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Abstract

The hamiltonian formulation of Jordan's theory of gravity is
presented by means of the Lanczos' potential. The consequences
of using this potential in gravity and in its interactions with

other fields is discussed.



1 INTRODUCTION

[1,2] made

At the end of the decade of 50 Jordan and collaborators
the very interesting remark that Einstein's theory of General Rela
tivity (GR}could exhibit a great formal analogy ‘with Maxwell's elec-
trodynamics. At that time such discovery appeared to be a happy
evidence that gravitational and electromagnetic fields could be
unified following the line proposed and started by A. Einstein.

For many reasons such alternative program of description of the
gravitational field remained almost completely abandoned during
the next decade. Then, at the end of the sixties and thanks to
the high status of the so called "gauge theories" the Jordan Pro
gram was revived. The main lines of research developped at the end

of the sixties and which continued to be examined afterwards fol=-:

low two directions: the fundamentalist and the pragmatic one.

The first one deals basically with the Jordan's theory either
as a candidate for a true gauge theory of gravity [Camenzind{3],

[6'7], Yang[8]] or as a modifi-

Carmeli[4], Fairchild[S], Novello
cation of Einstein's GR due to processes related to quantum fluctu
ations. The second one is nothing but the tentative (firstly sug
gested by S. Hawking[g]) to analyse the evolution of small pertur
bations of the metric of space-times. Such method which has been
used in many cosmological solutions (e.g. Friedmann, Kasner, Godel)
is particularly useful in those geometries which are conformally
flat in the umperturbed stage. In this case, we are not dealting with a
new alternative theoretical proposal of the equations of evolu-

tion of the gravitational field but instead, using the power of

the Jordan's formalism in the alternative investigation of the



perturbation metrics. This has been exhaustively reviewed re-

[10] through the examination of the modes

cently by Novello and Salim
of vibration of Friedmann Universes for almost generic kind of
perturbation. Thus, we limit our investigation here only to the-
first case. In section 2 we present Jordan's theory and its re
lation with Einstein's GR. Section 3 presents the Lanczos' po-
tential and its consequence on the Hamiltonian for the gravita
tional field in Jordan's formulation. In Section 4 we present
a new formulation of a general covariant theory of a
massive gravity. In Section 5 we introduce a new lagrangian for
the dynamics of an electron interacting with gravity using Lanczo's
potential and we compare this with the equation of an electron

in a Cartan geometry. We end with section 6 in which some con-

clusions and suggestions for future investigation are presented.

2 JORDAN'S THEORY OF GRAVITY

Bianchi identities, satisfied by Riemannian geometries can be

written in terms of Weyl conformal tensor Wu under the form

RIRY,

ST - 1 gulosl 1 ulo g6l (1)

2 12
in which ; means covariant derivative and the bracket [ , ] means
antisymmetrization f[uv]::fuv_fvu' Any theory, for instance

Einstein's GR, which requires an algebraic relation between

Rﬁv and a non-geometric tensor (say, the energy-momentum tensor

TUV) induces through equation (1) an equation of the type



Wby =9 (2)

It seens that Jordan and co-workers were the first who have con
sidered expressions (1) and (2) as the basis of a theory of gra
vity, which from now on will be called Jordan theory.

It is however clear that taken together, equations (1) and (2},
which can be interpreted as a set of metric equations, canmnot in
general be identified with GR.

The recognition of this fact has led many authors to propose
distinct alternative theories of gravity with different leitmotiv.
Among these we can quote those proposals made by Camenzind, Carmeli,
Fairchild, Novello, Yang and others. Some of these theories have
been previously criticized for different reasons. For instance,
Fairchild[s] argues that the main objection to Camenzind's Theo
ry 1is one's inability to put it into a variational form; in

another paper Pavelle[ll]

shows how to find unphysical solutions
of Yang's gravitational field equations. Although I do not in-
tend to give arguments to support any of these theories, we will
show, as a by product of our formalism, that both criticisms can
be overcome by the use of Lanczos potential approach and the a-
nalysis of initial value problem for the proposed extended e-
quations of gravity.

