1
r

d
dr

Gλ(p, q; rt) will be up to a constant the Green function Gλ(p + 2, q; rt)

(resp
1

t

∂

∂t
=⇒ Gλ(p, q + 2; rt) k <

n

2

In fact going over to the Fourier transform

Gλ(p, q; rt) = (2π)ν
∫

dqk0 dpk
k

(k2
0 − k2)λ

eikixie−ikojtj (33)

Using now Bochner’s theorem see ref. [11], (32) can be written

Gλ(p, q; rt) =

∫ ∞

0

dk0

∫ ∞

0

dk
k

q
2
0 k

p
2

(k1
0 − k2)λ

J q
2
−1(tk0)

t
q
2
−1

J p
2
−1(rk)

r
p
2
−1

(34)

Now we compute 1
r

∂Gλ
∂r

and use the property of the Bessels functions

(
1

u

d

du

)m

u−νJν(u) = (−1)mu−ν−mJν+m(u) (35)

for m = 1; and we get

1

r

∂Gλ(p, q; r, t)

∂r
=

∫ ∫ ∞

0

dk0dk

(k2
0 − k2)λ

k
q
2
0 k

p+2
2

J p
2
(kr)

(kr)
p
2

J q
2
−1(k0t)

t
q
2
−1

(36)

From (36) and (33) we see that

1

r

dG
(p,q,rt)
λ

dr
= −Gλ(p + 2, q; rt) (37)

and using (35) for m integer, (37) can be generalized to

(
1

r

∂

∂r

)m

G(p, q; rt) = (−1)mGλ(p + 2m, q; rt) (38)

Of course, in the same way(
1

t

∂

∂t

)m

Gλ(p, q; r, t) = Gλ(p, q + 2m; rt)(−1)m (39)

So, starting from the wave eq. in 3 + 1 we can generate the whole series of Green

functions of 3 + 3; 5 + 1; 3 + 5 · · · etc. And the same for iterated D’Alembertians.
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In this way, from (10) with f = δ(t − r) we see that is the Green function of ✷ in

5 + 1. The same with (15) where

y =
δ′(t − r)

tr
is the Green function (40)

in 3 + 3 and form it we generate GF in higher time and space dimensions.

A completely similar discussion can be made for iterated D’Alembertians.
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