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Abstract

We study the spin glass problem within the Migdal Kadanoff
approximation of the hyper cubic lattices. Using various technics,
both analytical and numerical, we perform the real space remorma
lisation of the problem. We find that a Spin Glass transition oc
curs in 3 dimensions while it does not occur in twa dimensions.
The specific heat critical exponent for the transitiom is found

to be large and negative in agreement with the experimental re-
sults,
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1. Intr 1

The controversy about the existence or nonexistence of a spin-glass
(SG) phase in three dimensions has presented, recently, new evidences in
favour of the existence of a transition 123456, These evidences have been
abtained by several methods e.g. numerical simulations 45, properties of a
T= o fixed point 2356 and others 1.2,

However, powerfull methods as renormalisation group or Monte-
Carlo simulations lead, in the last few years, to contradictory results
78.9,10,11,12,13 | In the Monte-Carlo simulation several problems occur,
related to the long relaxation time of the metastable states when the
temperature is lowered, which lead almost always to inconclusive results
12,13, In the particular case of real space renormalisation group (RSRG), the
last results give, systernatically, a lower critical dimension greater than three
for the existence of a spin-glass phase 9.10.11_ In general, the RSRG uses the
Edwards-Anderson model 14,

H= -ZJijSiSj Si=+1, 1.1
<

where the exchange energy Jij is a quenched random variable whose
probability law is in the form of two 7 or three 89,10,11, Dirac’s deltas . To
simulate the cubic (or hypercubic) lattice, the Migdal - Kadanoff
approximation 15.16 has been largely used.  Within this approximation we
obtain renormalisations that are equivalent to the formulation of the same
model on an adequate hierarchical lattice 17.18, The question is- that,
generally, the probability law forJ ij changes after renormalisation .

Here, two approches are possible :

a) to choose a simple probability distribution {usualy a sum of Dirac's
deltas) and to do the approximation that the final distribution is of the same
shape as the initial one 7.9.10.11 ; then to check how the first moments of the
distribution change in the renormalisation process . The advantage of this
method is that we can obtain analytical expressions for the renormalised
parameters ; the disavantage is that we cannot control the errors caused by
this kind of approximation. -

Practically all RSRG work on spin-glass at low dimensionalitiy use this
scheme .
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b) to choose an initial probability distribution and to follow it in the
renormalization process .This approach has been used in conductance
problems 1920, The advantage of the method is that we do not limit the
distributions space (as in the first case) however, analytical results are not
generally available and the distribution must be followed by numerical
methods.

This second scheme has been used to study the SG transition only in
high?2 or infinite2? dimensiocnality.

Ln this paper we shall use and unify hath approaches : Tfirst we shall
tormulate an analytical RSRG (for the nearest neighbour Edwards-Anderson
madel in the Migdal-Kadanoff approximation for hypercubic lattices) with 4
fixed probability distribution. Then, we shall make with the same model, and
same laitice - a kind of Monte-Carlo renormalisation group using several
initial probability distributions in order to obtain their numerical evolutions.

The phase diagram of both approaches exhibits the spin-glass
transition in three dimensions-but not in two- in agreement with the last
results obtained by others methods 12.3.4.5.6,

Finally, we want to stress that the nature of the spin-glass phase in these
models (characterized by short range interactions - nearest neighbours only)
is rather different from the mean field one (long range
interactions)25.26,27,28,29 = E.Gardner 2? has shown, in a model with short
range interactions in infinite dimension (Migdal-Kadanoff approximation
for an infinite dimensional hypercubic lattice), that the behaviour expected
for the mean field spin-glass ( replica symmetry breaking, Almeida-Thouless
line, ultrametric distance amoung the minima of the energy, ele) are not
reproduced. As our model presents short range interaction and as we work
with a Mipdal-Kadanoff approximation of finite hypercubic lattices (square
and cubic), the same conclusions are reached and we do not have mean ficld-
like behaviour in the spin-glass phase.

This paper is divided in the following sections :

In section II, we formulate the model, show some interesting relations
and derive some exact bounds. We use a even gaussian distribution to obtain
numerical values for upper and lower bounds on the critical temperature of
the spin-glass phase.