Coming back to the restricted point of view of GR one should
like to answer the question: under what conditions will equa-
tions (1) and (2) be equivalent to Einstein's theory? The answer
to this question was contained in the work of Lichnerowicz, in

the early sixties, which, after a thorough examination of the

Cauchy problem has shown that if we admit Einstein's equation
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to be valid in an space-like hypersurface 2, that is Ruv(z) =0
as initial conditions of Jordan's equations, then thisv system
is completely equivalent to GR. The generalization for the case
in which matter is present is straightforward. Thus, the use of

Einstein's equation under the conventional form
1
R = =T + = Tg (3)

or in Jordan's formalism (eq. 1,2) is just a matter of taste
and/or simplicity which should be dictated by the examination -
of the problem being investigated. The main formal advantage
of Jordan's theory rests upon the great formal similitude which
it has with Maxwell's electrodynamics. This allows us to under
take an investigation of its properties along lines very simi-
lar to this theory. With the proposal to exhibit more clearly such
resemblance and for later reference (to our calculations) we
présent here in a compact manner the representation of Jordan's
theory in the quasi-Maxwellian form as has been made by Truper
and others. This means that instead of dealing with expression
(2) we will project it in the rest space of an arbitrary ob-
server which moves in space time with velocity vH (normalized:
Vuvvg“v=l). The electric (Euv) and the magnetic (Buv) tensors

are defined as

_ a.,B

Euv = _WuuvB Vv (4a)
_ a,,B

Buv = -wuowB AT, (4b)

in wich a star * means the dual:



1 po 1 . po
: £% = = . = = /- £
: fuv Nuvpo f V=g € Voo
; 2 2 LV
and € vpo is Levi-Civita symbol.
. C i . . B AV
These definitions imply the properties Epv"Evp’ Euvg =0,
VS 3 uv v o . _
Equ =0, Buv"Bvu' Buvq =0, Bqu = 0. Thus the 5+5 indepen

dent components of Euv and Buv specifies completely, for each ob

server, the components of WuBUV which can then be written as

W = y VA vT RS

auBv Nouro "gvte ~ Jouro Jgvte

( A

T _O€
N naukcgsvrs * gaukonBvTe)\f v B (5)

in which Yaguv - Japgev ~ JavIpy-
Using the projective properties of huv=6uv-vuvv (e.g.lH:)th=
A

hu , and so on) we can re~write equation (2) in the form of a

set of equations envolving "div" and "curl" operators acting on
q g9

Euv and Buv as in Maxwell's theory (following Truper et al.). We

then obtain

+3B€v W

i

nEe Y E, € yBgvit H 0 (6a)

Ay

€0 LAY £ B .VvA _u eV
h™™h Bak;y -n Buv‘] E"" ¢ A - 3E w, 0 (6b)

which are the "div E" and "div B" equations. The equations of

evolution involving time derivatives and “curl" operators are:

VR Pr T e ePT L LlE (P o)V oL E (PUT) 4
uoov , v 5 V
© _TVUE _pAaB ) o T, AaB,
N n VuvkEeuoBv + auBB( n) VA
-1 Hia hu(T nyreBy o (6c)

5 8 A



MV Pp T e BPT L B (P eVl Puhs . (60)
B M v A% A%
2 2
TVUE _pAaB _ o T, AdB
+ N n VpVABeaGBu aaEB( n) vy

+lEu;0Lh (T np))\aBV 0
2 U

)\=

Note that these equations are invariant under the dual map
*
aBuv aBuv

angle Y. In these equations (6) Guv is the shear, a” is the ac

>~W' =cos Y W

WaBuv aBuv +siny W

for an arbitrary constant
celeration and w" the rotation vector of the congruence of the curves gene

rated by vM; the covariant derivative of V" has been decomposed in the con-
ventional way

Vu;v = OUV.PE hUV wgy t aUVV (7)
and
T 1 _aBprt
w o= N n waBVT (8)
6 = vM;u (9)

It seems worthwhile to remark that this set (6),which is called
the quasi-Maxwellian equations of gravity, has to be complemented

by the equations of evolution of the observer, contained in the

irreducible quantities 6, Qvu, a, and Wy - In our case, choosing
an irrotational geodesic observer these equations reduce to the

set

do 1
—_+_.
dt 3

62 + 2062 = 0 (10)



Hp Vs -2 2, 2 Hoo e~ r Wy'n
By By Ou\)_BhBO ¥ 3 %8 * % g o’ ¥ 3 WVV aB
(11)
Do do
. : . UV uv _ 0o o _ L o
in which ¢ = = - o -r. o 'V
uv Dt dt up-av VE UV