In section I we define our RSRG in assuming that a determined
distribution is form-invariant during the renormalisation (only their
moments are changed). For each chosen distribution we can determine the

SG critical temperature (Tc¢) and the specific heat critical exponent ( &t). This
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RSRG can be defined for all dimensions d (for d=2 the critical temperature
is zero) .

We also define a continuous version of RSRG in dimension d .

In section 1V our version of the MCRG ( Monte Carlo RG) is
constructed and the trajetory of some distributions are shown . We shali
show that all distributions evolve towards some defined trajetory previously
defined in section III.

The phase diagram exhibits a phase transition in three dimensions.

II. Model and some properties

We consider an Edwards-Anderson type!4 Hamiltonian (see eg. 1.1),
on a hierarchical lattice (HL) with N branches, each of them being compound
of b bonds in series (figure 1) .

On each site of the HL there is an Ising spin and each bond represents
the nearest neighbour interaction .

The Migdal-Kadanoff approximation to hypercubic lattices consists
to put N=bd-1 (d being the dimension of hypercubic lattice).

We numerate each bond by two indices : the latin one indicate the
branches and the greek one numerate the bonds in serie inside each branch.

The exchange energy Kijo (i=1,...N,a=1,...b; Kjo = Jio/ksT) , is
a quenched random variable whose probability distribution P(Kjg) is even .
The renormalized probability distribution is given by :

N b N b
PdK):f Il ITdKieP(Kic) P| K- Xtanh-1( [JtanhKjg) | (2.1)
i=1 g=1 =1 p=1

Kia € ( —o0,+ve )) v i’CI’.

where & is a Dirac's delta . This renormalisation can be decomposed into
two steps :

a)The first one corresponding to the serie array of bonds inside a
branch i is given by :

b b
Py(Ki) = f [IdKiaP(Kia) P| Ki-tanh-! [JtanhKig ) (2.2a)
o=1 B=1
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b)The second one corresponding to the collection of N parallel
branches is given by :

N N
PHK) = f(HdKiP(Ki) }(}( EK[) (2.2b)
i=1 1=1

The second step specified by eq. (2.2b) presents a gaussian as non-
trivial form-invariant distribution (since it is a convolution equation). By this
we mean that if the initial distribution in equation (2.2b) is an even gaussian

{with vanance o) then the final distribution , Pp will be also an even gaussian
(with variance VNo ). |

The involution given by eg. (2.2a) presents a non-trivial form-invariant
distribution : .

[6(K-KoH8(K+Ko)]
2 L]

P(K)=

Ky being a constant .

By trivial distributions we mean the Dirac’s delta centred at K= 0

(infinite temperature) or at K= t oo (zero temperature). It is clear that if we

start with a (even) gaussian distribution, the serie transformation leads to a
different distribution. After the parallel transformation we approach again a
gaussian distribution (in the sense that their moments obey relations among
themselves that are almost the same as in the gaussian case ). The higher the
dimension, the more the form-invariant distribution approaches the gaussian
one?2, In the limiting case when the dimension is going to infinity, the form-
invariant distribution of the problem is gaussian23,

Remark : We can consider the central limit theorem expressing the
fact that the gaussian is a form-invariant distribution for a special type of
hierarchical lattice shown in figure 2 24, All other types of hierarchical
lattices shown here have also their form-invariant distribution (that are not
gaussians).

This suggests that we have a kind of central limit theorem for each HL,
each one giving a different distribution, the gaussian case being one among
others (but whithout doubt the more interesting).
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The transformation given by equation (2a) has some interesting
properties, which can be written as :

<(hK)2n>p = (<(hK?2>p)b , Vne Z  (23)
<InlthK>p, = b<InlthKI>p, 2.4),

valid for any distributions P . Ps is obtained from P by eq. (2.2a), and <...>p
(<...>ps) is the average obtained with the distribution P (Pg).

I1I._ Bounds
a) Inequalities

We shall first derive some inequalities for b=2. The extension for all b
is straightforward.
We have, for each bond, a value of the exchange energy Kig. If two

bonds are in serie we call Km (Km) the value of the exchange energy with
lowest (greatest) absolute value. The resultant exchange energy of the two
bonds in serie (K;) satisfies the relation :

tanhKg = tanhKm.tanhKpm 3.1

Our basic inequality follows from the remark that 0 <ltanhxl< 1 which leads
to :

tanh2lK ! £ tanhlKgl < tanhlKpl  (3.2)
The equation (3-2) then gives :

In[cosh(2IK mi)]
2

SIKs £ IKml  (3.3)

Now, the probability distribution for the minimum value of two random
variables of distribution P is given by :

Pm(Km) = J‘ IP(KI)P(K.'Z)S(K—Min(KI,KZ])dKldK2
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and can be calculated in each particular case, either analytically, or
numerically .

Remark : Collet and Eckmann22 have an inequality as (3.3) but they
use |Kml-In(2)/2 instead of In[ch(ZIKn)i/2 . In fact they use the first two

terms of the low temperature (1K pyl--->o0) expansion for In{ch(2IKm)]/2 .

Using the property that the square of In[ch(2IKml)]/2 is a convex
function of sz. we obtain, taking the mean square of each member of
equation (3.3), our main inequality

2
meﬁl;(—zoﬂﬂs oi<od (34)

where 0% =< K32'>Ps and 0%, = < K2 >p .

Let us remark that when we use dimensionless definition of the
temperature (using kp=1) and <J2>=1 to fix the energy scale, one has : g=1/T
- This will be used for the rest of the paper .

b) Gaussian bounds

It is clear that the zero-centered gaussian distribution (GD) is certainly
a good approximative distribution to Py and this is 5o because the paralell
transformation (2.2b),when repeted, brings almost all distributions to the
gaussian one (central limit theorem).

To verify how the series transformation (2.2a) leads Pg away from a
GD if the initial distribution (P) is a GD we take advantage of the fact that

when &g is not too small (large T) Pg and Py are very close together.(up to

exponentialy small terms). Now we calculate the fourth over second moment
ratio . We obtain (numericaly) :

<Ki>p,,
m =1.13 (3.5a)

This moment's ratio is 1 for a GD
Moroever,we have numericaly estimated this quantity for the exact
distribution Py, constructed with the technics of section V . We have found :
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m =105 +.1 (3.5b)

This shows that the series transformation {for b=2) does not bring Pg far
away from a GD when the initial one is itself a GD. Clearly the final
distribution Pr is even more close to a GD that Ps , justifying widely the
utilisation of a GD as a (good) approximation of the true form-invariant
distribution.

We will see another justification of this approximation with the
Monte-Carlo results, in section V.

Within this approximation (i.e. that P, and Py are GD but without any

approximation for Pg.), we can obtain bounds for the variance of Py { o). If
we multily each member of equation (3.4) by N (in this section b=2 thus
N=2d-1) we get :

Nlnzlch(ZOm)]

3 SNog2<Now2 (3.6

This, because :
N& = of (central limit) (3.7)

where ¢ (05, Gr) is the variance of the gaussian distribution P (g, ).
Now, using, :
62, = 0370 (numerical), (3.8)

the equation (3.6) can be written as :

2

2

nrichZom)] [Ch(io“‘)]s(ﬁ] SOIIN  (39)
40 o

The result is shown in figure 3 in terms of T=1/0 and Tr=1/0¢.

For N=4 (d=3) we can see that if T<T* then (o;/0) >1 exhibiting the
divergence of the variance (Spin glass phase). The critical temperature must
satisfy Tz T#.
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For N=2 (o:/a) < 1 for all temperatures implying that ¢ -->0
indicating the paramagnetic phase.

We have, then, a spin-glass phase in three dimensions but not in two,
the lower critical dimension being dc ~ 2.3 (N ~ 2.5).

Of course this numerical value depends of our GD approximation.

Ren lisation-gr
a) Discrete renormalisation group

In this section we shall fix the shape of the probability distribution.
However,insteed of a sum of Dirac’s deltas we shall assume, in view of
discussion in section HLb, that P,Ps and Pr are centred gaussian distributions,

with recpective variances o, oy and or . Within this approximation equation
(2.3) tumns out to be (with n=1) :

b
<tanh2K>g(0.s) = <tanh2K>g(o) , (4.1)

where g(c) is a gaussian distribution of width o =1/T.