3 LANCZOS POTENTIAL

The remarkable similitude of equations (6) with those which
describe Maxwell's electrodynamics led me to conceive the idea
that an alternative hamiltonian formulation of gravity could be
naturally developped in the framework of Jordan's theory. To
do this, we should, first of all, be able to construct a third
order tensor potential from which - by first order derivatives-
one can construct the Weyl tensor. Fortunatelly this problem

[12]

has indeed been solved by Cornelius Lanczos some twenty vears
ago. Quite surprisingly such potential theory of the conformal
tensor remained almost forgotten by the scientific community.
As far as I know very few works have been published dealing with
Lanczos' potentials. This seems to have its origin in the gen-
eral inability of realizing how fair was Lanczos' formulation,
due to the lack of a mathematical rigorous demonstration of such
result. This situation was recently remedied with the publica-

[13] which have shown a

tion of the work of Bampi and Caviglia
theorem which guarantees the existence of such potential in any
manifold endowed with a Riemannian structure.

Following Lanczos we set:



in which

Lanczos'
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“Maguv = Papuiv T Pasvsu * Buva; ~Puvsia *
+§(Avoc+Aoc\))gBU+i— (A +ABP)g°‘V"§(A0‘U+’ A" Igv
_i(AB\)-k Aug) 9y * % 2% Topmy (12)
o :.Aag u;o Aux Asu
tensor AaBu has the properties
AaBu = —ABau (13a)
Ao g*" =0 (13b)

Such tensor has then 20 independent components. This implies that

equation (12) has a gauge symmetry. Lanczos' proposed to specify

from the beginning a gauge (which we

Lanczos'

gauge) by specifying the 10

will call from now on the
conditions

0 (14a)
0 (14b)

Bampi and Caviglia have shown that there always exists a tensor

which satisfies

Let me remark that although one can look at equation (12)

a functional definition of A,

(13)

and with which one can construct W

8y in terms of the metric

oBuUv”
as

tensor,



it is not an easy task to obtain the explicit local relation be-
tween them. Further; such local dependence does not even exist
in ‘general, but only the global structural dependence represented
in the integral function of AaBU on guv'

However, there is a special case of interest in which such ex
plicit dependence of AQBU on guv in a local basis, can be exhib-
ited: the case of weak gravitational field. Indeed, as Lanczos

shown in his paper if we have guvzn v{e wuv with €%<<e then

u
we can write (in the first order approximation):

-1 1

1
aBu - Z[wuu,s"wus,a'Fg u)',OLnuES"'glp,Bnuoc

A ] (15)
in which we have chosen to work in Lanczos' gauge.
Another useful gauge which one can use is what I will call the

reducible gauge. In this case, instead of (14) I impose

A+ A _ = -R (16)

op

Then R=-4 A
a;B

and consequently

-W = - -
apuv AaBu;v Aan;u * Auvu;B Auvs;a * (17)

1 1
* 2[Raug8v'*Rngav"RavgBu"Rngav]"g R guBuv

Now, the expression of Weyl tensor can be written as:

- -R + LR (18)
2

-W -
aBuv aBuv aung'*Rngau

1
_RavgBu - RSugav]"E R JoBuv
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Thus comparison of expressions (17) and (18) yields

+ A (19)

- = - A - A ‘
RaBuv AaBp;v aBviu uva; B uvBi;a

Now, Bampi and Caviglia have shown that expression (19) is not
true in general but only for some class of Riemannian geome-
tries. We conclude then that the reducible gauge is admissible
only for those cases and is not valid in general.

Let me remark that the fact that W is completely trace-

aBuv

_ - | * W % ~ - -
free implies WaBuv WuBuv’ a property which is not manifestly

exhibited by the decomposition (12). In order to make such im-

portant property explicit we re-write eq. (12) in a more convenient form.

We have:

0o ET __1 cpoer
naB n A

_A* * =
uv poe; T 4 aBuv poE; T

aBuUsV

B L

Developing the right-hand side we obtain

1
_A%* % - = - - -

AyBuv 2[Auva;8 Buvgia * 2ug9av * Pov Iup ~RueTpu™ Bpvdie!