Now,if we define the funtion f(T) as :
+o00

f(T)=<tanh?K>g ;) = T;—'E fe‘xzfztanhz(%)dx 4.2)

-~ 00

The equation (4.1) can be written as :

f(Ts) =10 (T) 4.3)

As, from equation (3.7), os= o ,we have :

yN
Ts= VN Tr (4.4)

The equations (4.3) and (4.4) give us a renormalisation equation for the
temperature :

f(\NTr) =D 4.5)
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Remark : We have a very simple approximation for the function f(T) as
[

14T244 / =T

which gives the same high and low temperature asymptotic behaviour than

f(T), namely :
1~ ’ET if T---->0 (4.7a)

1
T2

4.6)

f(T)=
if T--—->e0 (4.7b)

In figure 4 we compare the numerical forms of f(T) and fap (T).

The equations (4.5) and (4.7) give us the asymptotic behaviour of Tr
as a function of T:

b .
J_N-T i T-->0 (4.8a)
Tr -~
l b Toe>e (4,8b)
Nish

In figure 5 we show, schematically, the renormalised temperature TR
as a function of T for d =3 , b=2 (N=4) and d=2 , b=2 (N=2).

For d=3 we obtain a critical temperature T ~ 0.95. Above this value :
Ty -->e0( 6, -->0), and below it, Ty -->0 (G--> o).

This shows the existence of a spin-glass phase transition . The specific
heat critical exponent o (C ~ IT-Tcl-®) is calculated and we find @ ~ -10,
showing that there is no divergence in the specific heat at T = Tg, in
accordance with the experimental results. For d=2, we do not obtain a SG

phase, Tr--->00 (Gr--->0) for all T#0 (paramagnetic phase).
The lower critical dimension is d Lcp ~ 2.6 (for the spin glass phase).

Remark : We also observe that in the limit d--> oo (for b fixed) then
N-->0a and Te ~yN which is precisely the mean field spin glass 23 result.
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b) Continuous renormalisation group.

We can analyse equation (4.5) when b-->1 (it is intuitive that if the
number of series elements tends to one the gaussian approximation is better).

If we write b=1+¢, { € -->0) then :

N ~1+¢g{d-1) (4.9a)

BT ~f(M(1+elnf(T) {4.9b)

and equation (4.5) can be writen as :

.1 fTn-fT) 3T d-l.. £(D)afT)
EDOFT ¢ Sob-" 2 PTFm

. @4.10)

where f (T) means g%

If we make %—rg = (} (scale invariance) we obtain the critical

temperature Te(d).

The derivative of the last term of equation (4.10) with respect to the
temperature, evaluated at T = T¢ (d), gives us the specific heat critical
exponent . Ford=3, we have :

Te~1 (4.11a)

and
o~ -6 (4.11b)

For d=2 we find Tc =0,

Y Numerical results

In order to test numericaly the preceeding results we have performed a
randemized renormalisation group :
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We consider a starting sample of 84 values of K : K(?)* whose values

are calculated according to a given law of probability P(K), which depends
upon the temperature and on a possible parameter (see 3d-model) ; then,
regrouping 8 by 8 the initial values of this sample, we calculate the 83
renormalised values of the coupling, K(ig‘-), and so on, and so on until we

reach the last value K(?),.

This operation is repeated 100 times in order to obtain a statistically
significant result for the last step of the renormalisation. Moroever,the
stability of the results have been tested with a high statistical sample (1000).

At each step of the renormalisation we compute the effective value of

the temperature, T = ¥1/<K2>, and the mean value of the square hyperbolic
tangent of the coupling : t2= <tanh?K>. The result is ploted on a [t2-T] graph
(figs. 6) where the f function has been drawn together with the transition
line which seems to common to all models.

We have tried 5 different models, three of them had a
continous probability distribution, and two were of a discrete type :

a-model : The starting probability is continous and constant over a
certain range of K :

P(K) = N 8(IKgl-IKl) , with N = 1/2Kg, Ko = ¥3/Tg, (5.2
0 is the standart step function.

b-model! : The starting probability distribution is continous
and exponential :

P(K) = Nexp(KI/Kg) with N=Kg/2 , Ko = 1/A2Tg, (5.1)
To is the initial temperature of the model .
g-model : The starting probability is gaussian :

T
P(K) = \,g—n exp(-K2T22)  (53)

25-model : The starting probability is now discrete and is the proper
vector of the serie operation (see section IT) :
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H(K-Kp)+O0(K+Kg)
2

P(K) = ,withKo=1/Tg, (5.4)

33-model : We add to the two deltas model a non zero
probability for K to be 0 : p (dilution probability)

S(K-Ko)+d(K+K
PUK) = pBCK) + (1:9) 250 i Ky == = 69

Notice that for this last model the probability distribution depends on
two parameters, which allows us to explorate a great part of the [t2-T] plane
with the starting point of the renormalisation (fig. 6-3d).