(20)
Then, we arrive at the identity
A% % 4 ax x __dp - A + (21)
aBu;v uvo; B > aBu;v aBviu
* A lva;B -A +2A +2A -2a 22 ]
HVO uvgza t 2 g Jav *  Pon Tug T A3vIpa T 2 Pua Ipy

which allows us to write an alternative equivalent expression

for the Weyl conformal tensor as:
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_ x % x % , - -
WaBuv - +2(Aa8y;v'FAuva;B)*'Ausgdv* Auvgsp Ahyng Angdp

(22)

Although it is not essential, we are using the L-gauge in or-

der to simplify those expressions,

4 HAMILTONIAN FORMULATION OF JORDAN’S THEORY OF GRAVITY

The Lagrangian of Jordan's equation (2) is given by

}Z,:.éo D, (23)

with

- LoD WYy (23a)
8

aBuv

L, = /=g 3°FH a (23b)

Bu
Let us first examine Jgo,

We have

- /= KV _pHV = /T 2 _p2
2, = /=g (EVE -8R ) = /o5 (E7-B?)

In order to simplify our calculations we will work in a gaus-
sian system of coordinates associated to an irrotational congru-
ence generated by vector v¥. That is, we set for the fundamen-

tal length the expression



ds? = dt? ~9;; (x") dx* dax’

with i,j,k... = 1,2,3.
- 0
U;V"Guv*Pghuv' We

that the choice of this system of coordinates is not

u

In this case we have VU=§o and V

but has the great advantage to simplify our formulas.

a hard task to generalize all our expressions to an

(24)

emphasize
essential
It is not

arbitrary

non~gaussian system of coordinates. Due to this choice we con-

clude immediately that

implies that the unique non-vanishing terms are:

%i; 9ij,0

1l
N[
Q

Further, we have wuv=0'

Consequently the mixed Christoffel symbols are

r = =0,.
1] 1]
i i ki
T = 67, = 6..
c1] ] kjd

We can then re-write our Lagrangian to the form

. 1 Wﬂlko W
2

eéo - /:J[Wl’,oko W

Loko Eiko]

The fundamental variables of our theory are Aioo' A

iko’

.. and
1jo

Ciok::Aiok'*Akoi' Through the standard procedure we obtain



- 13 -

the momenta cannonically conjugated, respectivelly:

plok _ _ié__ = /=g wioko _ V=g glk (25a)
5C.
1o0k,o0
piik _ _8f | _v=g wiike . /:gn”"mBmk (23b)
SA, .
1jk,o
pioo _ 8L _ 4 (23c)
6Aibo o}
r
pike _ 8B _ 4 (254)
5Aiko o
)

We remark that these momenta c.C. are given by the electric and
the magnetic parts of Weyl tensor, in contradistinction to Maxwell's
theory in which the momenta is the electric vector uniquely. This,
of course, is a direct consequence of the higher number of de-
grees of freedom of gravity (represented by Wasuv).Equations
(25¢,d) are constraints. They have to be viewed as weak equa-

[14]

tions in Dirac's terminology The Hamiltonian of our system

is given by

M=Mc ity by
where
' 1 ik .
A:.-PC = —F[H& M, +=0"3%7q,. ] (26a)

(3) . 3) .. (3) .. (3) .
- —4n. iok _3 . ijk ijk _ iok
MM o0 Vi I 2 Ao, v, I +ck0ivj 1 2R V, 1 (26b)



£k _1i 2 iok

MN = =328, 6 o = 94 C okH * (26c’)
iok m pijk ijk
+ 0C niok+2(Amjk*Amkj) 67, I 2Ajoo eikH
in which the canonical part is &QC=E2-B2;&QM and a*N depend,

besides the fundamental objects A's and II's, on the 3-geometry
of 2 and on the expansion factor eij; respectively. In order to
preserve the constraints (25c,d) we must impose that their Poisson
brackets with the Hamiltonian vanishes. We obtain then the equa-

tions of divergence (6a) and (6b). The evolution of Hiok and

I gives, through the Poisson bracket with &4, equations (6c)

ijk
and (6d) -~ as it should be.

Let me point out that the set of fundamental dynamical objects

are the Ai'

and C. and its momenta II.. However, as
ik io 1

jk k*

in any theory in a curved Riemannian space-~time, we must know

K and Hio
the values of 8 and Oij in the hypersurface z. This gives a
complete knowledge of §# on Z, which allows us to propagate the
initial values of WaBuv (on 2) to the future of ), on another
hypersurface, say i. To describe the system on i and to propagate
it to the future of i we must know 6 and G;5 on i. This is given

by the equations of evolution (10) and (11), once we know the

Weyl tensor on z - which is provided by the knowledge ofé& Q).
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4 PFINITE RANGE GRAVITY-LIKE FORCES: A GENERAL COVARIANT TREATMENT

Recently, some authors have suggested that the present scien
tific description of our cosmos could be incompleté just because
we are not taking into account the whole system of forces respon
sible for the structure of space-time. This has led to the emer
gence of theories in which new long-range forces are supposed to
exist and also to the investigation of modifications of the be-

havior of classical fields in new unknown regimes (Okum[ls]).

A
mong these we can quote the idea, which has been set up some years
ago, of a possible short-range distinct component of the gravita
tional field which could modify the local structure of space-time.
Such idea has been developped in the framework of a massive gra
vity. The reason for considering this theory here may be rekﬁed
to the recent success of the investigation of massive electro-
dynamics (the mass of the photon being a consequence of the non-
-minimal coupling with gravity) which admits as a basic solution

[16]. The

an eternal Universe Friedmann-like without singularity
general inability to ‘produce an equation of motion of massive
gravity in the context of Einstein's general relativity that is,
retaining the manifold mapping group as a group of symmetry of
the theory, has led in the seventies to the belief that such a
theory does not exist which as we will show here, was a mistake.
Thus, different types of bi-metric theories which exhibit ex-
plicitly the break of general covariance have appeared and has
been considered as the natural way of introducing massive gravi
[l7,18,19,20].

ty-like forces

Although nowadays it seems more fashionable to introduce mat-
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ter in a field theory through some sort of symmetry breaking me
chanism, the old fashioned way to consider matter terms directly
in a conformally non-invariant field equation still has an in-
terest by its own. Besides, the fact that mass is still a sort of
misterious property which could be related -~ in a Machian sense
~-to the structure of space-time led us to believe that the pres
ence of a mass~term in Newton-~Einstein's theory of gravity should
have a deeper appeal, once one is dealing precisely with the kind
of force on which the structure of space-time is supposed to depend.
We will construct such massive gravity in the context of Jordan's
formulation of Einstein's general relativity. To do this, we set

up the Lagrangian of the theory as given by

1
L= 2/ [% WY o e n 2% (27)
which implies
WOCBM).\) + UZAOLB)\ =0 (28)

I

We remark that in case u#0, Lanczos' gauge AaBU.u==O is a neces

’

sary condition of compatibility of the equation for Aa Indeed,

Bu*
taking the co-variant derivative of equation (28) we obtain:

aBAv 2 OBA _
W ;\);}\+u A A s 0
which can be reduced to:
R wbEWY _p WOEHY L o2 a0%89 |

OEUV Beuv e}
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Now, using the identity

R WBeuv:

= R° o
QEUV

we obtain

Let us finally comment that equation (28) reduces to the good
limit of Pauli-Fierz spin-two theory in case of weak gravity. To
prove this we should be able to solve the functional dependence
of tensor AaBu in terms of the metric guV.AJtmmmm this can not be
done for a generic Riemarnian space-time, we can do this is case of weak

field as we have previously discussed. We can then re-write equation (28) in

the form:
aBu a u Bve B wu ave a B VEU
Oa Wt A -W- " A W T AT
N qu)\\) Ae)\\) gBu —WBsA\) Aexv gocu . 2R”8 AocBe +R€\) gocuABve
-R__gPHa%VE Y aPuV  gB pomv_ 1 g o) qoBu_y
EV v v 5
(29)

Which is the fundamental (non-linear) equation for the gravita—
tional potential. One should ask if the mass pu should be con-
structed from known constants of nature or if it should be given
only on an empirical basis. Recently there has been some experi
ments performed to check the inverse square law of gravitation
Oon a macroscopic scale -~ that means beyond ﬁ’lzlm,mdth very re-
strictive limits. However, one should wonder if for much smaller
values oflfl,a new property of gravity-like forces should not

manifest.
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5 INTERACTION OF A SPINOR FIELD WITH GRAVITY

The common procedure of generalyzing Dirac's equation of the
electron - represented by a spinor y(x) - through the use of the
minimal coupling principle (MCP) in a curved Riemannian space-

-time is given by
iy“vuw -my =0 (30)

in which the generalized y's, as space-time dependent objects, o-

bey {yu(x), Yv(x)}+= 2guv(x)I4, and I, is the identity. One can

4
interpret such y's in term of tetrad field ex(x) which is related

AB

to the constant Dirac matrices YA (YAYB+YBYA==2n I through

4)
the relation yu(x)=ez(x)yA.