We have first checked that our results are not sensitive to small non
zero values of the mean value of the random variable <K> ; in fact, in this
case, <K> goes rapidly to zero with the renormalisation . An extended study
of the phase space [T,<K=>] will be published elsewere .

Now the results are shown in figures 6-a to 6-3d, and exhibit the
following trends :

-The limiting distribution (after 5 renormalisations) can not in general
be distinguished from the theoretical curve of section IV, which exhibit the
fact that the proper vector of the renormalisation group is very close to a
standard gaussian .

-Each starting model has its own transition temperature : ~.85 for the
g-model, ~.7 for the b-one, ~1 for the a-model and ~1.2 for the 28-model :

The transition temperature for the 35-model depends on the o parameter and
is 0 when one reach the percolation value : p = .68 (t2=.32) .

-The transition temperature for the two delta model is within the error
bars of the heavy numerical results of Ogielsky et al 5 which have used the
2d-model on a real three dimensional lattice . This suggests that the Migdal
Kadanoff approximation of the standart (3d) lattice is quite good in the spin-
glass case .

VI ncl
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We formulate a short range interaction Ising spin-glass on hierarchical
lattices (with N branches and b steps in each branch) and analyse the existence
of a spin-glass phase. The hierarchical lattices are chosen in order to give the
Migdal-Kadanoff approximation for hypercubic lattices when N=bd-1 .

We obtain some rigorous bounds for the variances of the final
(renormalized) probability distributions in terms of the initial ones. These
bounds allow us to show that the centered gaussian distribution for the
quenched random exchange energy is a good approximation (at least for b=2)
of the true form invariant probability distribution of the renormalisation
transformation.

With the gaussian distributions we can estimate the bounds for the
critical temperature Tc. In three dimensions we have 0.35 < Tc , which prove
without ambiguity, the existence of a spin-glass phase transition.

In two dimensions these bounds give Tc=0.

Using a property of the renormalisation transformation and the
gausssian approximation, we define a discret renormalisation group (RG) on
the temperature. This RG gives us the spin-glass phase at d = 3 ( Tc ~0.85)
but not in two dimensions. The specific heat critical exponent is  calculated

(o is negative) and the lower critical dimension is dg ~ 2.5.

A continuous version of this RG is performed which gives the same
qualitative results.

Finally we make a Monte-Carlo RG on hierarchical lattices. We chose
some distributions and follow their trajectory in a adequate space under the
MCRG transformation. We observe that almost all distributions tend to the
same invariant line in the [t2-T) space (the f function defined in IV).

In three dimensions there is a saadle-nede fixed point on this line (it
gives the critical temperature for the form-invariant distribution). Its stable
manifold gives us the critical surface separating the spin-glass phase from
the paramagnetic one. The unstable eigenvalue gives us the critical exponent
a. The trajectory of the gaussian distribution is practically on the invariant
line supporting the gaussian approximation.

Also, these results remain unchanged if we take a distribution with a
nonzero (small) mean value showing the stability of the fixed points.

In two dimensions there is no sadle node fixed point. There is no spin-
glass phase in this case.

Therefore, by differents methods (bounds, discret and continuous RG
and MCRG) we have consistently obtained the existence of a spin-glass phase
in three dimensions but not in two.
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FIGURES CAPTION

Figure 1: Schematic representation of an hypercubic latice with N parallel
links made of b bonds .

Figure 2 : The renormalisation process associated with the central limit
theorem .

Figure 3 : Upper and lower bounds of the 6r/c ratio as a function of the
temperature ; upper curves : 3 dimentional case, lower curves : 2 dimensions

Figure 4 : True and approximate function f(T)

Figure § : The renormalised temperature as a function of T ; upper curve
,d=2, lower curve d=3 .

Figures 6 :The numerical renormalisation process in the [t2-T] plane for
various models . The continuous line is the f function, the dasched line is the
transition line for all models .
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