The co-variant internal derivative vu is defined by
v = 3 -
" pvoo T

and the internal connection T A

L B’ firstly calculated by Fock and

Ivanenko is given by

(F.I.) 1} A A £ Y
Ty =-5[Y (x) YX(X)’U-YX(X)'M'Y (X)+{Xu} ) . } (31)

in which .

{,f} is the Christoffel symbol and zuv=y %

-Y.Y
U H v

v u’

The existence of Lanczos' potential introduces a new possible type
of interaction between gravity and the electron. Indeed, we can

add to the wusual Lagrangian, ;&;:ﬁ(iyuvu—m)w the parity-con-
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serving term

pdo = 1T 1%y A (32)

aBp
Remark that there is no need to introduce a new dimensional con
, -1
stant in the theory, once dlm[AaBu]=(length) .
We obtain thus a new proposal for the equation of an electron

interacting with a gravitational field:
.U o, uvap _
iy Vuw -my + J'AaBu Y'Yy =0 (33)

We can equivalently, interpret such equation (33) as a direct

consequence of the change of the internal connection

(F.I.) (F.1.) 8
L T =T - Ay ) (34)

Remark that this new term is compatible with the Riemannian struc

ture of the metric. Indeed, expression. (34) implies

= - € _
VaYy T Yy m Lo e el = M0y (35)
with Uu =AUBLLEQB‘ Now, it has been known since many years

agol7+21:51  tnat equation (35) for any element U, of the Clifford

algebra of the y's implies the Riemannian condition on the metric:

gU\)7>\ =0 (36)

How could one envisage an experiment to decide between equation
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(33) or the usual equation (30)? Trying to answer to this ques
tion we find another additional difficulty which comes from the

indeterminacy of a direct measure of T Indeed, should the space
O _p & _p oo
Hv o uvovV o
tion Puuv’ the motion of an electron could not distinguish be-

have a non-null torsion T for a non-symmetric connec
tween the presence of such torsion or the minimal coupling with
gravity through the additional Lagrangian (32). The equation of
motion of an electron in a Cartan non-symmetric geometry is given

by (30) with the internal ccnnection

1. A € v A
= = - 3
R AR PUTE R PR SRS IR (37
in which
€ € ) €
qu = {AU} + K)\u (38)

and the contortion Kxi is given by:

stu - gex)ggu chk'*ggx’gck e _;Ti
Thus, a comparison of (37), (38) and (34) shows that an electron
cannot distinguish between the coupling (32) with gravity or
(37,38) due to the possible new coupling (of an electron) with
Lanczos' potential. Remark that in this case Apxuz'TupA’ that
is, torsion must be pseudo-traceless.

This last equality could induce us to speculate on the possi-

ble relation between Lanczos' potential and torsion.



6. CONCLUSION

There have been many works dealing with quadratic action re-
cently. Although the subject is not new the main reason for this
renewal of interest is due to the hope that the speculative the
ory of quantum conformal gravity is renormalizable and asympto-

tically free[22’23]

. However, all these programs deal basically
with the problem of fourth-derivative in the equation of motion
of the field, once one considers that curvature is constructed
as a second derivative of a symmetric tensor (the metric field).
OQur treatment, which has its root in Lanzos formulation of Riemannian
geometry, deals with Lanczos potential AuBu and changes the si-
tuation drastically. We have seen, further that by a choice of
initial conditions Jordan's theory (with a quadratic action) is
precisely equivalent to Einstein's theory. We have explored such
a result in order to present a new alternative hamiltonian for-
mulation of the gravitational field. Then we have presented in
a direct and simple way how it is possible to construct a theo-

ry of massive gravity which exhibits general covariance.

All these results should be deeply explored in the future.
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